File size: 1,325 Bytes
e330373
 
 
 
 
 
 
 
23e67c2
e330373
23e67c2
 
 
 
16288b0
 
23e67c2
 
16288b0
 
 
 
 
 
 
 
 
 
 
23e67c2
 
16288b0
23e67c2
16288b0
 
23e67c2
16288b0
 
 
23e67c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: other
license_name: open-aleph-license
license_link: LICENSE
library_name: transformers
pipeline_tag: text-generation
---

This is the safetensors-conversion of `Pharia-1-LLM-7B-control`.
We provide a joint model card for `Pharia-1-LLM-7B-control` and `Pharia-1-LLM-control-aligned`. Find this model card [here](https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control).

# Usage

```python
import torch

from transformers import AutoModelForCausalLM, PreTrainedTokenizerFast


INPUT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>

When was Rome founded?<|eot_id|><|start_header_id|>assistant<|end_header_id|>


"""

MODEL_ID = "Aleph-Alpha/Pharia-1-LLM-7B-control-hf"

tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.bfloat16)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)

inputs = tokenizer(INPUT, return_token_type_ids=False, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=50)
generated_text = tokenizer.decode(outputs[0])
print(generated_text)
```