femboysLover commited on
Commit
05db654
·
verified ·
1 Parent(s): 62014b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -1
README.md CHANGED
@@ -16,7 +16,6 @@ waifu is a free text-to-image model that can efficiently generate images in 80 l
16
  (2) [**Linear DiT**](https://github.com/NVlabs/Sana): we use 1.6b DiT transformer with linear attention. \
17
  (3) [**MEXMA-SigLIP**](https://huggingface.co/visheratin/mexma-siglip): MEXMA-SigLIP is a model that combines the [MEXMA](https://huggingface.co/facebook/MEXMA) multilingual text encoder and an image encoder from the [SigLIP](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) model. This allows us to get a high-performance CLIP model for 80 languages.. \
18
  (4) Other: we use Flow-Euler sampler, Adafactor-Fused optimizer and bf16 precision for training, and combine efficient caption labeling (MoonDream, CogVlM, Human, Gpt's) and danbooru tags to accelerate convergence.
19
- ,
20
 
21
  ## Pros
22
  - Small model that can be trained on a common GPU; fast training process.
 
16
  (2) [**Linear DiT**](https://github.com/NVlabs/Sana): we use 1.6b DiT transformer with linear attention. \
17
  (3) [**MEXMA-SigLIP**](https://huggingface.co/visheratin/mexma-siglip): MEXMA-SigLIP is a model that combines the [MEXMA](https://huggingface.co/facebook/MEXMA) multilingual text encoder and an image encoder from the [SigLIP](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) model. This allows us to get a high-performance CLIP model for 80 languages.. \
18
  (4) Other: we use Flow-Euler sampler, Adafactor-Fused optimizer and bf16 precision for training, and combine efficient caption labeling (MoonDream, CogVlM, Human, Gpt's) and danbooru tags to accelerate convergence.
 
19
 
20
  ## Pros
21
  - Small model that can be trained on a common GPU; fast training process.