AhmedBedair commited on
Commit
2ea7b1c
·
1 Parent(s): 439544d

Model save

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vit-base-beans-demo-v5
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vit-base-beans-demo-v5
17
+
18
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0612
21
+ - Accuracy: 0.9874
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 3
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.0007 | 0.17 | 100 | 0.1211 | 0.9748 |
53
+ | 0.0005 | 0.34 | 200 | 0.1027 | 0.9786 |
54
+ | 0.0195 | 0.5 | 300 | 0.0869 | 0.9836 |
55
+ | 0.0025 | 0.67 | 400 | 0.0823 | 0.9845 |
56
+ | 0.0154 | 0.84 | 500 | 0.0888 | 0.9828 |
57
+ | 0.0004 | 1.01 | 600 | 0.0781 | 0.9853 |
58
+ | 0.0004 | 1.17 | 700 | 0.0931 | 0.9832 |
59
+ | 0.0004 | 1.34 | 800 | 0.0995 | 0.9811 |
60
+ | 0.0004 | 1.51 | 900 | 0.0925 | 0.9832 |
61
+ | 0.0003 | 1.68 | 1000 | 0.0857 | 0.9836 |
62
+ | 0.0364 | 1.85 | 1100 | 0.0788 | 0.9845 |
63
+ | 0.0003 | 2.01 | 1200 | 0.0775 | 0.9840 |
64
+ | 0.0003 | 2.18 | 1300 | 0.0718 | 0.9857 |
65
+ | 0.0003 | 2.35 | 1400 | 0.0804 | 0.9849 |
66
+ | 0.0003 | 2.52 | 1500 | 0.0751 | 0.9836 |
67
+ | 0.0003 | 2.68 | 1600 | 0.0659 | 0.9870 |
68
+ | 0.0002 | 2.85 | 1700 | 0.0612 | 0.9874 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.33.1
74
+ - Pytorch 2.0.1+cu118
75
+ - Datasets 2.14.5
76
+ - Tokenizers 0.13.3