Alian3785 commited on
Commit
80579f5
·
1 Parent(s): b800288

Upload PPO LunarLander-v2 trained agent2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 207.21 +/- 53.55
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>", "_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>", "forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651865772.0832722, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPZ3iT5ekdA9PHAdPa5ZKr5mLwe8JCGZvQAAAAAAAAAALfkxPjfghD53ZL699W0XvgneFr0UD6u7AAAAAAAAAADNNha9KeBFujDdlrtn1Py1pnHaOZZUXzUAAIA/AACAP9BITr543rs9K69VPpTsab6NdpE89YEJvQAAAAAAAAAA/VaTPjEIAL2ILhM7JvKaucVlXb7O9ju6AACAPwAAgD+m/bI9FLy6uo2OsTsn/oy4SgvPOTPPN7kAAIA/AACAP+Zdaj5h5o477ab4vNooy70EMUo8s9wgvwAAAAAAAAAAoNavPvjRmT0+tgK+ADZAvrYRCz2rrP67AAAAAAAAAABgMQK+C5mnP0CtkL7zty2+99Aevpp8F74AAAAAAAAAAIDFfj5HQC8/+E14uS83Xb7MZXa8C2tyPgAAAAAAAAAAWlECPo+WN7oqm5C8LsTsPDh3Azxmod+9AACAPwAAgD/ayO49L0oMPiDWnzsxgCy+GxNzvRZPnL0AAAAAAAAAAK2uDL4PPnE/I16MPGksgL5Ggp688927vAAAAAAAAAAAMy+hPOypxLmjMnI5AF+ENPR4MbqzfYu4AACAPwAAgD/KhdO+84WfP6d/pb7rHXC+QWaDvpZMtz0AAAAAAAAAAH4WkL5hb7E79sQBu2JpkTg3fl+93ZAUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHk/LD1y5X0CUhpRSlIwBbJRN6AOMAXSUR0CBk+eeWfK7dX2UKGgGaAloD0MIn5CdtzE5YECUhpRSlGgVTegDaBZHQIGYRRCQcPx1fZQoaAZoCWgPQwg0ZhL1gsNgQJSGlFKUaBVN6ANoFkdAgc3wEpy6tnV9lChoBmgJaA9DCAUVVb/SYTXAlIaUUpRoFU0EAWgWR0CBz8pNKyv+dX2UKGgGaAloD0MIE2OZfgmJY0CUhpRSlGgVTegDaBZHQIHQDLjghr51fZQoaAZoCWgPQwheg7709r1pQJSGlFKUaBVNXgJoFkdAgdJGEwnIAHV9lChoBmgJaA9DCNE8gEX+RWRAlIaUUpRoFU3oA2gWR0CB6hAbhm5EdX2UKGgGaAloD0MIw/ARMSXDZECUhpRSlGgVTegDaBZHQIHsKY9gWrR1fZQoaAZoCWgPQwjq6SPwB2piQJSGlFKUaBVN6ANoFkdAgfCMgdOqN3V9lChoBmgJaA9DCHwnZr2YmGJAlIaUUpRoFU3oA2gWR0CB8wVcD8tPdX2UKGgGaAloD0MI1V3ZBYOIYECUhpRSlGgVTegDaBZHQIH90VxjriV1fZQoaAZoCWgPQwisjhzpjHlgQJSGlFKUaBVN6ANoFkdAggXOCf6Gg3V9lChoBmgJaA9DCFhv1ArT12FAlIaUUpRoFU3oA2gWR0CCBuBiCrcTdX2UKGgGaAloD0MIMC5VaYtUZUCUhpRSlGgVTegDaBZHQIIKa2OQyRB1fZQoaAZoCWgPQwiR1ELJ5Dg5wJSGlFKUaBVNHwFoFkdAgg2qp1ie/nV9lChoBmgJaA9DCITWw5eJBGBAlIaUUpRoFU3oA2gWR0CCGTPacqe9dX2UKGgGaAloD0MIGArYDsbNYECUhpRSlGgVTegDaBZHQIItwxSHdoF1fZQoaAZoCWgPQwhaSMDo8iFiQJSGlFKUaBVN6ANoFkdAgjjl10T103V9lChoBmgJaA9DCNKKbyh8TWJAlIaUUpRoFU3oA2gWR0CCPae05U97dX2UKGgGaAloD0MI/WmjOh3xXECUhpRSlGgVTegDaBZHQIJ0gieNDMN1fZQoaAZoCWgPQwi/8EqS53FbQJSGlFKUaBVN6ANoFkdAgnZ8vugHvHV9lChoBmgJaA9DCFR0JJf/dllAlIaUUpRoFU3oA2gWR0CCdsrEtNBXdX2UKGgGaAloD0MI+MWlKm3JWECUhpRSlGgVTegDaBZHQIJ5NvIfbK11fZQoaAZoCWgPQwiALESHwAdKQJSGlFKUaBVNJQFoFkdAgoX8HGCI13V9lChoBmgJaA9DCMfVyK60sD/AlIaUUpRoFU0hAWgWR0CCidCiRGMGdX2UKGgGaAloD0MIZ5qw/WSOYkCUhpRSlGgVTegDaBZHQIKTgOQQtjF1fZQoaAZoCWgPQwhKfVnaqQxjQJSGlFKUaBVN6ANoFkdAgpf05U96knV9lChoBmgJaA9DCPhxNEfWg2JAlIaUUpRoFU3oA2gWR0CCmo4dZJTVdX2UKGgGaAloD0MIsW8nEeGjO0CUhpRSlGgVTS0BaBZHQIKdi4Wk8A91fZQoaAZoCWgPQwgVVFT9Sq5cQJSGlFKUaBVN6ANoFkdAgqVKIi1RcnV9lChoBmgJaA9DCE7TZwdc9xnAlIaUUpRoFU0dAWgWR0CCqoR+z+m4dX2UKGgGaAloD0MIz4O7s3a/YECUhpRSlGgVTegDaBZHQIKtEKTjebd1fZQoaAZoCWgPQwgPlxx3SlRfQJSGlFKUaBVN6ANoFkdAgq3/VI7NjnV9lChoBmgJaA9DCGtkV1pG31pAlIaUUpRoFU3oA2gWR0CCsXNlAeJYdX2UKGgGaAloD0MIXk2espouYkCUhpRSlGgVTegDaBZHQIK0kb1h9b51fZQoaAZoCWgPQwiM2v0qwFM3QJSGlFKUaBVL/mgWR0CCus8Hv+fidX2UKGgGaAloD0MIjV2iemvg+L+UhpRSlGgVTSEBaBZHQIK774xk/bF1fZQoaAZoCWgPQwgvvmiPl4hhQJSGlFKUaBVN6ANoFkdAgr7T101ZT3V9lChoBmgJaA9DCJYKKqp+4F1AlIaUUpRoFU3oA2gWR0CC0N4Glhw3dX2UKGgGaAloD0MIIR6Jl6erLUCUhpRSlGgVTYoBaBZHQILW9cD8tPJ1fZQoaAZoCWgPQwjqPZXTnpIlQJSGlFKUaBVNOgFoFkdAgtgVJcxCY3V9lChoBmgJaA9DCD9SRIZVnDLAlIaUUpRoFU0EAWgWR0CC2PIOH310dX2UKGgGaAloD0MImpXtQ16EYkCUhpRSlGgVTegDaBZHQIMTSQYDT0B1fZQoaAZoCWgPQwjVXdkFA6xgQJSGlFKUaBVN6ANoFkdAgxUmPYFqz3V9lChoBmgJaA9DCFBUNqypx1lAlIaUUpRoFU3oA2gWR0CDF97sOXmedX2UKGgGaAloD0MIyv55GrD7YECUhpRSlGgVTegDaBZHQIMowQ+UyHp1fZQoaAZoCWgPQwjGia92FElhQJSGlFKUaBVN6ANoFkdAgzJhQemvXHV9lChoBmgJaA9DCBptVRLZPGFAlIaUUpRoFU3oA2gWR0CDNqsd1dPddX2UKGgGaAloD0MIjEgUWtZaW0CUhpRSlGgVTegDaBZHQINEN+EytV91fZQoaAZoCWgPQwi+wKxQpGBfQJSGlFKUaBVN6ANoFkdAg0xhHLA573V9lChoBmgJaA9DCOW1ErpL5F9AlIaUUpRoFU3oA2gWR0CDTXa7mMfjdX2UKGgGaAloD0MINQpJZvVvZkCUhpRSlGgVTX4DaBZHQINQsVJtix51fZQoaAZoCWgPQwj0TgXc8+FbQJSGlFKUaBVN6ANoFkdAg1FIJZ4fOnV9lChoBmgJaA9DCKzFpwAYRWFAlIaUUpRoFU3oA2gWR0CDYEefZmI1dX2UKGgGaAloD0MItf0rK02OOECUhpRSlGgVTSEBaBZHQINnDQmeDnN1fZQoaAZoCWgPQwh8KNGSx9soQJSGlFKUaBVNIQFoFkdAg3NMAFPi1nV9lChoBmgJaA9DCPTDCOHRlV5AlIaUUpRoFU3oA2gWR0CDc2/VRUFTdX2UKGgGaAloD0MIxFvn3y5GXkCUhpRSlGgVTegDaBZHQIN5msaKk2x1fZQoaAZoCWgPQwhOfLWjOOpkQJSGlFKUaBVN6ANoFkdAg3rC8WbgCXV9lChoBmgJaA9DCBe2Ziuvv2BAlIaUUpRoFU3oA2gWR0CDe6tga3qidX2UKGgGaAloD0MISRRa1v3rJMCUhpRSlGgVTS0BaBZHQIOL97IDHOt1fZQoaAZoCWgPQwgKTRJLyk5jQJSGlFKUaBVN6ANoFkdAg4/4rz5GjXV9lChoBmgJaA9DCJshVRQvCmBAlIaUUpRoFU3oA2gWR0CDkalyimEXdX2UKGgGaAloD0MI6Ih8l1KeWkCUhpRSlGgVTegDaBZHQIO5A/PgNw11fZQoaAZoCWgPQwiqKck6nB9kQJSGlFKUaBVN6ANoFkdAg8jVkc0cfnV9lChoBmgJaA9DCI5aYfpeZl9AlIaUUpRoFU3oA2gWR0CD0wHmig01dX2UKGgGaAloD0MIQwOxbOawXECUhpRSlGgVTegDaBZHQIPXnEMspXp1fZQoaAZoCWgPQwgPYmcKnZ8uwJSGlFKUaBVNFAFoFkdAg9nY3Ns3ynV9lChoBmgJaA9DCKBrX0AvumpAlIaUUpRoFU3VAWgWR0CD2yQNCqp+dX2UKGgGaAloD0MI5llJK76ZW0CUhpRSlGgVTegDaBZHQIPt+4G2TgV1fZQoaAZoCWgPQwhZhc0AF6tdQJSGlFKUaBVN6ANoFkdAg+8oMrmQsHV9lChoBmgJaA9DCE3Z6Qd1aV9AlIaUUpRoFU3oA2gWR0CD8z+Q2dd3dX2UKGgGaAloD0MIVmZK628YY0CUhpRSlGgVTegDaBZHQIQEgZn+Q2d1fZQoaAZoCWgPQwjlJf+Tv2M4QJSGlFKUaBVNAwFoFkdAhBDzguRLb3V9lChoBmgJaA9DCBDLZg5JgFpAlIaUUpRoFU3oA2gWR0CEGgXrt3OfdX2UKGgGaAloD0MIfnTqymcLYECUhpRSlGgVTegDaBZHQIQaLIYFaB91fZQoaAZoCWgPQwhg5GVNLDRrQJSGlFKUaBVNAwJoFkdAhB8iudPLxXV9lChoBmgJaA9DCPRtwVLdBmJAlIaUUpRoFU3oA2gWR0CEIGepXIU8dX2UKGgGaAloD0MIQMObNXiqYUCUhpRSlGgVTegDaBZHQIQhZhpg1FZ1fZQoaAZoCWgPQwio5Qeu8qQ0QJSGlFKUaBVNSgFoFkdAhC1zabnX/nV9lChoBmgJaA9DCC0FpP0P4mFAlIaUUpRoFU3oA2gWR0CEMJyEL6UJdX2UKGgGaAloD0MIMEs7NRcgYkCUhpRSlGgVTegDaBZHQIQz01KoQ4F1fZQoaAZoCWgPQwjtZHCUvEdeQJSGlFKUaBVN6ANoFkdAhDeT5wfhdnV9lChoBmgJaA9DCKSrdHed5WFAlIaUUpRoFU3oA2gWR0CEa7irksBidX2UKGgGaAloD0MINZcbDHVGXUCUhpRSlGgVTegDaBZHQIR1q+Yc/+t1fZQoaAZoCWgPQwgijnVxGxhhQJSGlFKUaBVN6ANoFkdAhHozcynDSHV9lChoBmgJaA9DCIEKR5DKg2BAlIaUUpRoFU3oA2gWR0CEfaBo24usdX2UKGgGaAloD0MIdJXurrMEW0CUhpRSlGgVTegDaBZHQISQVkQPI4l1fZQoaAZoCWgPQwinH9RFCjZlQJSGlFKUaBVN6ANoFkdAhJSPIfbKzXV9lChoBmgJaA9DCMECmDJw1mBAlIaUUpRoFU3oA2gWR0CEtA7xNIsidX2UKGgGaAloD0MIfUELCRj1WkCUhpRSlGgVTegDaBZHQIS9lxp+MIh1fZQoaAZoCWgPQwjHhJhLKsZhQJSGlFKUaBVN6ANoFkdAhL3AM+eOGXV9lChoBmgJaA9DCGmtaHOc0znAlIaUUpRoFU0iAWgWR0CEvm33Hq/udX2UKGgGaAloD0MImNwosta+XUCUhpRSlGgVTegDaBZHQITC+mJm/WV1fZQoaAZoCWgPQwgyHxDoTBFVQJSGlFKUaBVN6ANoFkdAhMQll05lv3V9lChoBmgJaA9DCCtrm+Jx72BAlIaUUpRoFU3oA2gWR0CExSsf7rLRdX2UKGgGaAloD0MIxa7t7RaRYECUhpRSlGgVTegDaBZHQITSSEal1r91fZQoaAZoCWgPQwh6w33k1u1iQJSGlFKUaBVN6ANoFkdAhNV3LNfPX3V9lChoBmgJaA9DCD1kyoegWFhAlIaUUpRoFU3oA2gWR0CE2NVyWAwxdX2UKGgGaAloD0MIXHNH/8uMY0CUhpRSlGgVTegDaBZHQITcePFNtZV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98d4712e08ab64115af7560eef46ad33b5eb8c1d537a8b23a1973b11d0c6e7d8
3
+ size 144048
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651865772.0832722,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPZ3iT5ekdA9PHAdPa5ZKr5mLwe8JCGZvQAAAAAAAAAALfkxPjfghD53ZL699W0XvgneFr0UD6u7AAAAAAAAAADNNha9KeBFujDdlrtn1Py1pnHaOZZUXzUAAIA/AACAP9BITr543rs9K69VPpTsab6NdpE89YEJvQAAAAAAAAAA/VaTPjEIAL2ILhM7JvKaucVlXb7O9ju6AACAPwAAgD+m/bI9FLy6uo2OsTsn/oy4SgvPOTPPN7kAAIA/AACAP+Zdaj5h5o477ab4vNooy70EMUo8s9wgvwAAAAAAAAAAoNavPvjRmT0+tgK+ADZAvrYRCz2rrP67AAAAAAAAAABgMQK+C5mnP0CtkL7zty2+99Aevpp8F74AAAAAAAAAAIDFfj5HQC8/+E14uS83Xb7MZXa8C2tyPgAAAAAAAAAAWlECPo+WN7oqm5C8LsTsPDh3Azxmod+9AACAPwAAgD/ayO49L0oMPiDWnzsxgCy+GxNzvRZPnL0AAAAAAAAAAK2uDL4PPnE/I16MPGksgL5Ggp688927vAAAAAAAAAAAMy+hPOypxLmjMnI5AF+ENPR4MbqzfYu4AACAPwAAgD/KhdO+84WfP6d/pb7rHXC+QWaDvpZMtz0AAAAAAAAAAH4WkL5hb7E79sQBu2JpkTg3fl+93ZAUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHk/LD1y5X0CUhpRSlIwBbJRN6AOMAXSUR0CBk+eeWfK7dX2UKGgGaAloD0MIn5CdtzE5YECUhpRSlGgVTegDaBZHQIGYRRCQcPx1fZQoaAZoCWgPQwg0ZhL1gsNgQJSGlFKUaBVN6ANoFkdAgc3wEpy6tnV9lChoBmgJaA9DCAUVVb/SYTXAlIaUUpRoFU0EAWgWR0CBz8pNKyv+dX2UKGgGaAloD0MIE2OZfgmJY0CUhpRSlGgVTegDaBZHQIHQDLjghr51fZQoaAZoCWgPQwheg7709r1pQJSGlFKUaBVNXgJoFkdAgdJGEwnIAHV9lChoBmgJaA9DCNE8gEX+RWRAlIaUUpRoFU3oA2gWR0CB6hAbhm5EdX2UKGgGaAloD0MIw/ARMSXDZECUhpRSlGgVTegDaBZHQIHsKY9gWrR1fZQoaAZoCWgPQwjq6SPwB2piQJSGlFKUaBVN6ANoFkdAgfCMgdOqN3V9lChoBmgJaA9DCHwnZr2YmGJAlIaUUpRoFU3oA2gWR0CB8wVcD8tPdX2UKGgGaAloD0MI1V3ZBYOIYECUhpRSlGgVTegDaBZHQIH90VxjriV1fZQoaAZoCWgPQwisjhzpjHlgQJSGlFKUaBVN6ANoFkdAggXOCf6Gg3V9lChoBmgJaA9DCFhv1ArT12FAlIaUUpRoFU3oA2gWR0CCBuBiCrcTdX2UKGgGaAloD0MIMC5VaYtUZUCUhpRSlGgVTegDaBZHQIIKa2OQyRB1fZQoaAZoCWgPQwiR1ELJ5Dg5wJSGlFKUaBVNHwFoFkdAgg2qp1ie/nV9lChoBmgJaA9DCITWw5eJBGBAlIaUUpRoFU3oA2gWR0CCGTPacqe9dX2UKGgGaAloD0MIGArYDsbNYECUhpRSlGgVTegDaBZHQIItwxSHdoF1fZQoaAZoCWgPQwhaSMDo8iFiQJSGlFKUaBVN6ANoFkdAgjjl10T103V9lChoBmgJaA9DCNKKbyh8TWJAlIaUUpRoFU3oA2gWR0CCPae05U97dX2UKGgGaAloD0MI/WmjOh3xXECUhpRSlGgVTegDaBZHQIJ0gieNDMN1fZQoaAZoCWgPQwi/8EqS53FbQJSGlFKUaBVN6ANoFkdAgnZ8vugHvHV9lChoBmgJaA9DCFR0JJf/dllAlIaUUpRoFU3oA2gWR0CCdsrEtNBXdX2UKGgGaAloD0MI+MWlKm3JWECUhpRSlGgVTegDaBZHQIJ5NvIfbK11fZQoaAZoCWgPQwiALESHwAdKQJSGlFKUaBVNJQFoFkdAgoX8HGCI13V9lChoBmgJaA9DCMfVyK60sD/AlIaUUpRoFU0hAWgWR0CCidCiRGMGdX2UKGgGaAloD0MIZ5qw/WSOYkCUhpRSlGgVTegDaBZHQIKTgOQQtjF1fZQoaAZoCWgPQwhKfVnaqQxjQJSGlFKUaBVN6ANoFkdAgpf05U96knV9lChoBmgJaA9DCPhxNEfWg2JAlIaUUpRoFU3oA2gWR0CCmo4dZJTVdX2UKGgGaAloD0MIsW8nEeGjO0CUhpRSlGgVTS0BaBZHQIKdi4Wk8A91fZQoaAZoCWgPQwgVVFT9Sq5cQJSGlFKUaBVN6ANoFkdAgqVKIi1RcnV9lChoBmgJaA9DCE7TZwdc9xnAlIaUUpRoFU0dAWgWR0CCqoR+z+m4dX2UKGgGaAloD0MIz4O7s3a/YECUhpRSlGgVTegDaBZHQIKtEKTjebd1fZQoaAZoCWgPQwgPlxx3SlRfQJSGlFKUaBVN6ANoFkdAgq3/VI7NjnV9lChoBmgJaA9DCGtkV1pG31pAlIaUUpRoFU3oA2gWR0CCsXNlAeJYdX2UKGgGaAloD0MIXk2espouYkCUhpRSlGgVTegDaBZHQIK0kb1h9b51fZQoaAZoCWgPQwiM2v0qwFM3QJSGlFKUaBVL/mgWR0CCus8Hv+fidX2UKGgGaAloD0MIjV2iemvg+L+UhpRSlGgVTSEBaBZHQIK774xk/bF1fZQoaAZoCWgPQwgvvmiPl4hhQJSGlFKUaBVN6ANoFkdAgr7T101ZT3V9lChoBmgJaA9DCJYKKqp+4F1AlIaUUpRoFU3oA2gWR0CC0N4Glhw3dX2UKGgGaAloD0MIIR6Jl6erLUCUhpRSlGgVTYoBaBZHQILW9cD8tPJ1fZQoaAZoCWgPQwjqPZXTnpIlQJSGlFKUaBVNOgFoFkdAgtgVJcxCY3V9lChoBmgJaA9DCD9SRIZVnDLAlIaUUpRoFU0EAWgWR0CC2PIOH310dX2UKGgGaAloD0MImpXtQ16EYkCUhpRSlGgVTegDaBZHQIMTSQYDT0B1fZQoaAZoCWgPQwjVXdkFA6xgQJSGlFKUaBVN6ANoFkdAgxUmPYFqz3V9lChoBmgJaA9DCFBUNqypx1lAlIaUUpRoFU3oA2gWR0CDF97sOXmedX2UKGgGaAloD0MIyv55GrD7YECUhpRSlGgVTegDaBZHQIMowQ+UyHp1fZQoaAZoCWgPQwjGia92FElhQJSGlFKUaBVN6ANoFkdAgzJhQemvXHV9lChoBmgJaA9DCBptVRLZPGFAlIaUUpRoFU3oA2gWR0CDNqsd1dPddX2UKGgGaAloD0MIjEgUWtZaW0CUhpRSlGgVTegDaBZHQINEN+EytV91fZQoaAZoCWgPQwi+wKxQpGBfQJSGlFKUaBVN6ANoFkdAg0xhHLA573V9lChoBmgJaA9DCOW1ErpL5F9AlIaUUpRoFU3oA2gWR0CDTXa7mMfjdX2UKGgGaAloD0MINQpJZvVvZkCUhpRSlGgVTX4DaBZHQINQsVJtix51fZQoaAZoCWgPQwj0TgXc8+FbQJSGlFKUaBVN6ANoFkdAg1FIJZ4fOnV9lChoBmgJaA9DCKzFpwAYRWFAlIaUUpRoFU3oA2gWR0CDYEefZmI1dX2UKGgGaAloD0MItf0rK02OOECUhpRSlGgVTSEBaBZHQINnDQmeDnN1fZQoaAZoCWgPQwh8KNGSx9soQJSGlFKUaBVNIQFoFkdAg3NMAFPi1nV9lChoBmgJaA9DCPTDCOHRlV5AlIaUUpRoFU3oA2gWR0CDc2/VRUFTdX2UKGgGaAloD0MIxFvn3y5GXkCUhpRSlGgVTegDaBZHQIN5msaKk2x1fZQoaAZoCWgPQwhOfLWjOOpkQJSGlFKUaBVN6ANoFkdAg3rC8WbgCXV9lChoBmgJaA9DCBe2Ziuvv2BAlIaUUpRoFU3oA2gWR0CDe6tga3qidX2UKGgGaAloD0MISRRa1v3rJMCUhpRSlGgVTS0BaBZHQIOL97IDHOt1fZQoaAZoCWgPQwgKTRJLyk5jQJSGlFKUaBVN6ANoFkdAg4/4rz5GjXV9lChoBmgJaA9DCJshVRQvCmBAlIaUUpRoFU3oA2gWR0CDkalyimEXdX2UKGgGaAloD0MI6Ih8l1KeWkCUhpRSlGgVTegDaBZHQIO5A/PgNw11fZQoaAZoCWgPQwiqKck6nB9kQJSGlFKUaBVN6ANoFkdAg8jVkc0cfnV9lChoBmgJaA9DCI5aYfpeZl9AlIaUUpRoFU3oA2gWR0CD0wHmig01dX2UKGgGaAloD0MIQwOxbOawXECUhpRSlGgVTegDaBZHQIPXnEMspXp1fZQoaAZoCWgPQwgPYmcKnZ8uwJSGlFKUaBVNFAFoFkdAg9nY3Ns3ynV9lChoBmgJaA9DCKBrX0AvumpAlIaUUpRoFU3VAWgWR0CD2yQNCqp+dX2UKGgGaAloD0MI5llJK76ZW0CUhpRSlGgVTegDaBZHQIPt+4G2TgV1fZQoaAZoCWgPQwhZhc0AF6tdQJSGlFKUaBVN6ANoFkdAg+8oMrmQsHV9lChoBmgJaA9DCE3Z6Qd1aV9AlIaUUpRoFU3oA2gWR0CD8z+Q2dd3dX2UKGgGaAloD0MIVmZK628YY0CUhpRSlGgVTegDaBZHQIQEgZn+Q2d1fZQoaAZoCWgPQwjlJf+Tv2M4QJSGlFKUaBVNAwFoFkdAhBDzguRLb3V9lChoBmgJaA9DCBDLZg5JgFpAlIaUUpRoFU3oA2gWR0CEGgXrt3OfdX2UKGgGaAloD0MIfnTqymcLYECUhpRSlGgVTegDaBZHQIQaLIYFaB91fZQoaAZoCWgPQwhg5GVNLDRrQJSGlFKUaBVNAwJoFkdAhB8iudPLxXV9lChoBmgJaA9DCPRtwVLdBmJAlIaUUpRoFU3oA2gWR0CEIGepXIU8dX2UKGgGaAloD0MIQMObNXiqYUCUhpRSlGgVTegDaBZHQIQhZhpg1FZ1fZQoaAZoCWgPQwio5Qeu8qQ0QJSGlFKUaBVNSgFoFkdAhC1zabnX/nV9lChoBmgJaA9DCC0FpP0P4mFAlIaUUpRoFU3oA2gWR0CEMJyEL6UJdX2UKGgGaAloD0MIMEs7NRcgYkCUhpRSlGgVTegDaBZHQIQz01KoQ4F1fZQoaAZoCWgPQwjtZHCUvEdeQJSGlFKUaBVN6ANoFkdAhDeT5wfhdnV9lChoBmgJaA9DCKSrdHed5WFAlIaUUpRoFU3oA2gWR0CEa7irksBidX2UKGgGaAloD0MINZcbDHVGXUCUhpRSlGgVTegDaBZHQIR1q+Yc/+t1fZQoaAZoCWgPQwgijnVxGxhhQJSGlFKUaBVN6ANoFkdAhHozcynDSHV9lChoBmgJaA9DCIEKR5DKg2BAlIaUUpRoFU3oA2gWR0CEfaBo24usdX2UKGgGaAloD0MIdJXurrMEW0CUhpRSlGgVTegDaBZHQISQVkQPI4l1fZQoaAZoCWgPQwinH9RFCjZlQJSGlFKUaBVN6ANoFkdAhJSPIfbKzXV9lChoBmgJaA9DCMECmDJw1mBAlIaUUpRoFU3oA2gWR0CEtA7xNIsidX2UKGgGaAloD0MIfUELCRj1WkCUhpRSlGgVTegDaBZHQIS9lxp+MIh1fZQoaAZoCWgPQwjHhJhLKsZhQJSGlFKUaBVN6ANoFkdAhL3AM+eOGXV9lChoBmgJaA9DCGmtaHOc0znAlIaUUpRoFU0iAWgWR0CEvm33Hq/udX2UKGgGaAloD0MImNwosta+XUCUhpRSlGgVTegDaBZHQITC+mJm/WV1fZQoaAZoCWgPQwgyHxDoTBFVQJSGlFKUaBVN6ANoFkdAhMQll05lv3V9lChoBmgJaA9DCCtrm+Jx72BAlIaUUpRoFU3oA2gWR0CExSsf7rLRdX2UKGgGaAloD0MIxa7t7RaRYECUhpRSlGgVTegDaBZHQITSSEal1r91fZQoaAZoCWgPQwh6w33k1u1iQJSGlFKUaBVN6ANoFkdAhNV3LNfPX3V9lChoBmgJaA9DCD1kyoegWFhAlIaUUpRoFU3oA2gWR0CE2NVyWAwxdX2UKGgGaAloD0MIXHNH/8uMY0CUhpRSlGgVTegDaBZHQITcePFNtZV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:945241785fd191d09c3317d8633957cfc34f6fd84d1e83c1e630408afb0341f4
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9007c72bafa387b6986bb77ebad93b3083c9078a0a4afe04c0889df925ee8797
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82358784c0807ac0c02dadfddecbf8d0c5a50f8192d5735893c6df2065c63c90
3
+ size 245466
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 207.20557271863655, "std_reward": 53.54569971186692, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:07:18.445710"}