|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
from diffusers.image_processor import PixArtImageProcessor |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers import DiffusionPipeline |
|
from transformers import XLMRobertaTokenizerFast,XLMRobertaModel |
|
from diffusers import SanaTransformer2DModel |
|
from diffusers.models import AutoencoderKL |
|
from diffusers import FlowMatchEulerDiscreteScheduler |
|
from typing import List, Union |
|
import numpy as np |
|
import PIL.Image |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import WaifuPipeline |
|
|
|
>>> pipe = WaifuPipeline.from_pretrained( |
|
... "AiArtLab/waifu-2b" |
|
... ) |
|
>>> pipe.to("cuda") |
|
|
|
>>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0] |
|
>>> image[0].save("output.png") |
|
``` |
|
""" |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class WaifuPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: XLMRobertaTokenizerFast, |
|
text_encoder: XLMRobertaModel, |
|
vae: AutoencoderKL, |
|
transformer: SanaTransformer2DModel, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler |
|
) |
|
|
|
self.text_encoder.pooler = None |
|
|
|
self.vae_scale_factor = ( |
|
8 |
|
) |
|
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: str = "", |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
max_sequence_length: int = 512, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` |
|
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For |
|
PixArt-Alpha, this should be "". |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
whether to use classifier free guidance or not |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
number of images that should be generated per prompt |
|
device: (`torch.device`, *optional*): |
|
torch device to place the resulting embeddings on |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. |
|
max_sequence_length (`int`, defaults to 512): Maximum sequence length to use for the prompt. |
|
""" |
|
|
|
if device is None: |
|
device = self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if self.tokenizer is not None: |
|
self.tokenizer.padding_side = "right" |
|
|
|
max_length = max_sequence_length |
|
select_index = [0] + list(range(-max_length + 1, 0)) |
|
|
|
if prompt_embeds is None: |
|
prompt = self._text_preprocessing(prompt) |
|
|
|
max_length_all = max_length |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_length_all, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
prompt_attention_mask = text_inputs.attention_mask |
|
prompt_attention_mask = prompt_attention_mask.to(device) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) |
|
prompt_embeds = prompt_embeds[0][:, select_index] |
|
prompt_attention_mask = prompt_attention_mask[:, select_index] |
|
|
|
if self.transformer is not None: |
|
dtype = self.transformer.dtype |
|
elif self.text_encoder is not None: |
|
dtype = self.text_encoder.dtype |
|
else: |
|
dtype = None |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) |
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
|
|
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt |
|
uncond_tokens = self._text_preprocessing(uncond_tokens) |
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_attention_mask=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
negative_prompt_attention_mask = uncond_input.attention_mask |
|
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) |
|
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
else: |
|
negative_prompt_embeds = None |
|
negative_prompt_attention_mask = None |
|
|
|
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_on_step_end_tensor_inputs=None, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
prompt_attention_mask=None, |
|
negative_prompt_attention_mask=None, |
|
): |
|
if height % 64 != 0 or width % 64 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None: |
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") |
|
|
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: |
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: |
|
raise ValueError( |
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" |
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" |
|
f" {negative_prompt_attention_mask.shape}." |
|
) |
|
|
|
def _text_preprocessing(self, text): |
|
|
|
if not isinstance(text, (tuple, list)): |
|
text = [text] |
|
|
|
def process(text: str): |
|
text = text.lower().strip() |
|
return text |
|
|
|
return [process(t) for t in text] |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype) |
|
|
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1.0 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
negative_prompt: str = "", |
|
num_inference_steps: int = 20, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
guidance_scale: float = 4.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
height: int = 512, |
|
width: int = 512, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = False, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
) -> Union[List[PIL.Image.Image], np.ndarray]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_inference_steps (`int`, *optional*, defaults to 20): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 4.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The width in pixels of the generated image. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not |
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. |
|
negative_prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Pre-generated attention mask for negative text embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to `512`): |
|
Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
Union[List[PIL.Image.Image], np.ndarray] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_on_step_end_tensor_inputs, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = self.encode_prompt( |
|
prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
|
|
|
|
latent_channels = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
latent_channels, |
|
height, |
|
width, |
|
torch.float32, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = latent_model_input.to(prompt_embeds.dtype) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype) |
|
|
|
|
|
noise_pred = self.transformer( |
|
latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=prompt_attention_mask, |
|
timestep=timestep, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if self.transformer.config.out_channels // 2 == latent_channels: |
|
noise_pred = noise_pred.chunk(2, dim=1)[0] |
|
else: |
|
noise_pred = noise_pred |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = latents.to(self.vae.dtype) |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
if not output_type == "latent": |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return Union[List[PIL.Image.Image], np.ndarray] |
|
|