File size: 9,113 Bytes
fb9f4cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8827d3
af6ae93
fb9f4cc
 
 
06b7732
fb9f4cc
 
8cc3920
 
af6ae93
 
4fe8193
af6ae93
8cc3920
af6ae93
 
 
 
 
 
fb9f4cc
 
 
 
 
 
 
 
 
 
af6ae93
fb9f4cc
 
 
 
 
 
d36faeb
 
fb9f4cc
 
 
 
 
 
 
 
 
 
 
7733dc7
d36faeb
fb9f4cc
 
d36faeb
fb9f4cc
 
 
 
b8827d3
fb9f4cc
 
f45c799
 
 
af6ae93
 
 
 
 
 
 
 
0f10397
af6ae93
 
 
 
 
 
 
 
 
 
 
 
 
 
b8827d3
af6ae93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9f4cc
 
 
 
75805ba
 
 
 
 
 
 
fb9f4cc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
language:
- en
datasets:
- Open-Orca/OpenOrca
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
- EleutherAI/pile
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- legal
---

# Adapting LLMs to Domains via Continual Pre-Training (ICLR 2024)
This repo contains the domain-specific base model developed from **LLaMA-1-13B**, using the method in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).

We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**. 

### [2024/11/29] 🤗 Introduce the multimodal version of AdaptLLM at [AdaMLLM](https://huggingface.co/papers/2411.19930), for adapting MLLMs to domains 🤗

**************************** **Updates** ****************************
* 2024/11/29: Released [AdaMLLM](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains) for adapting MLLMs to domains
* 2024/9/20: Our [research paper for Instruction-Pretrain](https://huggingface.co/papers/2406.14491) has been accepted by EMNLP 2024
* 2024/8/29: Updated [guidelines](https://huggingface.co/datasets/AdaptLLM/finance-tasks) on evaluating any 🤗Huggingface models on the domain-specific tasks
* 2024/6/22: Released the [benchmarking code](https://github.com/microsoft/LMOps/tree/main/adaptllm)
* 2024/6/21: Released the general version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain)
* 2024/4/2: Released the [raw data splits (train and test)](https://huggingface.co/datasets/AdaptLLM/ConvFinQA) of all the evaluation datasets
* 2024/1/16: Our [research paper for AdaptLLM](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024
* 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B
* 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B
* 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B


## 1. Domain-Specific Models
### LLaMA-1-7B
In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:

<p align='center'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
</p>

### LLaMA-1-13B
Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).

### LLaMA-2-Chat
Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)

For example, to chat with the law model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("AdaptLLM/law-LLM-13B")
tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/law-LLM-13B", use_fast=False)

# Put your input here:
user_input = '''Question: Which of the following is false about ex post facto laws?
Options:
- They make criminal an act that was innocent when committed.
- They prescribe greater punishment for an act than was prescribed when it was done.
- They increase the evidence required to convict a person than when the act was done.
- They alter criminal offenses or punishment in a substantially prejudicial manner for the purpose of punishing a person for some past activity.

Please provide your choice first and then provide explanations if possible.'''

# Simply use your input as the prompt for base models
prompt = user_input

inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
outputs = model.generate(input_ids=inputs, max_length=2048)[0]

answer_start = int(inputs.shape[-1])
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)

print(pred)
```

### LLaMA-3-8B (💡New!)
In our recent research on [Instruction-Pretrain](https://huggingface.co/papers/2406.14491), we developed a context-based instruction synthesizer to augment the raw corpora with instruction-response pairs, **enabling Llama3-8B to be comparable to or even outperform Llama3-70B**: [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B), [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B).

## 2. Domain-Specific Tasks

### Pre-templatized Testing Splits
To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).

Note: those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.

### Evaluating Any Huggingface LMs on Domain-Specific Tasks (💡New!)
You can use the following script to reproduce our results and evaluate any other Huggingface models on domain-specific tasks. Note that the script is NOT applicable to models that require specific prompt templates (e.g., Llama2-chat, Llama3-Instruct).

1). **Set Up Dependencies**
   ```bash
   git clone https://github.com/microsoft/LMOps
   cd LMOps/adaptllm
   pip install -r requirements.txt
   ```

2). **Evaluate the Model**
   ```bash
   # Select the domain from ['biomedicine', 'finance', 'law']
   DOMAIN='law'
  
   # Specify any Huggingface model name (Not applicable to chat models)
   MODEL='AdaptLLM/law-LLM-13B'
  
   # Model parallelization:
   # - Set MODEL_PARALLEL=False if the model fits on a single GPU. 
   #   We observe that LMs smaller than 10B always meet this requirement.
   # - Set MODEL_PARALLEL=True if the model is too large and encounters OOM on a single GPU.
   MODEL_PARALLEL=True
  
   # Choose the number of GPUs from [1, 2, 4, 8]
   N_GPU=2
  
   # Whether to add a BOS token at the beginning of the prompt input:
   # - Set to False for AdaptLLM.
   # - Set to True for instruction-pretrain models.
   # If unsure, we recommend setting it to False, as this is suitable for most LMs.
   add_bos_token=False

   # Run the evaluation script
   bash scripts/inference.sh ${DOMAIN} ${MODEL} ${add_bos_token} ${MODEL_PARALLEL} ${N_GPU}
   ```

### Raw Datasets
We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages: [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt), [RCT](https://huggingface.co/datasets/AdaptLLM/RCT), [ConvFinQA](https://huggingface.co/datasets/AdaptLLM/ConvFinQA), [FiQA_SA](https://huggingface.co/datasets/AdaptLLM/FiQA_SA), [Headline](https://huggingface.co/datasets/AdaptLLM/Headline), [NER](https://huggingface.co/datasets/AdaptLLM/NER), [FPB](https://huggingface.co/datasets/AdaptLLM/FPB)

### Domain Knowledge Probing
Our pre-processed knowledge probing datasets are available at: [med_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/med_knowledge_prob) and [law_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/law_knowledge_prob)

## Citation
If you find our work helpful, please cite us:
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```