Aliayub1995
commited on
Upload 52 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- handler.py +82 -0
- videollama2/__init__.py +117 -0
- videollama2/constants.py +32 -0
- videollama2/conversation.py +507 -0
- videollama2/eval/eval_video_cap_msvc_correctness.py +259 -0
- videollama2/eval/eval_video_cap_msvc_detailedness.py +257 -0
- videollama2/eval/eval_video_mcqa_mvbench.py +64 -0
- videollama2/eval/eval_video_mcqa_videomme.py +277 -0
- videollama2/eval/eval_video_oqa_activitynet.py +210 -0
- videollama2/eval/eval_video_oqa_vcgpt_1_correctness.py +210 -0
- videollama2/eval/eval_video_oqa_vcgpt_2_detailed_orientation.py +210 -0
- videollama2/eval/eval_video_oqa_vcgpt_3_context.py +212 -0
- videollama2/eval/eval_video_oqa_vcgpt_4_temporal.py +206 -0
- videollama2/eval/eval_video_oqa_vcgpt_5_consistency.py +218 -0
- videollama2/eval/inference_video_cap_msvc.py +120 -0
- videollama2/eval/inference_video_mcqa_egoschema.py +153 -0
- videollama2/eval/inference_video_mcqa_mvbench.py +203 -0
- videollama2/eval/inference_video_mcqa_perception_test_mcqa.py +169 -0
- videollama2/eval/inference_video_mcqa_videomme.py +304 -0
- videollama2/eval/inference_video_oqa_activitynet.py +146 -0
- videollama2/eval/inference_video_oqa_vcgpt_consistency.py +150 -0
- videollama2/eval/inference_video_oqa_vcgpt_general.py +130 -0
- videollama2/mm_utils.py +357 -0
- videollama2/model/__init__.py +224 -0
- videollama2/model/encoder.py +188 -0
- videollama2/model/projector.py +250 -0
- videollama2/model/videollama2_arch.py +264 -0
- videollama2/model/videollama2_gemma2.py +176 -0
- videollama2/model/videollama2_llama.py +157 -0
- videollama2/model/videollama2_mistral.py +159 -0
- videollama2/model/videollama2_mixtral.py +154 -0
- videollama2/model/videollama2_phi3.py +159 -0
- videollama2/model/videollama2_qwen2.py +153 -0
- videollama2/serve/cli.py +139 -0
- videollama2/serve/controller.py +298 -0
- videollama2/serve/examples/1034346401.mp4 +3 -0
- videollama2/serve/examples/desert.jpg +0 -0
- videollama2/serve/examples/extreme_ironing.jpg +0 -0
- videollama2/serve/examples/sample_demo_1.mp4 +3 -0
- videollama2/serve/examples/sample_demo_3.mp4 +0 -0
- videollama2/serve/examples/sample_demo_9.mp4 +0 -0
- videollama2/serve/examples/waterview.jpg +0 -0
- videollama2/serve/gradio_web_server.py +499 -0
- videollama2/serve/gradio_web_server_adhoc.py +312 -0
- videollama2/serve/model_worker.py +397 -0
- videollama2/serve/register_worker.py +26 -0
- videollama2/serve/sglang_worker.py +244 -0
- videollama2/serve/test_message.py +62 -0
- videollama2/train.py +585 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
videollama2/serve/examples/1034346401.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
videollama2/serve/examples/sample_demo_1.mp4 filter=lfs diff=lfs merge=lfs -text
|
handler.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import sys
|
3 |
+
sys.path.append('./')
|
4 |
+
from videollama2 import model_init, mm_infer
|
5 |
+
from videollama2.utils import disable_torch_init
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self, path: str = ""):
|
9 |
+
"""
|
10 |
+
Initialize the handler by loading the model and any other necessary components.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): The path to the model or other necessary files.
|
14 |
+
"""
|
15 |
+
disable_torch_init()
|
16 |
+
self.model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B'
|
17 |
+
self.model, self.processor, self.tokenizer = model_init(self.model_path)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
20 |
+
"""
|
21 |
+
Handle inference requests.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
data (Dict[str, Any]): The input data for inference. Expected keys:
|
25 |
+
- 'modal' (str): 'video' or 'image'
|
26 |
+
- 'modal_path' (str): Path to the video or image file
|
27 |
+
- 'instruct' (str): The instruction/query to process
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
List[Dict[str, Any]]: The output of the inference.
|
31 |
+
"""
|
32 |
+
modal = data.get("modal", "video")
|
33 |
+
modal_path = data.get("modal_path", "")
|
34 |
+
instruct = data.get("instruct", "")
|
35 |
+
|
36 |
+
if not modal_path or not instruct:
|
37 |
+
raise ValueError("Both 'modal_path' and 'instruct' must be provided in the input data.")
|
38 |
+
|
39 |
+
# Perform inference
|
40 |
+
output = mm_infer(
|
41 |
+
self.processor[modal](modal_path),
|
42 |
+
instruct,
|
43 |
+
model=self.model,
|
44 |
+
tokenizer=self.tokenizer,
|
45 |
+
do_sample=False,
|
46 |
+
modal=modal
|
47 |
+
)
|
48 |
+
|
49 |
+
return [{"output": output}]
|
50 |
+
|
51 |
+
|
52 |
+
# from transformers import pipeline
|
53 |
+
|
54 |
+
# class EndpointHandler:
|
55 |
+
# def __init__(self, path: str = ""):
|
56 |
+
# """
|
57 |
+
# Initialize the handler by setting up the environment and loading the model.
|
58 |
+
# """
|
59 |
+
# # Use a pipeline as a high-level helper to download and load the model
|
60 |
+
# self.pipe = pipeline("visual-question-answering", model="DAMO-NLP-SG/VideoLLaMA2-8x7B")
|
61 |
+
# print("Model downloaded and pipeline created successfully.")
|
62 |
+
|
63 |
+
# def __call__(self, data):
|
64 |
+
# """
|
65 |
+
# Handle inference requests.
|
66 |
+
|
67 |
+
# Args:
|
68 |
+
# data (dict): Input data containing 'image' and 'question'.
|
69 |
+
|
70 |
+
# Returns:
|
71 |
+
# dict: The output from the model.
|
72 |
+
# """
|
73 |
+
# image = data.get("image")
|
74 |
+
# question = data.get("question")
|
75 |
+
|
76 |
+
# if not image or not question:
|
77 |
+
# raise ValueError("Both 'image' and 'question' must be provided in the input data.")
|
78 |
+
|
79 |
+
# # Use the pipeline to perform visual question answering
|
80 |
+
# output = self.pipe(image=image, question=question)
|
81 |
+
|
82 |
+
# return output
|
videollama2/__init__.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import copy
|
3 |
+
import warnings
|
4 |
+
import shutil
|
5 |
+
from functools import partial
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import logging
|
9 |
+
from .model import load_pretrained_model
|
10 |
+
from .mm_utils import process_image, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria
|
11 |
+
from .constants import NUM_FRAMES, DEFAULT_IMAGE_TOKEN, DEFAULT_VIDEO_TOKEN, MODAL_INDEX_MAP
|
12 |
+
|
13 |
+
|
14 |
+
def model_init(model_path=None, **kwargs):
|
15 |
+
logging.info(f"Loading Model from {model_path}")
|
16 |
+
model_path = "DAMO-NLP-SG/VideoLLaMA2-7B" if model_path is None else model_path
|
17 |
+
logging.info(f"Model Path: {model_path}")
|
18 |
+
model_name = get_model_name_from_path(model_path)
|
19 |
+
logging.info(f"Model Name: {model_name}")
|
20 |
+
tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, **kwargs)
|
21 |
+
logging.info(f"Model Loaded Successfully")
|
22 |
+
if tokenizer.pad_token is None and tokenizer.unk_token is not None:
|
23 |
+
tokenizer.pad_token = tokenizer.unk_token
|
24 |
+
|
25 |
+
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES
|
26 |
+
|
27 |
+
processor = {
|
28 |
+
'image': partial(process_image, processor=processor, aspect_ratio=None),
|
29 |
+
'video': partial(process_video, processor=processor, aspect_ratio=None, num_frames=num_frames),
|
30 |
+
}
|
31 |
+
|
32 |
+
return model, processor, tokenizer
|
33 |
+
|
34 |
+
|
35 |
+
def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs):
|
36 |
+
"""inference api of VideoLLaMA2 for video understanding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
model: VideoLLaMA2 model.
|
40 |
+
image_or_video (torch.Tensor): image tensor (1, C, H, W) / video tensor (T, C, H, W).
|
41 |
+
instruct (str): text instruction for understanding video.
|
42 |
+
tokenizer: tokenizer.
|
43 |
+
do_sample (bool): whether to sample.
|
44 |
+
modal (str): inference modality.
|
45 |
+
Returns:
|
46 |
+
str: response of the model.
|
47 |
+
"""
|
48 |
+
|
49 |
+
# 1. text preprocess (tag process & generate prompt).
|
50 |
+
if modal == 'image':
|
51 |
+
modal_token = DEFAULT_IMAGE_TOKEN
|
52 |
+
elif modal == 'video':
|
53 |
+
modal_token = DEFAULT_VIDEO_TOKEN
|
54 |
+
elif modal == 'text':
|
55 |
+
modal_token = ''
|
56 |
+
else:
|
57 |
+
raise ValueError(f"Unsupported modal: {modal}")
|
58 |
+
|
59 |
+
# 1. vision preprocess (load & transform image or video).
|
60 |
+
if modal == 'text':
|
61 |
+
tensor = None
|
62 |
+
else:
|
63 |
+
tensor = image_or_video.half().cuda()
|
64 |
+
tensor = [(tensor, modal)]
|
65 |
+
|
66 |
+
# 2. text preprocess (tag process & generate prompt).
|
67 |
+
if isinstance(instruct, str):
|
68 |
+
message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
|
69 |
+
elif isinstance(instruct, list):
|
70 |
+
message = copy.deepcopy(instruct)
|
71 |
+
message[0]['content'] = modal_token + '\n' + message[0]['content']
|
72 |
+
else:
|
73 |
+
raise ValueError(f"Unsupported type of instruct: {type(instruct)}")
|
74 |
+
|
75 |
+
if model.config.model_type in ['videollama2', 'videollama2_mistral', 'videollama2_mixtral']:
|
76 |
+
system_message = [
|
77 |
+
{'role': 'system', 'content': (
|
78 |
+
"""<<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature."""
|
79 |
+
"""\n"""
|
80 |
+
"""If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>""")
|
81 |
+
}
|
82 |
+
]
|
83 |
+
else:
|
84 |
+
system_message = []
|
85 |
+
|
86 |
+
message = system_message + message
|
87 |
+
prompt = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
|
88 |
+
|
89 |
+
input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
|
90 |
+
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
|
91 |
+
|
92 |
+
# 3. generate response according to visual signals and prompts.
|
93 |
+
keywords = [tokenizer.eos_token]
|
94 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
95 |
+
|
96 |
+
do_sample = kwargs.get('do_sample', False)
|
97 |
+
temperature = kwargs.get('temperature', 0.2 if do_sample else 0.0)
|
98 |
+
top_p = kwargs.get('top_p', 0.9)
|
99 |
+
max_new_tokens = kwargs.get('max_new_tokens', 2048)
|
100 |
+
|
101 |
+
with torch.inference_mode():
|
102 |
+
output_ids = model.generate(
|
103 |
+
input_ids,
|
104 |
+
attention_mask=attention_masks,
|
105 |
+
images=tensor,
|
106 |
+
do_sample=do_sample,
|
107 |
+
temperature=temperature,
|
108 |
+
max_new_tokens=max_new_tokens,
|
109 |
+
top_p=top_p,
|
110 |
+
use_cache=True,
|
111 |
+
stopping_criteria=[stopping_criteria],
|
112 |
+
pad_token_id=tokenizer.eos_token_id,
|
113 |
+
)
|
114 |
+
|
115 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
116 |
+
|
117 |
+
return outputs
|
videollama2/constants.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "."
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
|
9 |
+
# Image arguments
|
10 |
+
IMAGE_TOKEN_INDEX = -200
|
11 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
12 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
13 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
14 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
15 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
16 |
+
|
17 |
+
# Video arguments
|
18 |
+
VIDEO_TOKEN_INDEX = -201
|
19 |
+
DEFAULT_VIDEO_TOKEN = "<video>"
|
20 |
+
NUM_FRAMES = 8
|
21 |
+
MAX_FRAMES = 32
|
22 |
+
NUM_FRAMES_PER_SECOND = 1
|
23 |
+
|
24 |
+
# Audio arguments
|
25 |
+
AUDIO_TOKEN_INDEX = -202
|
26 |
+
DEFAULT_AUDIO_TOKEN = "<audio>"
|
27 |
+
|
28 |
+
MODAL_INDEX_MAP = {
|
29 |
+
"<image>": -200,
|
30 |
+
"<video>": -201,
|
31 |
+
"<audio>": -202,
|
32 |
+
}
|
videollama2/conversation.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import dataclasses
|
3 |
+
from io import BytesIO
|
4 |
+
from enum import auto, Enum
|
5 |
+
from typing import List, Tuple
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from .constants import LOGDIR, NUM_FRAMES
|
9 |
+
|
10 |
+
|
11 |
+
class SeparatorStyle(Enum):
|
12 |
+
"""Different separator style."""
|
13 |
+
SINGLE = auto()
|
14 |
+
TWO = auto()
|
15 |
+
PLAIN = auto()
|
16 |
+
LLAMA2 = auto()
|
17 |
+
QWEN = auto()
|
18 |
+
|
19 |
+
@dataclasses.dataclass
|
20 |
+
class Conversation:
|
21 |
+
"""A class that keeps all conversation history."""
|
22 |
+
system: str
|
23 |
+
roles: List[str]
|
24 |
+
messages: List[List[str]]
|
25 |
+
offset: int
|
26 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
27 |
+
sep: str = "###"
|
28 |
+
sep2: str = None
|
29 |
+
version: str = "Unknown"
|
30 |
+
|
31 |
+
skip_next: bool = False
|
32 |
+
modality: str = "image"
|
33 |
+
|
34 |
+
def get_prompt(self):
|
35 |
+
messages = self.messages
|
36 |
+
modality_token = f"<{self.modality}>"
|
37 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
38 |
+
messages = self.messages.copy()
|
39 |
+
init_role, init_msg = messages[0].copy()
|
40 |
+
init_msg = init_msg[0].replace(modality_token, "").strip()
|
41 |
+
if 'mmtag' in self.version:
|
42 |
+
messages[0] = (init_role, init_msg)
|
43 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
44 |
+
messages.insert(1, (self.roles[1], "Received."))
|
45 |
+
else:
|
46 |
+
messages[0] = (init_role, f"{modality_token}\n" + init_msg)
|
47 |
+
|
48 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
49 |
+
ret = self.system + self.sep
|
50 |
+
for role, message in messages:
|
51 |
+
if message:
|
52 |
+
if type(message) is tuple:
|
53 |
+
message, _, _ = message
|
54 |
+
ret += role + ": " + message + self.sep
|
55 |
+
else:
|
56 |
+
ret += role + ":"
|
57 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
58 |
+
seps = [self.sep, self.sep2]
|
59 |
+
ret = self.system + seps[0]
|
60 |
+
for i, (role, message) in enumerate(messages):
|
61 |
+
if message:
|
62 |
+
if type(message) is tuple:
|
63 |
+
message, _, _ = message
|
64 |
+
ret += role + ": " + message + seps[i % 2]
|
65 |
+
else:
|
66 |
+
ret += role + ":"
|
67 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
68 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
|
69 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
70 |
+
ret = ""
|
71 |
+
|
72 |
+
for i, (role, message) in enumerate(messages):
|
73 |
+
if i == 0:
|
74 |
+
assert message, "first message should not be none"
|
75 |
+
assert role == self.roles[0], "first message should come from user"
|
76 |
+
if message:
|
77 |
+
if type(message) is tuple:
|
78 |
+
message, _, _ = message
|
79 |
+
if i == 0: message = wrap_sys(self.system) + message
|
80 |
+
if i % 2 == 0:
|
81 |
+
message = wrap_inst(message)
|
82 |
+
ret += self.sep + message
|
83 |
+
else:
|
84 |
+
ret += " " + message + " " + self.sep2
|
85 |
+
else:
|
86 |
+
ret += ""
|
87 |
+
ret = ret.lstrip(self.sep)
|
88 |
+
elif self.sep_style == SeparatorStyle.QWEN:
|
89 |
+
ret = ""
|
90 |
+
# 1. Add system prompt
|
91 |
+
ret += self.system + self.sep + "\n"
|
92 |
+
# 2. Iterate message
|
93 |
+
for i, (role, message) in enumerate(messages):
|
94 |
+
if i == 0:
|
95 |
+
assert message, "first message should not be none"
|
96 |
+
assert role == self.roles[0], "first message should come from user"
|
97 |
+
if message:
|
98 |
+
if type(message) is tuple:
|
99 |
+
message, _, _ = message
|
100 |
+
# 2.1 Add role and message
|
101 |
+
ret += role + message + self.sep + "\n"
|
102 |
+
else:
|
103 |
+
# 2.2 Add generation prompt
|
104 |
+
ret += role
|
105 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = self.system
|
108 |
+
for i, (role, message) in enumerate(messages):
|
109 |
+
if message:
|
110 |
+
if type(message) is tuple:
|
111 |
+
message, _, _ = message
|
112 |
+
ret += role + message + seps[i % 2]
|
113 |
+
else:
|
114 |
+
ret += role
|
115 |
+
else:
|
116 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
117 |
+
|
118 |
+
return ret
|
119 |
+
|
120 |
+
def append_message(self, role, message):
|
121 |
+
self.messages.append([role, message])
|
122 |
+
|
123 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=800, min_len=400):
|
124 |
+
if image_process_mode == "Pad":
|
125 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
126 |
+
width, height = pil_img.size
|
127 |
+
if width == height:
|
128 |
+
return pil_img
|
129 |
+
elif width > height:
|
130 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
131 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
132 |
+
return result
|
133 |
+
else:
|
134 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
135 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
136 |
+
return result
|
137 |
+
image = expand2square(image)
|
138 |
+
elif image_process_mode in ["Default", "Crop"]:
|
139 |
+
pass
|
140 |
+
elif image_process_mode == "Resize":
|
141 |
+
image = image.resize((336, 336))
|
142 |
+
else:
|
143 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
144 |
+
if max(image.size) > max_len:
|
145 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
146 |
+
aspect_ratio = max_hw / min_hw
|
147 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
148 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
149 |
+
W, H = image.size
|
150 |
+
if H > W:
|
151 |
+
H, W = longest_edge, shortest_edge
|
152 |
+
else:
|
153 |
+
H, W = shortest_edge, longest_edge
|
154 |
+
image = image.resize((W, H))
|
155 |
+
if return_pil:
|
156 |
+
return image
|
157 |
+
else:
|
158 |
+
buffered = BytesIO()
|
159 |
+
image.save(buffered, format=image_format)
|
160 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
161 |
+
return img_b64_str
|
162 |
+
|
163 |
+
|
164 |
+
def get_videos(self, return_pil=False):
|
165 |
+
video_frames = []
|
166 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
167 |
+
if i % 2 == 0:
|
168 |
+
if type(msg) is tuple:
|
169 |
+
from decord import VideoReader, cpu
|
170 |
+
import numpy as np
|
171 |
+
# here video is the file path of input video
|
172 |
+
msg, video, image_process_mode = msg
|
173 |
+
if not return_pil:
|
174 |
+
# return filepath
|
175 |
+
video_frames.append(video)
|
176 |
+
else:
|
177 |
+
# read video using decord.VideoReader
|
178 |
+
decord_vr = VideoReader(uri=video, ctx=cpu(0))
|
179 |
+
duration = len(decord_vr)
|
180 |
+
frame_id_list = np.linspace(0, duration-1, NUM_FRAMES, dtype=int)
|
181 |
+
# convert the extracted image frames into PIL objects
|
182 |
+
all_images = [Image.fromarray(f) for f in decord_vr.get_batch(frame_id_list).asnumpy()]
|
183 |
+
video_frames.extend([self.process_image(image, image_process_mode, return_pil=return_pil) for image in all_images])
|
184 |
+
return video_frames
|
185 |
+
|
186 |
+
|
187 |
+
def get_images(self, return_pil=False):
|
188 |
+
images = []
|
189 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
190 |
+
if i % 2 == 0:
|
191 |
+
if type(msg) is tuple:
|
192 |
+
msg, image, image_process_mode = msg
|
193 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
194 |
+
images.append(image)
|
195 |
+
|
196 |
+
# import base64
|
197 |
+
# from io import BytesIO
|
198 |
+
# from PIL import Image
|
199 |
+
# # here image is a PIL object
|
200 |
+
# msg, image, image_process_mode = msg
|
201 |
+
# if image_process_mode == "Pad":
|
202 |
+
# def expand2square(pil_img, background_color=(122, 116, 104)):
|
203 |
+
# width, height = pil_img.size
|
204 |
+
# if width == height:
|
205 |
+
# return pil_img
|
206 |
+
# elif width > height:
|
207 |
+
# result = Image.new(pil_img.mode, (width, width), background_color)
|
208 |
+
# result.paste(pil_img, (0, (width - height) // 2))
|
209 |
+
# return result
|
210 |
+
# else:
|
211 |
+
# result = Image.new(pil_img.mode, (height, height), background_color)
|
212 |
+
# result.paste(pil_img, ((height - width) // 2, 0))
|
213 |
+
# return result
|
214 |
+
# image = expand2square(image)
|
215 |
+
# elif image_process_mode in ["Default", "Crop"]:
|
216 |
+
# pass
|
217 |
+
# elif image_process_mode == "Resize":
|
218 |
+
# image = image.resize((336, 336))
|
219 |
+
# else:
|
220 |
+
# raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
221 |
+
# max_hw, min_hw = max(image.size), min(image.size)
|
222 |
+
# aspect_ratio = max_hw / min_hw
|
223 |
+
# max_len, min_len = 800, 400
|
224 |
+
# shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
225 |
+
# longest_edge = int(shortest_edge * aspect_ratio)
|
226 |
+
# W, H = image.size
|
227 |
+
# if longest_edge != max(image.size):
|
228 |
+
# if H > W:
|
229 |
+
# H, W = longest_edge, shortest_edge
|
230 |
+
# else:
|
231 |
+
# H, W = shortest_edge, longest_edge
|
232 |
+
# image = image.resize((W, H))
|
233 |
+
# if return_pil:
|
234 |
+
# images.append(image)
|
235 |
+
# else:
|
236 |
+
# buffered = BytesIO()
|
237 |
+
# image.save(buffered, format="PNG")
|
238 |
+
# img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
239 |
+
# images.append(img_b64_str)
|
240 |
+
return images
|
241 |
+
|
242 |
+
def to_gradio_chatbot(self):
|
243 |
+
ret = []
|
244 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
245 |
+
if i % 2 == 0:
|
246 |
+
if type(msg) is tuple:
|
247 |
+
# import base64
|
248 |
+
# from io import BytesIO
|
249 |
+
# from PIL import Image
|
250 |
+
# msg, image, image_process_mode = msg
|
251 |
+
# max_hw, min_hw = max(image.size), min(image.size)
|
252 |
+
# aspect_ratio = max_hw / min_hw
|
253 |
+
# max_len, min_len = 800, 400
|
254 |
+
# shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
255 |
+
# longest_edge = int(shortest_edge * aspect_ratio)
|
256 |
+
# W, H = image.size
|
257 |
+
# if H > W:
|
258 |
+
# H, W = longest_edge, shortest_edge
|
259 |
+
# else:
|
260 |
+
# H, W = shortest_edge, longest_edge
|
261 |
+
# image = image.resize((W, H))
|
262 |
+
# buffered = BytesIO()
|
263 |
+
# image.save(buffered, format="JPEG")
|
264 |
+
# img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
265 |
+
# img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
266 |
+
# display image/video in the textbox
|
267 |
+
msg, image_or_video, image_process_mode = msg
|
268 |
+
##print("imagebox:", image)
|
269 |
+
if isinstance(image_or_video, Image.Image):
|
270 |
+
# image is PIL object
|
271 |
+
img_b64_str = self.process_image(image_or_video, "Default", return_pil=False, image_format='JPEG')
|
272 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
273 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
274 |
+
else:
|
275 |
+
# video is file path
|
276 |
+
vid_str = f'<video controls playsinline width="500" style="display: inline-block;" src="./file={image_or_video}"></video><br>'
|
277 |
+
msg = vid_str + msg.replace('<video>', '').strip()
|
278 |
+
ret.append([msg, None])
|
279 |
+
else:
|
280 |
+
ret.append([msg, None])
|
281 |
+
else:
|
282 |
+
ret[-1][-1] = msg
|
283 |
+
return ret
|
284 |
+
|
285 |
+
def copy(self):
|
286 |
+
return Conversation(
|
287 |
+
system=self.system,
|
288 |
+
roles=self.roles,
|
289 |
+
messages=[[x, y] for x, y in self.messages],
|
290 |
+
offset=self.offset,
|
291 |
+
sep_style=self.sep_style,
|
292 |
+
sep=self.sep,
|
293 |
+
sep2=self.sep2,
|
294 |
+
version=self.version)
|
295 |
+
|
296 |
+
def dict(self):
|
297 |
+
if (self.modality == "image" and len(self.get_images()) > 0) or \
|
298 |
+
(self.modality == "video" and len(self.get_videos()) > 0):
|
299 |
+
return {
|
300 |
+
"system": self.system,
|
301 |
+
"roles": self.roles,
|
302 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
303 |
+
"offset": self.offset,
|
304 |
+
"sep": self.sep,
|
305 |
+
"sep2": self.sep2,
|
306 |
+
"modality": self.modality
|
307 |
+
}
|
308 |
+
return {
|
309 |
+
"system": self.system,
|
310 |
+
"roles": self.roles,
|
311 |
+
"messages": self.messages,
|
312 |
+
"offset": self.offset,
|
313 |
+
"sep": self.sep,
|
314 |
+
"sep2": self.sep2,
|
315 |
+
}
|
316 |
+
|
317 |
+
|
318 |
+
conv_vicuna_v0 = Conversation(
|
319 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
320 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
321 |
+
roles=("Human", "Assistant"),
|
322 |
+
messages=(
|
323 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
324 |
+
("Assistant",
|
325 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
326 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
327 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
328 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
329 |
+
"renewable and non-renewable energy sources:\n"
|
330 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
331 |
+
"energy sources are finite and will eventually run out.\n"
|
332 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
333 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
334 |
+
"and other negative effects.\n"
|
335 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
336 |
+
"have lower operational costs than non-renewable sources.\n"
|
337 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
338 |
+
"locations than non-renewable sources.\n"
|
339 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
340 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
341 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
342 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
343 |
+
),
|
344 |
+
offset=2,
|
345 |
+
sep_style=SeparatorStyle.SINGLE,
|
346 |
+
sep="###",
|
347 |
+
)
|
348 |
+
|
349 |
+
conv_llava_plain = Conversation(
|
350 |
+
system="",
|
351 |
+
roles=("", ""),
|
352 |
+
messages=(),
|
353 |
+
offset=0,
|
354 |
+
sep_style=SeparatorStyle.PLAIN,
|
355 |
+
sep="",
|
356 |
+
sep2="\n"
|
357 |
+
)
|
358 |
+
|
359 |
+
conv_llava_v0_mmtag = Conversation(
|
360 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
361 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
362 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
363 |
+
roles=("Human", "Assistant"),
|
364 |
+
messages=(
|
365 |
+
),
|
366 |
+
offset=0,
|
367 |
+
sep_style=SeparatorStyle.SINGLE,
|
368 |
+
sep="###",
|
369 |
+
version="v0_mmtag",
|
370 |
+
)
|
371 |
+
|
372 |
+
conv_llava_v0 = Conversation(
|
373 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
374 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
375 |
+
roles=("Human", "Assistant"),
|
376 |
+
messages=(
|
377 |
+
),
|
378 |
+
offset=0,
|
379 |
+
sep_style=SeparatorStyle.SINGLE,
|
380 |
+
sep="###",
|
381 |
+
)
|
382 |
+
|
383 |
+
conv_vicuna_v1 = Conversation(
|
384 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
385 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
386 |
+
roles=("USER", "ASSISTANT"),
|
387 |
+
version="v1",
|
388 |
+
messages=(),
|
389 |
+
offset=0,
|
390 |
+
sep_style=SeparatorStyle.TWO,
|
391 |
+
sep=" ",
|
392 |
+
sep2="</s>",
|
393 |
+
)
|
394 |
+
|
395 |
+
conv_llava_v1_mmtag = Conversation(
|
396 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
397 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
398 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
399 |
+
roles=("USER", "ASSISTANT"),
|
400 |
+
messages=(),
|
401 |
+
offset=0,
|
402 |
+
sep_style=SeparatorStyle.TWO,
|
403 |
+
sep=" ",
|
404 |
+
sep2="</s>",
|
405 |
+
version="v1_mmtag",
|
406 |
+
)
|
407 |
+
|
408 |
+
conv_llava_v1 = Conversation(
|
409 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
410 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
411 |
+
roles=("USER", "ASSISTANT"),
|
412 |
+
version="v1",
|
413 |
+
messages=(),
|
414 |
+
offset=0,
|
415 |
+
sep_style=SeparatorStyle.TWO,
|
416 |
+
sep=" ",
|
417 |
+
sep2="</s>",
|
418 |
+
)
|
419 |
+
|
420 |
+
conv_llava_llama2 = Conversation(
|
421 |
+
system="You are a helpful language and vision assistant. "
|
422 |
+
"You are able to understand the visual content that the user provides, "
|
423 |
+
"and assist the user with a variety of tasks using natural language.",
|
424 |
+
roles=("USER", "ASSISTANT"),
|
425 |
+
version="llama2",
|
426 |
+
messages=(),
|
427 |
+
offset=0,
|
428 |
+
sep_style=SeparatorStyle.LLAMA2,
|
429 |
+
sep="<s>",
|
430 |
+
sep2="</s>",
|
431 |
+
)
|
432 |
+
|
433 |
+
conv_llama2 = Conversation(
|
434 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
435 |
+
|
436 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
437 |
+
roles=("USER", "ASSISTANT"),
|
438 |
+
version="llama2",
|
439 |
+
messages=(),
|
440 |
+
offset=0,
|
441 |
+
sep_style=SeparatorStyle.LLAMA2,
|
442 |
+
sep="<s>",
|
443 |
+
sep2="</s>",
|
444 |
+
)
|
445 |
+
|
446 |
+
conv_mistral = Conversation(
|
447 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
448 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
449 |
+
roles=("USER", "ASSISTANT"),
|
450 |
+
version="llama2",
|
451 |
+
messages=(),
|
452 |
+
offset=0,
|
453 |
+
sep_style=SeparatorStyle.LLAMA2,
|
454 |
+
sep="",
|
455 |
+
sep2="</s>",
|
456 |
+
)
|
457 |
+
|
458 |
+
conv_qwen = Conversation(
|
459 |
+
system="<|im_start|>system\nYou are a helpful assistant.",
|
460 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
461 |
+
messages=(),
|
462 |
+
offset=0,
|
463 |
+
sep_style=SeparatorStyle.QWEN,
|
464 |
+
sep="<|im_end|>",
|
465 |
+
version="qwen",
|
466 |
+
)
|
467 |
+
|
468 |
+
conv_qwen_plain = Conversation(
|
469 |
+
system="",
|
470 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
471 |
+
messages=(),
|
472 |
+
offset=0,
|
473 |
+
sep_style=SeparatorStyle.PLAIN,
|
474 |
+
sep="<|im_end|>",
|
475 |
+
sep2="<|im_end|>",
|
476 |
+
version="qwen_plain",
|
477 |
+
)
|
478 |
+
|
479 |
+
default_conversation = conv_mistral
|
480 |
+
conv_templates = {
|
481 |
+
"default": conv_vicuna_v0,
|
482 |
+
# pretrain template
|
483 |
+
"plain": conv_llava_plain,
|
484 |
+
# llava v0
|
485 |
+
"v0": conv_vicuna_v0,
|
486 |
+
"v0_plain": conv_llava_plain,
|
487 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
488 |
+
"llava_v0": conv_llava_v0,
|
489 |
+
# llava v1
|
490 |
+
"v1": conv_vicuna_v1,
|
491 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
492 |
+
"llava_v1": conv_llava_v1,
|
493 |
+
"vicuna_v1": conv_vicuna_v1,
|
494 |
+
# llava v1.5
|
495 |
+
"llava_llama2": conv_llava_llama2,
|
496 |
+
# llama2
|
497 |
+
"llama2": conv_llama2,
|
498 |
+
# mistral
|
499 |
+
"mistral": conv_mistral,
|
500 |
+
# qwen
|
501 |
+
"qwen": conv_qwen,
|
502 |
+
"qwen_plain": conv_qwen_plain,
|
503 |
+
}
|
504 |
+
|
505 |
+
|
506 |
+
if __name__ == "__main__":
|
507 |
+
print(default_conversation.get_prompt())
|
videollama2/eval/eval_video_cap_msvc_correctness.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import ast
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import argparse
|
7 |
+
from tqdm import tqdm
|
8 |
+
from multiprocessing.pool import Pool
|
9 |
+
|
10 |
+
import openai
|
11 |
+
from openai import AzureOpenAI
|
12 |
+
|
13 |
+
|
14 |
+
def init():
|
15 |
+
client = AzureOpenAI(
|
16 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
17 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
18 |
+
api_version="2024-02-15-preview"
|
19 |
+
)
|
20 |
+
|
21 |
+
return client
|
22 |
+
|
23 |
+
|
24 |
+
def interaction(client, message_text):
|
25 |
+
completion = client.chat.completions.create(
|
26 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
27 |
+
messages = message_text,
|
28 |
+
temperature=0.7,
|
29 |
+
max_tokens=800,
|
30 |
+
top_p=0.95,
|
31 |
+
frequency_penalty=0,
|
32 |
+
presence_penalty=0,
|
33 |
+
stop=None
|
34 |
+
)
|
35 |
+
|
36 |
+
return completion
|
37 |
+
|
38 |
+
|
39 |
+
def annotate(prediction_set, caption_files, output_dir):
|
40 |
+
"""
|
41 |
+
Evaluates question and answer pairs using GPT-3
|
42 |
+
Returns a score for correctness.
|
43 |
+
"""
|
44 |
+
|
45 |
+
for file in tqdm(caption_files):
|
46 |
+
key = file[:-5] # Strip file extension
|
47 |
+
qa_set = prediction_set[key]
|
48 |
+
question = qa_set['q']
|
49 |
+
answer = str(qa_set['a'])
|
50 |
+
pred = qa_set['pred']
|
51 |
+
try:
|
52 |
+
message = [
|
53 |
+
{
|
54 |
+
"role": "system",
|
55 |
+
"content":
|
56 |
+
"You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs for video-based question-answer pairs. "
|
57 |
+
"Your task is to compare the predicted answer with these correct answers and determine if they are factually consistent. Here's how you can accomplish the task:"
|
58 |
+
"------"
|
59 |
+
"##INSTRUCTIONS: "
|
60 |
+
"- Focus on the factual consistency between the predicted answer and the correct answer. The predicted answer should not contain any misinterpretations or misinformation.\n"
|
61 |
+
"- The predicted answer must be factually accurate and align with the video content.\n"
|
62 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
63 |
+
"- Evaluate the factual accuracy of the prediction compared to the answer."
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"role": "user",
|
67 |
+
"content":
|
68 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
69 |
+
f"Question: {question}\n"
|
70 |
+
f"Correct Answers: {answer}\n"
|
71 |
+
f"Predicted Answer: {pred}\n\n"
|
72 |
+
"Provide your evaluation only as a factual accuracy score where the factual accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of factual consistency. "
|
73 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the factual accuracy score in INTEGER, not STRING."
|
74 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
75 |
+
"For example, your response should look like this: {''score': 4.8}."
|
76 |
+
}
|
77 |
+
]
|
78 |
+
completion = interaction(client, message)
|
79 |
+
# Convert response to a Python dictionary.
|
80 |
+
response_message = completion.choices[0].message.content
|
81 |
+
response_dict = ast.literal_eval(response_message)
|
82 |
+
result_qa_pair = [response_dict, qa_set]
|
83 |
+
# # Save the question-answer pairs to a json file.
|
84 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
85 |
+
json.dump(result_qa_pair, f)
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error processing file '{key}': {e}")
|
89 |
+
|
90 |
+
time.sleep(1)
|
91 |
+
|
92 |
+
|
93 |
+
def longest_repeating_substring(s):
|
94 |
+
n = len(s)
|
95 |
+
dp = [[0] * (n+1) for _ in range(n+1)]
|
96 |
+
res = ""
|
97 |
+
res_length = 0
|
98 |
+
|
99 |
+
index = 0
|
100 |
+
for i in range(1, n+1):
|
101 |
+
for j in range(i+1, n+1):
|
102 |
+
if (dp[i-1][j-1] > 0 and dp[i-1][j-1] < (j-i)) or s[i-1] == s[j-1]:
|
103 |
+
dp[i][j] = dp[i-1][j-1] + 1
|
104 |
+
if dp[i][j] > res_length:
|
105 |
+
res_length = dp[i][j]
|
106 |
+
index = max(i, index)
|
107 |
+
else:
|
108 |
+
dp[i][j] = 0
|
109 |
+
|
110 |
+
if res_length > 0:
|
111 |
+
for i in range(index-res_length+1, index+1):
|
112 |
+
res = res + s[i-1]
|
113 |
+
|
114 |
+
return res
|
115 |
+
|
116 |
+
|
117 |
+
def main(args):
|
118 |
+
if args.num_chunks > 1:
|
119 |
+
pred_contents = []
|
120 |
+
for _idx in range(args.num_chunks):
|
121 |
+
file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
|
122 |
+
pred_contents += [json.loads(line) for line in open(file)]
|
123 |
+
else:
|
124 |
+
pred_contents = [json.loads(line) for line in open(args.pred_path)]
|
125 |
+
|
126 |
+
# Dictionary to store the count of occurrences for each video_id
|
127 |
+
video_id_counts = {}
|
128 |
+
new_pred_contents = []
|
129 |
+
|
130 |
+
# Iterate through each sample in pred_contents
|
131 |
+
for sample in pred_contents:
|
132 |
+
video_id = sample["video_name"]
|
133 |
+
if video_id in video_id_counts:
|
134 |
+
video_id_counts[video_id] += 1
|
135 |
+
else:
|
136 |
+
video_id_counts[video_id] = 0
|
137 |
+
|
138 |
+
# Create a new sample with the modified key
|
139 |
+
new_sample = sample
|
140 |
+
new_sample["video_name"] = f"{video_id.split('/')[-1].split('.')[0]}_{video_id_counts[video_id]}"
|
141 |
+
new_pred_contents.append(new_sample)
|
142 |
+
|
143 |
+
# Generating list of id's and corresponding files
|
144 |
+
id_list = [x["video_name"] for x in new_pred_contents]
|
145 |
+
caption_files = [f"{id}.json" for id in id_list]
|
146 |
+
|
147 |
+
output_dir = args.output_dir
|
148 |
+
# Generate output directory if not exists.
|
149 |
+
if not os.path.exists(output_dir):
|
150 |
+
os.makedirs(output_dir)
|
151 |
+
|
152 |
+
# Preparing dictionary of question-answer sets
|
153 |
+
prediction_set = {}
|
154 |
+
for sample in new_pred_contents:
|
155 |
+
id = sample["video_name"]
|
156 |
+
# print(sample)
|
157 |
+
question = sample["question"]
|
158 |
+
answer = sample["answer"]
|
159 |
+
pred = sample["pred"]
|
160 |
+
qa_set = {"q": question, "a": answer, "pred": pred}
|
161 |
+
prediction_set[id] = qa_set
|
162 |
+
|
163 |
+
# # Set the OpenAI API key.
|
164 |
+
# openai.api_key = args.api_key # Your API key here
|
165 |
+
# if args.api_base:
|
166 |
+
# openai.api_base = args.api_base # Your API base here
|
167 |
+
num_tasks = args.num_tasks
|
168 |
+
|
169 |
+
# While loop to ensure that all captions are processed.
|
170 |
+
while True:
|
171 |
+
try:
|
172 |
+
# Files that have not been processed yet.
|
173 |
+
completed_files = os.listdir(output_dir)
|
174 |
+
print(f"completed_files: {len(completed_files)}")
|
175 |
+
|
176 |
+
# Files that have not been processed yet.
|
177 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
178 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
179 |
+
|
180 |
+
# Break the loop when there are no incomplete files
|
181 |
+
if len(incomplete_files) == 0:
|
182 |
+
break
|
183 |
+
if len(incomplete_files) <= num_tasks:
|
184 |
+
num_tasks = 1
|
185 |
+
|
186 |
+
# Split tasks into parts.
|
187 |
+
part_len = len(incomplete_files) // num_tasks
|
188 |
+
all_parts = [incomplete_files[i : i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
189 |
+
task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
|
190 |
+
print("Generate", len(all_parts), "subprocess.")
|
191 |
+
|
192 |
+
# Use a pool of workers to process the files in parallel.
|
193 |
+
# with Pool() as pool:
|
194 |
+
# pool.starmap(annotate, task_args)
|
195 |
+
# import pdb;pdb.set_trace()
|
196 |
+
annotate(*task_args[0])
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error: {e}")
|
200 |
+
|
201 |
+
# Combine all the processed files into one
|
202 |
+
combined_contents = {}
|
203 |
+
json_path = args.output_json
|
204 |
+
|
205 |
+
# Iterate through json files
|
206 |
+
for file_name in os.listdir(output_dir):
|
207 |
+
if file_name.endswith(".json"):
|
208 |
+
file_path = os.path.join(output_dir, file_name)
|
209 |
+
with open(file_path, "r") as json_file:
|
210 |
+
try:
|
211 |
+
content = json.load(json_file)
|
212 |
+
combined_contents[file_name[:-5]] = content
|
213 |
+
except Exception as e:
|
214 |
+
print(f"Error: {e}")
|
215 |
+
pass
|
216 |
+
|
217 |
+
# Calculate average score
|
218 |
+
score_sum = 0
|
219 |
+
count = 0
|
220 |
+
for key, result in combined_contents.items():
|
221 |
+
count += 1
|
222 |
+
try:
|
223 |
+
# key = result[0].keys()[0]
|
224 |
+
# import pdb; pdb.set_trace()
|
225 |
+
for _ in result[0].keys():
|
226 |
+
score_match = result[0][_]
|
227 |
+
score = int(score_match)
|
228 |
+
score_sum += score
|
229 |
+
break
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error processing file '{key}': {e}")
|
232 |
+
import pdb; pdb.set_trace()
|
233 |
+
average_score = score_sum / count
|
234 |
+
combined_contents["average_score"] = average_score
|
235 |
+
with open(json_path, "w") as json_file:
|
236 |
+
json.dump(combined_contents, json_file, indent=4)
|
237 |
+
print("Average score for correctness:", average_score)
|
238 |
+
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
242 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
243 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
244 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
245 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
246 |
+
parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
|
247 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
248 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
249 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
250 |
+
args = parser.parse_args()
|
251 |
+
|
252 |
+
# Set the OpenAI API key.
|
253 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
254 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
255 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
256 |
+
|
257 |
+
client = init()
|
258 |
+
|
259 |
+
main(args)
|
videollama2/eval/eval_video_cap_msvc_detailedness.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import ast
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import argparse
|
7 |
+
from tqdm import tqdm
|
8 |
+
from multiprocessing.pool import Pool
|
9 |
+
|
10 |
+
import openai
|
11 |
+
from openai import AzureOpenAI
|
12 |
+
|
13 |
+
|
14 |
+
def init():
|
15 |
+
client = AzureOpenAI(
|
16 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
17 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
18 |
+
api_version="2024-02-15-preview"
|
19 |
+
)
|
20 |
+
|
21 |
+
return client
|
22 |
+
|
23 |
+
|
24 |
+
def interaction(client, message_text):
|
25 |
+
completion = client.chat.completions.create(
|
26 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
27 |
+
messages = message_text,
|
28 |
+
temperature=0.7,
|
29 |
+
max_tokens=800,
|
30 |
+
top_p=0.95,
|
31 |
+
frequency_penalty=0,
|
32 |
+
presence_penalty=0,
|
33 |
+
stop=None
|
34 |
+
)
|
35 |
+
|
36 |
+
return completion
|
37 |
+
|
38 |
+
|
39 |
+
def annotate(prediction_set, caption_files, output_dir):
|
40 |
+
"""
|
41 |
+
Evaluates question and answer pairs using GPT-3
|
42 |
+
Returns a score for correctness.
|
43 |
+
"""
|
44 |
+
|
45 |
+
for file in tqdm(caption_files):
|
46 |
+
key = file[:-5] # Strip file extension
|
47 |
+
qa_set = prediction_set[key]
|
48 |
+
question = qa_set['q']
|
49 |
+
answer = str(qa_set['a'])
|
50 |
+
pred = qa_set['pred']
|
51 |
+
try:
|
52 |
+
message = [
|
53 |
+
{
|
54 |
+
"role": "system",
|
55 |
+
"content": "You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
|
56 |
+
"Your task is to compare the predicted answer with these correct answers and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
|
57 |
+
"------"
|
58 |
+
"##INSTRUCTIONS: "
|
59 |
+
"- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
|
60 |
+
"- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
|
61 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
62 |
+
"- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity.",
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"role": "user",
|
66 |
+
"content": "Please evaluate the following video-based question-answer pair:\n\n"
|
67 |
+
f"Question: {question}\n"
|
68 |
+
f"Correct Answers: {answer}\n"
|
69 |
+
f"Predicted Answer: {pred}\n\n"
|
70 |
+
"Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
|
71 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
|
72 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
73 |
+
"For example, your response should look like this: {''score': 4.8}.",
|
74 |
+
},
|
75 |
+
]
|
76 |
+
completion = interaction(client, message)
|
77 |
+
# Convert response to a Python dictionary.
|
78 |
+
response_message = completion.choices[0].message.content
|
79 |
+
response_dict = ast.literal_eval(response_message)
|
80 |
+
result_qa_pair = [response_dict, qa_set]
|
81 |
+
# # Save the question-answer pairs to a json file.
|
82 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
83 |
+
json.dump(result_qa_pair, f)
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error processing file '{key}': {e}")
|
87 |
+
|
88 |
+
time.sleep(1)
|
89 |
+
|
90 |
+
|
91 |
+
def longest_repeating_substring(s):
|
92 |
+
n = len(s)
|
93 |
+
dp = [[0] * (n+1) for _ in range(n+1)]
|
94 |
+
res = ""
|
95 |
+
res_length = 0
|
96 |
+
|
97 |
+
index = 0
|
98 |
+
for i in range(1, n+1):
|
99 |
+
for j in range(i+1, n+1):
|
100 |
+
if (dp[i-1][j-1] > 0 and dp[i-1][j-1] < (j-i)) or s[i-1] == s[j-1]:
|
101 |
+
dp[i][j] = dp[i-1][j-1] + 1
|
102 |
+
if dp[i][j] > res_length:
|
103 |
+
res_length = dp[i][j]
|
104 |
+
index = max(i, index)
|
105 |
+
else:
|
106 |
+
dp[i][j] = 0
|
107 |
+
|
108 |
+
if res_length > 0:
|
109 |
+
for i in range(index-res_length+1, index+1):
|
110 |
+
res = res + s[i-1]
|
111 |
+
|
112 |
+
return res
|
113 |
+
|
114 |
+
|
115 |
+
def main(args):
|
116 |
+
if args.num_chunks > 1:
|
117 |
+
pred_contents = []
|
118 |
+
for _idx in range(args.num_chunks):
|
119 |
+
file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
|
120 |
+
pred_contents += [json.loads(line) for line in open(file)]
|
121 |
+
else:
|
122 |
+
pred_contents = [json.loads(line) for line in open(args.pred_path)]
|
123 |
+
|
124 |
+
# Dictionary to store the count of occurrences for each video_id
|
125 |
+
video_id_counts = {}
|
126 |
+
new_pred_contents = []
|
127 |
+
|
128 |
+
# Iterate through each sample in pred_contents
|
129 |
+
for sample in pred_contents:
|
130 |
+
video_id = sample["video_name"]
|
131 |
+
if video_id in video_id_counts:
|
132 |
+
video_id_counts[video_id] += 1
|
133 |
+
else:
|
134 |
+
video_id_counts[video_id] = 0
|
135 |
+
|
136 |
+
# Create a new sample with the modified key
|
137 |
+
new_sample = sample
|
138 |
+
new_sample["video_name"] = f"{video_id.split('/')[-1].split('.')[0]}_{video_id_counts[video_id]}"
|
139 |
+
new_pred_contents.append(new_sample)
|
140 |
+
|
141 |
+
# Generating list of id's and corresponding files
|
142 |
+
id_list = [x["video_name"] for x in new_pred_contents]
|
143 |
+
caption_files = [f"{id}.json" for id in id_list]
|
144 |
+
|
145 |
+
output_dir = args.output_dir
|
146 |
+
# Generate output directory if not exists.
|
147 |
+
if not os.path.exists(output_dir):
|
148 |
+
os.makedirs(output_dir)
|
149 |
+
|
150 |
+
# Preparing dictionary of question-answer sets
|
151 |
+
prediction_set = {}
|
152 |
+
for sample in new_pred_contents:
|
153 |
+
id = sample["video_name"]
|
154 |
+
# print(sample)
|
155 |
+
question = sample["question"]
|
156 |
+
answer = sample["answer"]
|
157 |
+
pred = sample["pred"]
|
158 |
+
qa_set = {"q": question, "a": answer, "pred": pred}
|
159 |
+
prediction_set[id] = qa_set
|
160 |
+
|
161 |
+
# # Set the OpenAI API key.
|
162 |
+
# openai.api_key = args.api_key # Your API key here
|
163 |
+
# if args.api_base:
|
164 |
+
# openai.api_base = args.api_base # Your API base here
|
165 |
+
num_tasks = args.num_tasks
|
166 |
+
|
167 |
+
# While loop to ensure that all captions are processed.
|
168 |
+
while True:
|
169 |
+
try:
|
170 |
+
# Files that have not been processed yet.
|
171 |
+
completed_files = os.listdir(output_dir)
|
172 |
+
print(f"completed_files: {len(completed_files)}")
|
173 |
+
|
174 |
+
# Files that have not been processed yet.
|
175 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
176 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
177 |
+
|
178 |
+
# Break the loop when there are no incomplete files
|
179 |
+
if len(incomplete_files) == 0:
|
180 |
+
break
|
181 |
+
if len(incomplete_files) <= num_tasks:
|
182 |
+
num_tasks = 1
|
183 |
+
|
184 |
+
# Split tasks into parts.
|
185 |
+
part_len = len(incomplete_files) // num_tasks
|
186 |
+
all_parts = [incomplete_files[i : i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
187 |
+
task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
|
188 |
+
print("Generate", len(all_parts), "subprocess.")
|
189 |
+
|
190 |
+
# Use a pool of workers to process the files in parallel.
|
191 |
+
# with Pool() as pool:
|
192 |
+
# pool.starmap(annotate, task_args)
|
193 |
+
# import pdb;pdb.set_trace()
|
194 |
+
annotate(*task_args[0])
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
print(f"Error: {e}")
|
198 |
+
|
199 |
+
# Combine all the processed files into one
|
200 |
+
combined_contents = {}
|
201 |
+
json_path = args.output_json
|
202 |
+
|
203 |
+
# Iterate through json files
|
204 |
+
for file_name in os.listdir(output_dir):
|
205 |
+
if file_name.endswith(".json"):
|
206 |
+
file_path = os.path.join(output_dir, file_name)
|
207 |
+
with open(file_path, "r") as json_file:
|
208 |
+
try:
|
209 |
+
content = json.load(json_file)
|
210 |
+
combined_contents[file_name[:-5]] = content
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Error: {e}")
|
213 |
+
pass
|
214 |
+
|
215 |
+
# Calculate average score
|
216 |
+
score_sum = 0
|
217 |
+
count = 0
|
218 |
+
for key, result in combined_contents.items():
|
219 |
+
count += 1
|
220 |
+
try:
|
221 |
+
# key = result[0].keys()[0]
|
222 |
+
# import pdb; pdb.set_trace()
|
223 |
+
for _ in result[0].keys():
|
224 |
+
score_match = result[0][_]
|
225 |
+
score = int(score_match)
|
226 |
+
score_sum += score
|
227 |
+
break
|
228 |
+
except Exception as e:
|
229 |
+
print(f"Error processing file '{key}': {e}")
|
230 |
+
import pdb; pdb.set_trace()
|
231 |
+
average_score = score_sum / count
|
232 |
+
combined_contents["average_score"] = average_score
|
233 |
+
with open(json_path, "w") as json_file:
|
234 |
+
json.dump(combined_contents, json_file, indent=4)
|
235 |
+
print("Average score for detailedness:", average_score)
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == "__main__":
|
239 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
240 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
241 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
242 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
243 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
244 |
+
parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
|
245 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
246 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
247 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
248 |
+
args = parser.parse_args()
|
249 |
+
|
250 |
+
# Set the OpenAI API key.
|
251 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
252 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
253 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
254 |
+
|
255 |
+
client = init()
|
256 |
+
|
257 |
+
main(args)
|
videollama2/eval/eval_video_mcqa_mvbench.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import argparse
|
3 |
+
from tabulate import tabulate
|
4 |
+
|
5 |
+
|
6 |
+
tasks = {
|
7 |
+
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
|
8 |
+
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
|
9 |
+
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
|
10 |
+
"Fine-grained Action": ("fine_grained_action.json", "pMoments_in_Time_Raw/videos/", "video", False),
|
11 |
+
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
|
12 |
+
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
|
13 |
+
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
|
14 |
+
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
|
15 |
+
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
|
16 |
+
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
|
17 |
+
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
|
18 |
+
"Action Count": ("action_count.json", "perception/videos/", "video", False),
|
19 |
+
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
|
20 |
+
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
|
21 |
+
"State Change": ("state_change.json", "perception/videos/", "video", False),
|
22 |
+
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
|
23 |
+
"Character Order": ("character_order.json", "perception/videos/", "video", False),
|
24 |
+
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
|
25 |
+
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
|
26 |
+
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
def main():
|
31 |
+
args = parse_args()
|
32 |
+
res = [eval(x.strip()) for x in open(args.pred_path, 'r').readlines()]
|
33 |
+
task_types = tasks.keys()
|
34 |
+
task_acc = {x: [] for x in task_types}
|
35 |
+
acc = []
|
36 |
+
for i, x in enumerate(res):
|
37 |
+
value = 1
|
38 |
+
if x['pred'] != x['gt']:
|
39 |
+
value = 0
|
40 |
+
acc.append(value)
|
41 |
+
task_acc[x['task_type']].append(value)
|
42 |
+
acc = sum(acc) * 100 / len(acc)
|
43 |
+
task_acc = {x: sum(task_acc[x]) * 100 / len(task_acc[x]) for x in task_acc}
|
44 |
+
print(f"{args.pred_path}:", acc)
|
45 |
+
task_names = list(tasks.keys())
|
46 |
+
|
47 |
+
table_data = []
|
48 |
+
for i in range(len(task_names) // 4):
|
49 |
+
row_task_names = task_names[i * 4: (i + 1) * 4]
|
50 |
+
row_task_acc = [task_acc[x] for x in row_task_names]
|
51 |
+
table_data.append(row_task_names)
|
52 |
+
table_data.append(row_task_acc)
|
53 |
+
print(tabulate(table_data, floatfmt=".1f"), '\n')
|
54 |
+
|
55 |
+
|
56 |
+
def parse_args():
|
57 |
+
parser = argparse.ArgumentParser(description="Evaluate video captioning.")
|
58 |
+
parser.add_argument("--pred_path", default=r'', help="The path to file containing prediction.")
|
59 |
+
args = parser.parse_args()
|
60 |
+
return args
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
main()
|
videollama2/eval/eval_video_mcqa_videomme.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
from typing import List, Dict, Optional, Union
|
6 |
+
|
7 |
+
CATEGORIES = [
|
8 |
+
"Knowledge",
|
9 |
+
"Film & Television",
|
10 |
+
"Sports Competition",
|
11 |
+
"Artistic Performance",
|
12 |
+
"Life Record",
|
13 |
+
"Multilingual"
|
14 |
+
]
|
15 |
+
|
16 |
+
SUB_CATEGORIES = [
|
17 |
+
"Humanity & History",
|
18 |
+
"Literature & Art",
|
19 |
+
"Biology & Medicine",
|
20 |
+
"Finance & Commerce",
|
21 |
+
"Astronomy",
|
22 |
+
"Geography",
|
23 |
+
"Law",
|
24 |
+
"Life Tip",
|
25 |
+
"Technology",
|
26 |
+
"Animation",
|
27 |
+
"Movie & TV Show",
|
28 |
+
"Documentary",
|
29 |
+
"News Report",
|
30 |
+
"Esports",
|
31 |
+
"Basketball",
|
32 |
+
"Football",
|
33 |
+
"Athletics",
|
34 |
+
"Other Sports",
|
35 |
+
"Stage Play",
|
36 |
+
"Magic Show",
|
37 |
+
"Variety Show",
|
38 |
+
"Acrobatics",
|
39 |
+
"Handicraft",
|
40 |
+
"Food",
|
41 |
+
"Fashion",
|
42 |
+
"Daily Life",
|
43 |
+
"Travel",
|
44 |
+
"Pet & Animal",
|
45 |
+
"Exercise",
|
46 |
+
"Multilingual"
|
47 |
+
]
|
48 |
+
|
49 |
+
TASK_CATEGORIES = [
|
50 |
+
"Temporal Perception",
|
51 |
+
"Spatial Perception",
|
52 |
+
"Attribute Perception",
|
53 |
+
"Action Recognition",
|
54 |
+
"Object Recognition",
|
55 |
+
"OCR Problems",
|
56 |
+
"Counting Problem",
|
57 |
+
"Temporal Reasoning",
|
58 |
+
"Spatial Reasoning",
|
59 |
+
"Action Reasoning",
|
60 |
+
"Object Reasoning",
|
61 |
+
"Information Synopsis",
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
def extract_characters_regex(s):
|
66 |
+
s = s.strip()
|
67 |
+
answer_prefixes = [
|
68 |
+
"The best answer is",
|
69 |
+
"The correct answer is",
|
70 |
+
"The answer is",
|
71 |
+
"The answer",
|
72 |
+
"The best option is"
|
73 |
+
"The correct option is",
|
74 |
+
"Best answer:"
|
75 |
+
"Best option:",
|
76 |
+
]
|
77 |
+
for answer_prefix in answer_prefixes:
|
78 |
+
s = s.replace(answer_prefix, "")
|
79 |
+
|
80 |
+
if len(s.split()) > 10 and not re.search("[ABCD]", s):
|
81 |
+
return ""
|
82 |
+
matches = re.search(r'[ABCD]', s)
|
83 |
+
if matches is None:
|
84 |
+
return ""
|
85 |
+
return matches[0]
|
86 |
+
|
87 |
+
|
88 |
+
def eval_your_results(
|
89 |
+
your_results_path: str,
|
90 |
+
video_types: Optional[Union[List[str], str]] = None,
|
91 |
+
skip_missing: Optional[bool] = True,
|
92 |
+
return_categories_accuracy: Optional[bool] = True,
|
93 |
+
return_sub_categories_accuracy: Optional[bool] = False,
|
94 |
+
return_task_types_accuracy: Optional[bool] = False,
|
95 |
+
gt_answer_key: Optional[str] = "answer",
|
96 |
+
your_answer_key: Optional[str] = "response"
|
97 |
+
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Evaluate your results against the ground truth
|
101 |
+
|
102 |
+
Args:
|
103 |
+
- your_results_path (str): Path to your results file
|
104 |
+
- video_types (Optional[List[str], str]): List of video types to evaluate.
|
105 |
+
- skip_missing (Optional[bool]): If True, missing files will be skipped. If False, an error will be raised if there are missing files.
|
106 |
+
- return_categories_accuracy (Optional[bool]): If True, the accuracy for each video category will be returned.
|
107 |
+
- return_sub_categories_accuracy (Optional[bool]): If True, the accuracy for each video sub category will be returned.
|
108 |
+
- return_task_types_accuracy (Optional[bool]): If True, the accuracy for each task category will be returned.
|
109 |
+
- gt_answer_key (Optional[str]): Key to access the ground truth answer in the results file.
|
110 |
+
- your_answer_key (Optional[str]): Key to access your answer in the results file.
|
111 |
+
"""
|
112 |
+
|
113 |
+
# Load your results
|
114 |
+
with open(your_results_path, 'r') as f:
|
115 |
+
your_results = json.load(f)
|
116 |
+
|
117 |
+
if isinstance(video_types, str):
|
118 |
+
video_types = video_types.split(",")
|
119 |
+
|
120 |
+
q_type_dict = {}
|
121 |
+
v_type_dict = {}
|
122 |
+
v_sub_type_dict = {}
|
123 |
+
|
124 |
+
|
125 |
+
for video_type in video_types:
|
126 |
+
|
127 |
+
# Filter your results based on video types
|
128 |
+
your_results_video_type = [item for item in your_results if item["duration"] == video_type]
|
129 |
+
|
130 |
+
# Task Categories
|
131 |
+
q_type_dict[video_type] = {}
|
132 |
+
for q_type in TASK_CATEGORIES:
|
133 |
+
q_type_dict[video_type][q_type] = {"correct": 0, "answered": 0}
|
134 |
+
|
135 |
+
# Video categories
|
136 |
+
v_type_dict[video_type] = {}
|
137 |
+
for v_type in CATEGORIES:
|
138 |
+
v_type_dict[video_type][v_type] = {"correct": 0, "answered": 0}
|
139 |
+
|
140 |
+
v_sub_type_dict[video_type] = {}
|
141 |
+
for v_sub_type in SUB_CATEGORIES:
|
142 |
+
v_sub_type_dict[video_type][v_sub_type] = {"correct": 0, "answered": 0}
|
143 |
+
|
144 |
+
if not skip_missing:
|
145 |
+
# Check if the number of files in your results and ground truth are the same
|
146 |
+
assert len(your_results_video_type) == 300, f"Number of files in {video_type} is not 300. Check if there are missing files."
|
147 |
+
|
148 |
+
for item in your_results_video_type:
|
149 |
+
|
150 |
+
if skip_missing and item["missing"]:
|
151 |
+
continue
|
152 |
+
|
153 |
+
# Get the video category, sub category and question category
|
154 |
+
video_category = item["domain"]
|
155 |
+
video_sub_category = item["sub_category"]
|
156 |
+
|
157 |
+
questions = item["questions"]
|
158 |
+
|
159 |
+
for question in questions:
|
160 |
+
q_type = question["task_type"]
|
161 |
+
|
162 |
+
# Get the ground truth and your response
|
163 |
+
gt_answer = question[gt_answer_key]
|
164 |
+
response = question[your_answer_key]
|
165 |
+
|
166 |
+
# Extract the answer from the response
|
167 |
+
extration = extract_characters_regex(response)
|
168 |
+
|
169 |
+
if extration != "":
|
170 |
+
q_type_dict[video_type][q_type]["answered"] += 1
|
171 |
+
q_type_dict[video_type][q_type]["correct"] += extration == gt_answer
|
172 |
+
|
173 |
+
v_type_dict[video_type][video_category]["answered"] += 1
|
174 |
+
v_type_dict[video_type][video_category]["correct"] += extration == gt_answer
|
175 |
+
|
176 |
+
v_sub_type_dict[video_type][video_sub_category]["answered"] += 1
|
177 |
+
v_sub_type_dict[video_type][video_sub_category]["correct"] += extration == gt_answer
|
178 |
+
|
179 |
+
|
180 |
+
# Print the results for each video type
|
181 |
+
for video_type in video_types:
|
182 |
+
|
183 |
+
print("=====================================")
|
184 |
+
print(f"Evaluation on video Type: {video_type}")
|
185 |
+
print("=====================================")
|
186 |
+
if return_categories_accuracy:
|
187 |
+
print("-------------------------------------")
|
188 |
+
print("Video Domains")
|
189 |
+
print("-------------------------------------")
|
190 |
+
for v_type in v_type_dict[video_type]:
|
191 |
+
print(f"{v_type}: {100 * v_type_dict[video_type][v_type]['correct'] / v_type_dict[video_type][v_type]['answered'] if v_type_dict[video_type][v_type]['answered'] > 0 else 0 : .1f}%")
|
192 |
+
if return_sub_categories_accuracy:
|
193 |
+
print("-------------------------------------")
|
194 |
+
print("Video Sub Categories")
|
195 |
+
print("-------------------------------------")
|
196 |
+
for v_sub_type in v_sub_type_dict[video_type]:
|
197 |
+
print(f"{v_sub_type}: {100 * v_sub_type_dict[video_type][v_sub_type]['correct'] / v_sub_type_dict[video_type][v_sub_type]['answered'] if v_sub_type_dict[video_type][v_sub_type]['answered'] > 0 else 0 : .1f}%")
|
198 |
+
if return_task_types_accuracy:
|
199 |
+
print("-------------------------------------")
|
200 |
+
print("Task Categories")
|
201 |
+
print("-------------------------------------")
|
202 |
+
for q_type in q_type_dict[video_type]:
|
203 |
+
print(f"{q_type}: {100 * q_type_dict[video_type][q_type]['correct'] / q_type_dict[video_type][q_type]['answered'] if q_type_dict[video_type][q_type]['answered'] > 0 else 0 : .1f}%")
|
204 |
+
|
205 |
+
print("-------------------------------------")
|
206 |
+
print("Overall Performance")
|
207 |
+
print("-------------------------------------")
|
208 |
+
total_correct = sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES])
|
209 |
+
total_answered = sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES])
|
210 |
+
print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
211 |
+
|
212 |
+
print("\n")
|
213 |
+
|
214 |
+
# Print the results for the entire dataset
|
215 |
+
print("=====================================")
|
216 |
+
print("Evaluation on the entire dataset")
|
217 |
+
print("=====================================")
|
218 |
+
|
219 |
+
if return_categories_accuracy:
|
220 |
+
print("-------------------------------------")
|
221 |
+
print("Video Categories")
|
222 |
+
print("-------------------------------------")
|
223 |
+
for v_type in CATEGORIES:
|
224 |
+
total_correct = sum([v_type_dict[video_type][v_type]["correct"] for video_type in video_types])
|
225 |
+
total_answered = sum([v_type_dict[video_type][v_type]["answered"] for video_type in video_types])
|
226 |
+
print(f"{v_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
227 |
+
|
228 |
+
|
229 |
+
if return_sub_categories_accuracy:
|
230 |
+
print("-------------------------------------")
|
231 |
+
print("Video Sub Categories")
|
232 |
+
print("-------------------------------------")
|
233 |
+
|
234 |
+
for v_sub_type in SUB_CATEGORIES:
|
235 |
+
total_correct = sum([v_sub_type_dict[video_type][v_sub_type]["correct"] for video_type in video_types])
|
236 |
+
total_answered = sum([v_sub_type_dict[video_type][v_sub_type]["answered"] for video_type in video_types])
|
237 |
+
print(f"{v_sub_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
238 |
+
|
239 |
+
|
240 |
+
if return_task_types_accuracy:
|
241 |
+
print("-------------------------------------")
|
242 |
+
print("Task Categories")
|
243 |
+
print("-------------------------------------")
|
244 |
+
for q_type in TASK_CATEGORIES:
|
245 |
+
|
246 |
+
total_correct = sum([q_type_dict[video_type][q_type]["correct"] for video_type in video_types])
|
247 |
+
total_answered = sum([q_type_dict[video_type][q_type]["answered"] for video_type in video_types])
|
248 |
+
print(f"{q_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
249 |
+
|
250 |
+
print("-------------------------------------")
|
251 |
+
print("Overall Performance")
|
252 |
+
print("-------------------------------------")
|
253 |
+
total_correct = sum([sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
|
254 |
+
total_answered = sum([sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
|
255 |
+
print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
parser = argparse.ArgumentParser()
|
261 |
+
parser.add_argument("--results_file", type=str, required=True)
|
262 |
+
parser.add_argument("--video_duration_type", type=str, required=True)
|
263 |
+
parser.add_argument("--return_categories_accuracy", action="store_true")
|
264 |
+
parser.add_argument("--return_sub_categories_accuracy", action="store_true")
|
265 |
+
parser.add_argument("--return_task_types_accuracy", action="store_true")
|
266 |
+
parser.add_argument("--skip_missing", action="store_true")
|
267 |
+
|
268 |
+
args = parser.parse_args()
|
269 |
+
|
270 |
+
eval_your_results(
|
271 |
+
args.results_file,
|
272 |
+
video_types=args.video_duration_type,
|
273 |
+
skip_missing=args.skip_missing,
|
274 |
+
return_categories_accuracy=args.return_categories_accuracy,
|
275 |
+
return_sub_categories_accuracy=args.return_sub_categories_accuracy,
|
276 |
+
return_task_types_accuracy=args.return_task_types_accuracy,
|
277 |
+
)
|
videollama2/eval/eval_video_oqa_activitynet.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import ast
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import argparse
|
6 |
+
import traceback
|
7 |
+
from tqdm import tqdm
|
8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
+
|
10 |
+
from openai import AzureOpenAI
|
11 |
+
|
12 |
+
|
13 |
+
def init():
|
14 |
+
client = AzureOpenAI(
|
15 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
16 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
17 |
+
api_version="2024-02-15-preview"
|
18 |
+
)
|
19 |
+
|
20 |
+
return client
|
21 |
+
|
22 |
+
|
23 |
+
def interaction(client, message_text):
|
24 |
+
completion = client.chat.completions.create(
|
25 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
26 |
+
messages = message_text,
|
27 |
+
temperature=0.7,
|
28 |
+
max_tokens=800,
|
29 |
+
top_p=0.95,
|
30 |
+
frequency_penalty=0,
|
31 |
+
presence_penalty=0,
|
32 |
+
stop=None
|
33 |
+
)
|
34 |
+
|
35 |
+
return completion
|
36 |
+
|
37 |
+
|
38 |
+
def prompt_gpt(question, answer, pred, key, qa_set, output_dir):
|
39 |
+
message = [
|
40 |
+
{
|
41 |
+
"role": "system",
|
42 |
+
"content":
|
43 |
+
"You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
|
44 |
+
"Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:"
|
45 |
+
"------"
|
46 |
+
"##INSTRUCTIONS: "
|
47 |
+
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
|
48 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
49 |
+
"- Evaluate the correctness of the prediction compared to the answer."
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"role": "user",
|
53 |
+
"content":
|
54 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
55 |
+
f"Question: {question}\n"
|
56 |
+
f"Correct Answer: {answer}\n"
|
57 |
+
f"Predicted Answer: {pred}\n\n"
|
58 |
+
"Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. "
|
59 |
+
"Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING."
|
60 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
61 |
+
"For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
|
62 |
+
}
|
63 |
+
]
|
64 |
+
completion = interaction(client, message)
|
65 |
+
# Convert response to a Python dictionary.
|
66 |
+
response_message = completion.choices[0].message.content
|
67 |
+
response_dict = ast.literal_eval(response_message)
|
68 |
+
result_qa_pair = [response_dict, qa_set]
|
69 |
+
# # Save the question-answer pairs to a json file.
|
70 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
71 |
+
json.dump(result_qa_pair, f)
|
72 |
+
|
73 |
+
|
74 |
+
def annotate(task_arg):
|
75 |
+
"""
|
76 |
+
Evaluates question and answer pairs using GPT-3
|
77 |
+
Returns a score for correctness.
|
78 |
+
"""
|
79 |
+
prediction_set, caption_files, output_dir, args = task_arg
|
80 |
+
|
81 |
+
for file in tqdm(caption_files):
|
82 |
+
key = file[:-5] # Strip file extension
|
83 |
+
qa_set = prediction_set[key]
|
84 |
+
question = qa_set['q']
|
85 |
+
answer = qa_set['a']
|
86 |
+
pred = qa_set['p']
|
87 |
+
try:
|
88 |
+
prompt_gpt(question, answer, pred, key, qa_set, output_dir)
|
89 |
+
except Exception as e:
|
90 |
+
prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
|
91 |
+
traceback.print_exc()
|
92 |
+
|
93 |
+
time.sleep(1)
|
94 |
+
|
95 |
+
|
96 |
+
def main(args):
|
97 |
+
|
98 |
+
file = open(args.pred_path)
|
99 |
+
new_pred_contents = [eval(i.strip()) for i in file.readlines()]
|
100 |
+
|
101 |
+
# Generating list of id's and corresponding files
|
102 |
+
id_list = [x['id'] for x in new_pred_contents]
|
103 |
+
caption_files = [f"{id}.json" for id in id_list]
|
104 |
+
|
105 |
+
output_dir = args.output_dir
|
106 |
+
# Generate output directory if not exists.
|
107 |
+
if not os.path.exists(output_dir):
|
108 |
+
os.makedirs(output_dir)
|
109 |
+
|
110 |
+
# Preparing dictionary of question-answer sets
|
111 |
+
prediction_set = {}
|
112 |
+
for sample in new_pred_contents:
|
113 |
+
id = sample['id']
|
114 |
+
question = sample['question']
|
115 |
+
answer = sample['answer']
|
116 |
+
pred = sample['pred']
|
117 |
+
qa_set = {"q": question, "a": answer, "p": pred}
|
118 |
+
prediction_set[id] = qa_set
|
119 |
+
|
120 |
+
num_tasks = args.num_tasks
|
121 |
+
|
122 |
+
# While loop to ensure that all captions are processed.
|
123 |
+
while True:
|
124 |
+
try:
|
125 |
+
# Files that have not been processed yet.
|
126 |
+
completed_files = os.listdir(output_dir)
|
127 |
+
print(f"completed_files: {len(completed_files)}")
|
128 |
+
|
129 |
+
# Files that have not been processed yet.
|
130 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
131 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
132 |
+
|
133 |
+
# Break the loop when there are no incomplete files
|
134 |
+
if len(incomplete_files) == 0:
|
135 |
+
break
|
136 |
+
if len(incomplete_files) <= num_tasks:
|
137 |
+
num_tasks = 1
|
138 |
+
|
139 |
+
# Split tasks into parts.
|
140 |
+
part_len = len(incomplete_files) // num_tasks
|
141 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
142 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
143 |
+
|
144 |
+
# Use a pool of workers to process the files in parallel.
|
145 |
+
with ThreadPoolExecutor(max_workers=args.num_tasks) as executor:
|
146 |
+
list(tqdm(executor.map(annotate, task_args), total=len(task_args)))
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
print(f"Error: {e}")
|
150 |
+
|
151 |
+
# multiprocessing to combine json files
|
152 |
+
def combine_json(file_name):
|
153 |
+
file_path = os.path.join(output_dir, file_name)
|
154 |
+
with open(file_path, "r") as json_file:
|
155 |
+
content = json.load(json_file)
|
156 |
+
return (file_name[:-5], content)
|
157 |
+
|
158 |
+
files = os.listdir(output_dir)
|
159 |
+
with ThreadPoolExecutor(max_workers=64) as executor:
|
160 |
+
combined_contents = list(tqdm(executor.map(combine_json, files), total=len(files)))
|
161 |
+
|
162 |
+
# Calculate average score and accuracy
|
163 |
+
score_sum = 0
|
164 |
+
count = 0
|
165 |
+
yes_count = 0
|
166 |
+
no_count = 0
|
167 |
+
for key, result in tqdm(combined_contents):
|
168 |
+
try:
|
169 |
+
# Computing score
|
170 |
+
count += 1
|
171 |
+
score_match = result[0]['score']
|
172 |
+
score = int(score_match)
|
173 |
+
score_sum += score
|
174 |
+
|
175 |
+
# Computing accuracy
|
176 |
+
pred = result[0]['pred']
|
177 |
+
if "yes" in pred.lower():
|
178 |
+
yes_count += 1
|
179 |
+
elif "no" in pred.lower():
|
180 |
+
no_count += 1
|
181 |
+
except:
|
182 |
+
print(result)
|
183 |
+
|
184 |
+
average_score = score_sum / count
|
185 |
+
accuracy = yes_count / (yes_count + no_count)
|
186 |
+
print("Yes count:", yes_count)
|
187 |
+
print("No count:", no_count)
|
188 |
+
print("Accuracy:", accuracy)
|
189 |
+
print("Average score:", average_score)
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
194 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
195 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
196 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
197 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
198 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
199 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
200 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# Set the OpenAI API key.
|
204 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
205 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
206 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
207 |
+
|
208 |
+
client = init()
|
209 |
+
|
210 |
+
main(args)
|
videollama2/eval/eval_video_oqa_vcgpt_1_correctness.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
import traceback
|
6 |
+
from tqdm import tqdm
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
|
9 |
+
from openai import AzureOpenAI
|
10 |
+
|
11 |
+
|
12 |
+
def init():
|
13 |
+
client = AzureOpenAI(
|
14 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
15 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
16 |
+
api_version="2024-02-15-preview"
|
17 |
+
)
|
18 |
+
|
19 |
+
return client
|
20 |
+
|
21 |
+
|
22 |
+
def interaction(client, message_text):
|
23 |
+
completion = client.chat.completions.create(
|
24 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
25 |
+
messages = message_text,
|
26 |
+
temperature=0.7,
|
27 |
+
max_tokens=800,
|
28 |
+
top_p=0.95,
|
29 |
+
frequency_penalty=0,
|
30 |
+
presence_penalty=0,
|
31 |
+
stop=None
|
32 |
+
)
|
33 |
+
|
34 |
+
return completion
|
35 |
+
|
36 |
+
|
37 |
+
def annotate(prediction_set, caption_files, output_dir, args):
|
38 |
+
"""
|
39 |
+
Evaluates question and answer pairs using GPT-3
|
40 |
+
Returns a score for correctness.
|
41 |
+
"""
|
42 |
+
|
43 |
+
for file in tqdm(caption_files):
|
44 |
+
key = file[:-5] # Strip file extension
|
45 |
+
qa_set = prediction_set[key]
|
46 |
+
question = qa_set['q']
|
47 |
+
answer = qa_set['a']
|
48 |
+
pred = qa_set['p']
|
49 |
+
try:
|
50 |
+
message = [
|
51 |
+
{
|
52 |
+
"role": "system",
|
53 |
+
"content":
|
54 |
+
"You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs for video-based question-answer pairs. "
|
55 |
+
"Your task is to compare the predicted answer with the correct answer and determine if they are factually consistent. Here's how you can accomplish the task:"
|
56 |
+
"------"
|
57 |
+
"##INSTRUCTIONS: "
|
58 |
+
"- Focus on the factual consistency between the predicted answer and the correct answer. The predicted answer should not contain any misinterpretations or misinformation.\n"
|
59 |
+
"- The predicted answer must be factually accurate and align with the video content.\n"
|
60 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
61 |
+
"- Evaluate the factual accuracy of the prediction compared to the answer."
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"role": "user",
|
65 |
+
"content":
|
66 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
67 |
+
f"Question: {question}\n"
|
68 |
+
f"Correct Answer: {answer}\n"
|
69 |
+
f"Predicted Answer: {pred}\n\n"
|
70 |
+
"Provide your evaluation only as a factual accuracy score where the factual accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of factual consistency. "
|
71 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the factual accuracy score in INTEGER, not STRING."
|
72 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
73 |
+
"For example, your response should look like this: {''score': 4.8}."
|
74 |
+
}
|
75 |
+
]
|
76 |
+
completion = interaction(client, message)
|
77 |
+
# Convert response to a Python dictionary.
|
78 |
+
response_message = completion.choices[0].message.content
|
79 |
+
response_dict = ast.literal_eval(response_message)
|
80 |
+
result_qa_pair = [response_dict, qa_set]
|
81 |
+
|
82 |
+
# Save the question-answer pairs to a json file.
|
83 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
84 |
+
json.dump(result_qa_pair, f)
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error processing file '{key}': {e}")
|
88 |
+
|
89 |
+
|
90 |
+
def main(args):
|
91 |
+
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
|
92 |
+
|
93 |
+
# Dictionary to store the count of occurrences for each video_id
|
94 |
+
video_id_counts = {}
|
95 |
+
new_pred_contents = []
|
96 |
+
|
97 |
+
# Iterate through each sample in pred_contents
|
98 |
+
for sample in pred_contents:
|
99 |
+
video_id = sample['video_name']
|
100 |
+
if video_id in video_id_counts:
|
101 |
+
video_id_counts[video_id] += 1
|
102 |
+
else:
|
103 |
+
video_id_counts[video_id] = 0
|
104 |
+
|
105 |
+
# Create a new sample with the modified key
|
106 |
+
new_sample = sample
|
107 |
+
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
|
108 |
+
new_pred_contents.append(new_sample)
|
109 |
+
|
110 |
+
# Generating list of id's and corresponding files
|
111 |
+
id_list = [x['video_name'] for x in new_pred_contents]
|
112 |
+
caption_files = [f"{id}.json" for id in id_list]
|
113 |
+
|
114 |
+
output_dir = args.output_dir
|
115 |
+
# Generate output directory if not exists.
|
116 |
+
if not os.path.exists(output_dir):
|
117 |
+
os.makedirs(output_dir)
|
118 |
+
|
119 |
+
# Preparing dictionary of question-answer sets
|
120 |
+
prediction_set = {}
|
121 |
+
for sample in new_pred_contents:
|
122 |
+
id = sample['video_name']
|
123 |
+
question = sample['Q']
|
124 |
+
answer = sample['A']
|
125 |
+
pred = sample['P']
|
126 |
+
qa_set = {"q": question, "a": answer, "p": pred}
|
127 |
+
prediction_set[id] = qa_set
|
128 |
+
|
129 |
+
# Set the OpenAI API key.
|
130 |
+
# openai.api_key = args.api_key
|
131 |
+
num_tasks = args.num_tasks
|
132 |
+
|
133 |
+
# While loop to ensure that all captions are processed.
|
134 |
+
while True:
|
135 |
+
try:
|
136 |
+
# Files that have not been processed yet.
|
137 |
+
completed_files = os.listdir(output_dir)
|
138 |
+
print(f"completed_files: {len(completed_files)}")
|
139 |
+
|
140 |
+
# Files that have not been processed yet.
|
141 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
142 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
143 |
+
|
144 |
+
# Break the loop when there are no incomplete files
|
145 |
+
if len(incomplete_files) == 0:
|
146 |
+
break
|
147 |
+
if len(incomplete_files) <= num_tasks:
|
148 |
+
num_tasks = 1
|
149 |
+
|
150 |
+
# Split tasks into parts.
|
151 |
+
part_len = len(incomplete_files) // num_tasks
|
152 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
153 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
154 |
+
|
155 |
+
# Use a pool of workers to process the files in parallel.
|
156 |
+
with Pool() as pool:
|
157 |
+
pool.starmap(annotate, task_args)
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
traceback.print_exc()
|
161 |
+
|
162 |
+
# Combine all the processed files into one
|
163 |
+
combined_contents = {}
|
164 |
+
json_path = args.output_json
|
165 |
+
|
166 |
+
# Iterate through json files
|
167 |
+
for file_name in tqdm(os.listdir(output_dir)):
|
168 |
+
if file_name.endswith(".json"):
|
169 |
+
file_path = os.path.join(output_dir, file_name)
|
170 |
+
with open(file_path, "r") as json_file:
|
171 |
+
content = json.load(json_file)
|
172 |
+
combined_contents[file_name[:-5]] = content
|
173 |
+
|
174 |
+
# Write combined content to a json file
|
175 |
+
with open(json_path, "w") as json_file:
|
176 |
+
json.dump(combined_contents, json_file)
|
177 |
+
print("All evaluation completed!")
|
178 |
+
|
179 |
+
# Calculate average score
|
180 |
+
score_sum = 0
|
181 |
+
count = 0
|
182 |
+
for key, result in combined_contents.items():
|
183 |
+
count += 1
|
184 |
+
score_match = result[0]['score']
|
185 |
+
score = int(score_match)
|
186 |
+
score_sum += score
|
187 |
+
average_score = score_sum / count
|
188 |
+
|
189 |
+
print("Average score for correctness:", average_score)
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
194 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
195 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
196 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
197 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
198 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
199 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
200 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# Set the OpenAI API key.
|
204 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
205 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
206 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
207 |
+
|
208 |
+
client = init()
|
209 |
+
|
210 |
+
main(args)
|
videollama2/eval/eval_video_oqa_vcgpt_2_detailed_orientation.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
from tqdm import tqdm
|
6 |
+
from multiprocessing.pool import Pool
|
7 |
+
|
8 |
+
from openai import AzureOpenAI
|
9 |
+
|
10 |
+
|
11 |
+
def init():
|
12 |
+
client = AzureOpenAI(
|
13 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
14 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
15 |
+
api_version="2024-02-15-preview"
|
16 |
+
)
|
17 |
+
|
18 |
+
return client
|
19 |
+
|
20 |
+
|
21 |
+
def interaction(client, message_text):
|
22 |
+
completion = client.chat.completions.create(
|
23 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
24 |
+
messages = message_text,
|
25 |
+
temperature=0.7,
|
26 |
+
max_tokens=800,
|
27 |
+
top_p=0.95,
|
28 |
+
frequency_penalty=0,
|
29 |
+
presence_penalty=0,
|
30 |
+
stop=None
|
31 |
+
)
|
32 |
+
|
33 |
+
return completion
|
34 |
+
|
35 |
+
|
36 |
+
def annotate(prediction_set, caption_files, output_dir, args):
|
37 |
+
"""
|
38 |
+
Evaluates question and answer pairs using GPT-3 and
|
39 |
+
returns a score for detailed orientation.
|
40 |
+
"""
|
41 |
+
for file in tqdm(caption_files):
|
42 |
+
key = file[:-5] # Strip file extension
|
43 |
+
qa_set = prediction_set[key]
|
44 |
+
question = qa_set['q']
|
45 |
+
answer = qa_set['a']
|
46 |
+
pred = qa_set['p']
|
47 |
+
try:
|
48 |
+
# Compute the detailed-orientation score
|
49 |
+
message = [
|
50 |
+
{
|
51 |
+
"role": "system",
|
52 |
+
"content":
|
53 |
+
"You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
|
54 |
+
"Your task is to compare the predicted answer with the correct answer and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
|
55 |
+
"------"
|
56 |
+
"##INSTRUCTIONS: "
|
57 |
+
"- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
|
58 |
+
"- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
|
59 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
60 |
+
"- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity."
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"role": "user",
|
64 |
+
"content":
|
65 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
66 |
+
f"Question: {question}\n"
|
67 |
+
f"Correct Answer: {answer}\n"
|
68 |
+
f"Predicted Answer: {pred}\n\n"
|
69 |
+
"Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
|
70 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
|
71 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
72 |
+
"For example, your response should look like this: {''score': 4.8}."
|
73 |
+
}
|
74 |
+
]
|
75 |
+
|
76 |
+
completion = interaction(client, message)
|
77 |
+
# Convert response to a Python dictionary.
|
78 |
+
response_message = completion.choices[0].message.content
|
79 |
+
response_dict = ast.literal_eval(response_message)
|
80 |
+
result_qa_pair = [response_dict, qa_set]
|
81 |
+
|
82 |
+
# Save the question-answer pairs to a json file.
|
83 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
84 |
+
json.dump(result_qa_pair, f)
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error processing file '{key}': {e}")
|
88 |
+
|
89 |
+
|
90 |
+
def main(args):
|
91 |
+
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
|
92 |
+
|
93 |
+
# Dictionary to store the count of occurrences for each video_id
|
94 |
+
video_id_counts = {}
|
95 |
+
new_pred_contents = []
|
96 |
+
|
97 |
+
# Iterate through each sample in pred_contents
|
98 |
+
for sample in pred_contents:
|
99 |
+
video_id = sample['video_name']
|
100 |
+
if video_id in video_id_counts:
|
101 |
+
video_id_counts[video_id] += 1
|
102 |
+
else:
|
103 |
+
video_id_counts[video_id] = 0
|
104 |
+
|
105 |
+
# Create a new sample with the modified key
|
106 |
+
new_sample = sample
|
107 |
+
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
|
108 |
+
new_pred_contents.append(new_sample)
|
109 |
+
|
110 |
+
# Generating list of id's and corresponding files
|
111 |
+
id_list = [x['video_name'] for x in new_pred_contents]
|
112 |
+
caption_files = [f"{id}.json" for id in id_list]
|
113 |
+
|
114 |
+
output_dir = args.output_dir
|
115 |
+
# Generate output directory if not exists.
|
116 |
+
if not os.path.exists(output_dir):
|
117 |
+
os.makedirs(output_dir)
|
118 |
+
|
119 |
+
# Preparing dictionary of question-answer sets
|
120 |
+
prediction_set = {}
|
121 |
+
for sample in new_pred_contents:
|
122 |
+
id = sample['video_name']
|
123 |
+
question = sample['Q']
|
124 |
+
answer = sample['A']
|
125 |
+
pred = sample['P']
|
126 |
+
qa_set = {"q": question, "a": answer, "p": pred}
|
127 |
+
prediction_set[id] = qa_set
|
128 |
+
|
129 |
+
# Set the OpenAI API key.
|
130 |
+
# openai.api_key = args.api_key
|
131 |
+
num_tasks = args.num_tasks
|
132 |
+
|
133 |
+
# While loop to ensure that all captions are processed.
|
134 |
+
while True:
|
135 |
+
try:
|
136 |
+
# Files that have not been processed yet.
|
137 |
+
completed_files = os.listdir(output_dir)
|
138 |
+
print(f"completed_files: {len(completed_files)}")
|
139 |
+
|
140 |
+
# Files that have not been processed yet.
|
141 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
142 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
143 |
+
|
144 |
+
# Break the loop when there are no incomplete files
|
145 |
+
if len(incomplete_files) == 0:
|
146 |
+
break
|
147 |
+
if len(incomplete_files) <= num_tasks:
|
148 |
+
num_tasks = 1
|
149 |
+
|
150 |
+
# Split tasks into parts.
|
151 |
+
part_len = len(incomplete_files) // num_tasks
|
152 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
153 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
154 |
+
|
155 |
+
# Use a pool of workers to process the files in parallel.
|
156 |
+
with Pool() as pool:
|
157 |
+
pool.starmap(annotate, task_args)
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error: {e}")
|
161 |
+
|
162 |
+
# Combine all the processed files into one
|
163 |
+
combined_contents = {}
|
164 |
+
json_path = args.output_json
|
165 |
+
|
166 |
+
# Iterate through json files
|
167 |
+
for file_name in tqdm(os.listdir(output_dir)):
|
168 |
+
if file_name.endswith(".json"):
|
169 |
+
file_path = os.path.join(output_dir, file_name)
|
170 |
+
with open(file_path, "r") as json_file:
|
171 |
+
content = json.load(json_file)
|
172 |
+
combined_contents[file_name[:-5]] = content
|
173 |
+
|
174 |
+
# Write combined content to a json file
|
175 |
+
with open(json_path, "w") as json_file:
|
176 |
+
json.dump(combined_contents, json_file)
|
177 |
+
print("All evaluation completed!")
|
178 |
+
|
179 |
+
# Calculate average score
|
180 |
+
score_sum = 0
|
181 |
+
count = 0
|
182 |
+
for key, result in combined_contents.items():
|
183 |
+
count += 1
|
184 |
+
score_match = result[0]['score']
|
185 |
+
score = int(score_match)
|
186 |
+
score_sum += score
|
187 |
+
average_score = score_sum / count
|
188 |
+
|
189 |
+
print("Average score for detailed orientation:", average_score)
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
194 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
195 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
196 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
197 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
198 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
199 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
200 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# Set the OpenAI API key.
|
204 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
205 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
206 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
207 |
+
|
208 |
+
client = init()
|
209 |
+
|
210 |
+
main(args)
|
videollama2/eval/eval_video_oqa_vcgpt_3_context.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
import traceback
|
6 |
+
from tqdm import tqdm
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
|
9 |
+
from openai import AzureOpenAI
|
10 |
+
|
11 |
+
|
12 |
+
def init():
|
13 |
+
client = AzureOpenAI(
|
14 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
15 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
16 |
+
api_version="2024-02-15-preview"
|
17 |
+
)
|
18 |
+
|
19 |
+
return client
|
20 |
+
|
21 |
+
|
22 |
+
def interaction(client, message_text):
|
23 |
+
completion = client.chat.completions.create(
|
24 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
25 |
+
messages = message_text,
|
26 |
+
temperature=0.7,
|
27 |
+
max_tokens=800,
|
28 |
+
top_p=0.95,
|
29 |
+
frequency_penalty=0,
|
30 |
+
presence_penalty=0,
|
31 |
+
stop=None
|
32 |
+
)
|
33 |
+
|
34 |
+
return completion
|
35 |
+
|
36 |
+
|
37 |
+
def annotate(prediction_set, caption_files, output_dir, args):
|
38 |
+
"""
|
39 |
+
Evaluates question and answer pairs using GPT-3 and
|
40 |
+
returns a score for contextual understanding.
|
41 |
+
"""
|
42 |
+
|
43 |
+
for file in tqdm(caption_files):
|
44 |
+
key = file[:-5] # Strip file extension
|
45 |
+
qa_set = prediction_set[key]
|
46 |
+
question = qa_set['q']
|
47 |
+
answer = qa_set['a']
|
48 |
+
pred = qa_set['p']
|
49 |
+
try:
|
50 |
+
# Compute the contextual understanding score
|
51 |
+
message = [
|
52 |
+
{
|
53 |
+
"role": "system",
|
54 |
+
"content":
|
55 |
+
"You are an intelligent chatbot designed for evaluating the contextual understanding of generative outputs for video-based question-answer pairs. "
|
56 |
+
"Your task is to compare the predicted answer with the correct answer and determine if the generated response aligns with the overall context of the video content. Here's how you can accomplish the task:"
|
57 |
+
"------"
|
58 |
+
"##INSTRUCTIONS: "
|
59 |
+
"- Evaluate whether the predicted answer aligns with the overall context of the video content. It should not provide information that is out of context or misaligned.\n"
|
60 |
+
"- The predicted answer must capture the main themes and sentiments of the video.\n"
|
61 |
+
"- Consider synonyms or paraphrases as valid matches.\n"
|
62 |
+
"- Provide your evaluation of the contextual understanding of the prediction compared to the answer."
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"role": "user",
|
66 |
+
"content":
|
67 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
68 |
+
f"Question: {question}\n"
|
69 |
+
f"Correct Answer: {answer}\n"
|
70 |
+
f"Predicted Answer: {pred}\n\n"
|
71 |
+
"Provide your evaluation only as a contextual understanding score where the contextual understanding score is an integer value between 0 and 5, with 5 indicating the highest level of contextual understanding. "
|
72 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is contextual understanding score in INTEGER, not STRING."
|
73 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
74 |
+
"For example, your response should look like this: {''score': 4.8}."
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
completion = interaction(client, message)
|
79 |
+
# Convert response to a Python dictionary.
|
80 |
+
response_message = completion.choices[0].message.content
|
81 |
+
response_dict = ast.literal_eval(response_message)
|
82 |
+
result_qa_pair = [response_dict, qa_set]
|
83 |
+
|
84 |
+
# Save the question-answer pairs to a json file.
|
85 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
86 |
+
json.dump(result_qa_pair, f)
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error processing file '{key}': {e}")
|
90 |
+
|
91 |
+
|
92 |
+
def main(args):
|
93 |
+
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
|
94 |
+
|
95 |
+
# Dictionary to store the count of occurrences for each video_id
|
96 |
+
video_id_counts = {}
|
97 |
+
new_pred_contents = []
|
98 |
+
|
99 |
+
# Iterate through each sample in pred_contents
|
100 |
+
for sample in pred_contents:
|
101 |
+
video_id = sample['video_name']
|
102 |
+
if video_id in video_id_counts:
|
103 |
+
video_id_counts[video_id] += 1
|
104 |
+
else:
|
105 |
+
video_id_counts[video_id] = 0
|
106 |
+
|
107 |
+
# Create a new sample with the modified key
|
108 |
+
new_sample = sample
|
109 |
+
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
|
110 |
+
new_pred_contents.append(new_sample)
|
111 |
+
|
112 |
+
# Generating list of id's and corresponding files
|
113 |
+
id_list = [x['video_name'] for x in new_pred_contents]
|
114 |
+
caption_files = [f"{id}.json" for id in id_list]
|
115 |
+
|
116 |
+
output_dir = args.output_dir
|
117 |
+
# Generate output directory if not exists.
|
118 |
+
if not os.path.exists(output_dir):
|
119 |
+
os.makedirs(output_dir)
|
120 |
+
|
121 |
+
# Preparing dictionary of question-answer sets
|
122 |
+
prediction_set = {}
|
123 |
+
for sample in new_pred_contents:
|
124 |
+
id = sample['video_name']
|
125 |
+
question = sample['Q']
|
126 |
+
answer = sample['A']
|
127 |
+
pred = sample['P']
|
128 |
+
qa_set = {"q": question, "a": answer, "p": pred}
|
129 |
+
prediction_set[id] = qa_set
|
130 |
+
|
131 |
+
# Set the OpenAI API key.
|
132 |
+
# openai.api_key = args.api_key
|
133 |
+
num_tasks = args.num_tasks
|
134 |
+
|
135 |
+
# While loop to ensure that all captions are processed.
|
136 |
+
while True:
|
137 |
+
try:
|
138 |
+
# Files that have not been processed yet.
|
139 |
+
completed_files = os.listdir(output_dir)
|
140 |
+
print(f"completed_files: {len(completed_files)}")
|
141 |
+
|
142 |
+
# Files that have not been processed yet.
|
143 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
144 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
145 |
+
|
146 |
+
# Break the loop when there are no incomplete files
|
147 |
+
if len(incomplete_files) == 0:
|
148 |
+
break
|
149 |
+
if len(incomplete_files) <= num_tasks:
|
150 |
+
num_tasks = 1
|
151 |
+
|
152 |
+
# Split tasks into parts.
|
153 |
+
part_len = len(incomplete_files) // num_tasks
|
154 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
155 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
156 |
+
|
157 |
+
# Use a pool of workers to process the files in parallel.
|
158 |
+
with Pool() as pool:
|
159 |
+
pool.starmap(annotate, task_args)
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
print(f"Error: {e}")
|
163 |
+
|
164 |
+
# Combine all the processed files into one
|
165 |
+
combined_contents = {}
|
166 |
+
json_path = args.output_json
|
167 |
+
|
168 |
+
# Iterate through json files
|
169 |
+
for file_name in tqdm(os.listdir(output_dir)):
|
170 |
+
if file_name.endswith(".json"):
|
171 |
+
file_path = os.path.join(output_dir, file_name)
|
172 |
+
with open(file_path, "r") as json_file:
|
173 |
+
content = json.load(json_file)
|
174 |
+
combined_contents[file_name[:-5]] = content
|
175 |
+
|
176 |
+
# Write combined content to a json file
|
177 |
+
with open(json_path, "w") as json_file:
|
178 |
+
json.dump(combined_contents, json_file)
|
179 |
+
print("All evaluation completed!")
|
180 |
+
|
181 |
+
# Calculate average score
|
182 |
+
score_sum = 0
|
183 |
+
count = 0
|
184 |
+
for key, result in combined_contents.items():
|
185 |
+
count += 1
|
186 |
+
score_match = result[0]['score']
|
187 |
+
score = int(score_match)
|
188 |
+
score_sum += score
|
189 |
+
average_score = score_sum / count
|
190 |
+
|
191 |
+
print("Average score for contextual understanding:", average_score)
|
192 |
+
|
193 |
+
|
194 |
+
if __name__ == "__main__":
|
195 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
196 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
197 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
198 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
199 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
200 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
201 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
202 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
203 |
+
args = parser.parse_args()
|
204 |
+
|
205 |
+
# Set the OpenAI API key.
|
206 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
207 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
208 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
209 |
+
|
210 |
+
client = init()
|
211 |
+
|
212 |
+
main(args)
|
videollama2/eval/eval_video_oqa_vcgpt_4_temporal.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
import traceback
|
6 |
+
from tqdm import tqdm
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
|
9 |
+
from openai import AzureOpenAI
|
10 |
+
|
11 |
+
|
12 |
+
def init():
|
13 |
+
client = AzureOpenAI(
|
14 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
15 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
16 |
+
api_version="2024-02-15-preview"
|
17 |
+
)
|
18 |
+
|
19 |
+
return client
|
20 |
+
|
21 |
+
|
22 |
+
def interaction(client, message_text):
|
23 |
+
completion = client.chat.completions.create(
|
24 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
25 |
+
messages = message_text,
|
26 |
+
temperature=0.7,
|
27 |
+
max_tokens=800,
|
28 |
+
top_p=0.95,
|
29 |
+
frequency_penalty=0,
|
30 |
+
presence_penalty=0,
|
31 |
+
stop=None
|
32 |
+
)
|
33 |
+
|
34 |
+
return completion
|
35 |
+
|
36 |
+
|
37 |
+
def annotate(prediction_set, caption_files, output_dir, args):
|
38 |
+
|
39 |
+
for file in tqdm(caption_files):
|
40 |
+
key = file[:-5] # Strip file extension
|
41 |
+
qa_set = prediction_set[key]
|
42 |
+
question = qa_set['q']
|
43 |
+
answer = qa_set['a']
|
44 |
+
pred = qa_set['p']
|
45 |
+
try:
|
46 |
+
message = [
|
47 |
+
{
|
48 |
+
"role": "system",
|
49 |
+
"content":
|
50 |
+
"You are an intelligent chatbot designed for evaluating the temporal understanding of generative outputs for video-based question-answer pairs. "
|
51 |
+
"Your task is to compare the predicted answer with the correct answer and determine if they correctly reflect the temporal sequence of events in the video content. Here's how you can accomplish the task:"
|
52 |
+
"------"
|
53 |
+
"##INSTRUCTIONS: "
|
54 |
+
"- Focus on the temporal consistency between the predicted answer and the correct answer. The predicted answer should correctly reflect the sequence of events or details as they are presented in the video content.\n"
|
55 |
+
"- Consider synonyms or paraphrases as valid matches, but only if the temporal order is maintained.\n"
|
56 |
+
"- Evaluate the temporal accuracy of the prediction compared to the answer."
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"role": "user",
|
60 |
+
"content":
|
61 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
62 |
+
f"Question: {question}\n"
|
63 |
+
f"Correct Answer: {answer}\n"
|
64 |
+
f"Predicted Answer: {pred}\n\n"
|
65 |
+
"Provide your evaluation only as a temporal accuracy score where the temporal accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of temporal consistency. "
|
66 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the temporal accuracy score in INTEGER, not STRING."
|
67 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
68 |
+
"For example, your response should look like this: {''score': 4.8}."
|
69 |
+
}
|
70 |
+
]
|
71 |
+
|
72 |
+
completion = interaction(client, message)
|
73 |
+
# Convert response to a Python dictionary.
|
74 |
+
response_message = completion.choices[0].message.content
|
75 |
+
response_dict = ast.literal_eval(response_message)
|
76 |
+
result_qa_pair = [response_dict, qa_set]
|
77 |
+
|
78 |
+
# Save the question-answer pairs to a json file.
|
79 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
80 |
+
json.dump(result_qa_pair, f)
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error processing file '{key}': {e}")
|
84 |
+
|
85 |
+
|
86 |
+
def main(args):
|
87 |
+
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
|
88 |
+
|
89 |
+
# Dictionary to store the count of occurrences for each video_id
|
90 |
+
video_id_counts = {}
|
91 |
+
new_pred_contents = []
|
92 |
+
|
93 |
+
# Iterate through each sample in pred_contents
|
94 |
+
for sample in pred_contents:
|
95 |
+
video_id = sample['video_name']
|
96 |
+
if video_id in video_id_counts:
|
97 |
+
video_id_counts[video_id] += 1
|
98 |
+
else:
|
99 |
+
video_id_counts[video_id] = 0
|
100 |
+
|
101 |
+
# Create a new sample with the modified key
|
102 |
+
new_sample = sample
|
103 |
+
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
|
104 |
+
new_pred_contents.append(new_sample)
|
105 |
+
|
106 |
+
# Generating list of id's and corresponding files
|
107 |
+
id_list = [x['video_name'] for x in new_pred_contents]
|
108 |
+
caption_files = [f"{id}.json" for id in id_list]
|
109 |
+
|
110 |
+
output_dir = args.output_dir
|
111 |
+
# Generate output directory if not exists.
|
112 |
+
if not os.path.exists(output_dir):
|
113 |
+
os.makedirs(output_dir)
|
114 |
+
|
115 |
+
# Preparing dictionary of question-answer sets
|
116 |
+
prediction_set = {}
|
117 |
+
for sample in new_pred_contents:
|
118 |
+
id = sample['video_name']
|
119 |
+
question = sample['Q']
|
120 |
+
answer = sample['A']
|
121 |
+
pred = sample['P']
|
122 |
+
qa_set = {"q": question, "a": answer, "p": pred}
|
123 |
+
prediction_set[id] = qa_set
|
124 |
+
|
125 |
+
# Set the OpenAI API key.
|
126 |
+
# openai.api_key = args.api_key
|
127 |
+
num_tasks = args.num_tasks
|
128 |
+
|
129 |
+
# While loop to ensure that all captions are processed.
|
130 |
+
while True:
|
131 |
+
try:
|
132 |
+
# Files that have not been processed yet.
|
133 |
+
completed_files = os.listdir(output_dir)
|
134 |
+
print(f"completed_files: {len(completed_files)}")
|
135 |
+
|
136 |
+
# Files that have not been processed yet.
|
137 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
138 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
139 |
+
|
140 |
+
# Break the loop when there are no incomplete files
|
141 |
+
if len(incomplete_files) == 0:
|
142 |
+
break
|
143 |
+
if len(incomplete_files) <= num_tasks:
|
144 |
+
num_tasks = 1
|
145 |
+
|
146 |
+
# Split tasks into parts.
|
147 |
+
part_len = len(incomplete_files) // num_tasks
|
148 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
149 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
150 |
+
|
151 |
+
# Use a pool of workers to process the files in parallel.
|
152 |
+
with Pool() as pool:
|
153 |
+
pool.starmap(annotate, task_args)
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error: {e}")
|
157 |
+
|
158 |
+
# Combine all the processed files into one
|
159 |
+
combined_contents = {}
|
160 |
+
json_path = args.output_json
|
161 |
+
|
162 |
+
# Iterate through json files
|
163 |
+
for file_name in os.listdir(output_dir):
|
164 |
+
if file_name.endswith(".json"):
|
165 |
+
file_path = os.path.join(output_dir, file_name)
|
166 |
+
with open(file_path, "r") as json_file:
|
167 |
+
content = json.load(json_file)
|
168 |
+
combined_contents[file_name[:-5]] = content
|
169 |
+
|
170 |
+
# Write combined content to a json file
|
171 |
+
with open(json_path, "w") as json_file:
|
172 |
+
json.dump(combined_contents, json_file)
|
173 |
+
print("All evaluation completed!")
|
174 |
+
|
175 |
+
# Calculate average score
|
176 |
+
score_sum = 0
|
177 |
+
count = 0
|
178 |
+
for key, result in combined_contents.items():
|
179 |
+
count += 1
|
180 |
+
score_match = result[0]['score']
|
181 |
+
score = int(score_match)
|
182 |
+
score_sum += score
|
183 |
+
average_score = score_sum / count
|
184 |
+
|
185 |
+
print("Average score temporal understanding:", average_score)
|
186 |
+
|
187 |
+
|
188 |
+
if __name__ == "__main__":
|
189 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
190 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
191 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
192 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
193 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
194 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
195 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
196 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
197 |
+
args = parser.parse_args()
|
198 |
+
|
199 |
+
# Set the OpenAI API key.
|
200 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
201 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
202 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
203 |
+
|
204 |
+
client = init()
|
205 |
+
|
206 |
+
main(args)
|
videollama2/eval/eval_video_oqa_vcgpt_5_consistency.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import ast
|
5 |
+
import traceback
|
6 |
+
from tqdm import tqdm
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
|
9 |
+
from openai import AzureOpenAI
|
10 |
+
|
11 |
+
|
12 |
+
def init():
|
13 |
+
client = AzureOpenAI(
|
14 |
+
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
|
15 |
+
api_key=os.getenv("AZURE_OPENAI_KEY"),
|
16 |
+
api_version="2024-02-15-preview"
|
17 |
+
)
|
18 |
+
|
19 |
+
return client
|
20 |
+
|
21 |
+
|
22 |
+
def interaction(client, message_text):
|
23 |
+
completion = client.chat.completions.create(
|
24 |
+
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
|
25 |
+
messages = message_text,
|
26 |
+
temperature=0.7,
|
27 |
+
max_tokens=800,
|
28 |
+
top_p=0.95,
|
29 |
+
frequency_penalty=0,
|
30 |
+
presence_penalty=0,
|
31 |
+
stop=None
|
32 |
+
)
|
33 |
+
|
34 |
+
return completion
|
35 |
+
|
36 |
+
|
37 |
+
def annotate(prediction_set, caption_files, output_dir, args):
|
38 |
+
"""
|
39 |
+
Evaluates question and answer pairs using GPT-3 and
|
40 |
+
returns a score for consistency.
|
41 |
+
"""
|
42 |
+
|
43 |
+
for file in tqdm(caption_files):
|
44 |
+
key = file[:-5] # Strip file extension
|
45 |
+
qa_set = prediction_set[key]
|
46 |
+
question1 = qa_set['q1']
|
47 |
+
question2 = qa_set['q2']
|
48 |
+
answer = qa_set['a']
|
49 |
+
pred1 = qa_set['p1']
|
50 |
+
pred2 = qa_set['p2']
|
51 |
+
try:
|
52 |
+
message = [
|
53 |
+
{
|
54 |
+
"role": "system",
|
55 |
+
"content":
|
56 |
+
"You are an intelligent chatbot designed for evaluating the consistency of generative outputs for similar video-based question-answer pairs. "
|
57 |
+
"You will be given two very similar questions, a common answer common to both the questions and predicted answers for the two questions ."
|
58 |
+
"Your task is to compare the predicted answers for two very similar question, with a common correct answer and determine if they are consistent. Here's how you can accomplish the task:"
|
59 |
+
"------"
|
60 |
+
"##INSTRUCTIONS: "
|
61 |
+
"- Focus on the consistency between the two predicted answers and the correct answer. Both predicted answers should correspond to the correct answer and to each other, and should not contain any contradictions or significant differences in the conveyed information.\n"
|
62 |
+
"- Both predicted answers must be consistent with each other and the correct answer, in terms of the information they provide about the video content.\n"
|
63 |
+
"- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency in the conveyed information.\n"
|
64 |
+
"- Evaluate the consistency of the two predicted answers compared to the correct answer."
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content":
|
69 |
+
"Please evaluate the following video-based question-answer pair:\n\n"
|
70 |
+
f"Question 1: {question1}\n"
|
71 |
+
f"Question 2: {question2}\n"
|
72 |
+
f"Correct Answer: {answer}\n"
|
73 |
+
f"Predicted Answer to Question 1: {pred1}\n"
|
74 |
+
f"Predicted Answer to Question 2: {pred2}\n\n"
|
75 |
+
"Provide your evaluation only as a consistency score where the consistency score is an integer value between 0 and 5, with 5 indicating the highest level of consistency. "
|
76 |
+
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the consistency score in INTEGER, not STRING."
|
77 |
+
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
|
78 |
+
"For example, your response should look like this: {''score': 4.8}."
|
79 |
+
}
|
80 |
+
]
|
81 |
+
|
82 |
+
completion = interaction(client, message)
|
83 |
+
# Convert response to a Python dictionary.
|
84 |
+
response_message = completion.choices[0].message.content
|
85 |
+
response_dict = ast.literal_eval(response_message)
|
86 |
+
result_qa_pair = [response_dict, qa_set]
|
87 |
+
|
88 |
+
# Save the question-answer pairs to a json file.
|
89 |
+
with open(f"{output_dir}/{key}.json", "w") as f:
|
90 |
+
json.dump(result_qa_pair, f)
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error processing file '{key}': {e}")
|
94 |
+
|
95 |
+
|
96 |
+
def main(args):
|
97 |
+
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
|
98 |
+
|
99 |
+
# Dictionary to store the count of occurrences for each video_id
|
100 |
+
video_id_counts = {}
|
101 |
+
new_pred_contents = []
|
102 |
+
|
103 |
+
# Iterate through each sample in pred_contents
|
104 |
+
for sample in pred_contents:
|
105 |
+
video_id = sample['video_name']
|
106 |
+
if video_id in video_id_counts:
|
107 |
+
video_id_counts[video_id] += 1
|
108 |
+
else:
|
109 |
+
video_id_counts[video_id] = 0
|
110 |
+
|
111 |
+
# Create a new sample with the modified key
|
112 |
+
new_sample = sample
|
113 |
+
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
|
114 |
+
new_pred_contents.append(new_sample)
|
115 |
+
|
116 |
+
# Generating list of id's and corresponding files
|
117 |
+
id_list = [x['video_name'] for x in new_pred_contents]
|
118 |
+
caption_files = [f"{id}.json" for id in id_list]
|
119 |
+
|
120 |
+
output_dir = args.output_dir
|
121 |
+
# Generate output directory if not exists.
|
122 |
+
if not os.path.exists(output_dir):
|
123 |
+
os.makedirs(output_dir)
|
124 |
+
|
125 |
+
# Preparing dictionary of question-answer sets
|
126 |
+
prediction_set = {}
|
127 |
+
for sample in new_pred_contents:
|
128 |
+
id = sample['video_name']
|
129 |
+
question1 = sample['Q1']
|
130 |
+
question2 = sample['Q2']
|
131 |
+
answer = sample['A']
|
132 |
+
pred1 = sample['P1']
|
133 |
+
pred2 = sample['P2']
|
134 |
+
qa_set = {"q1": question1, "q2": question2, "a": answer, "p1": pred1, "p2": pred2}
|
135 |
+
prediction_set[id] = qa_set
|
136 |
+
|
137 |
+
# Set the OpenAI API key.
|
138 |
+
# openai.api_key = args.api_key
|
139 |
+
num_tasks = args.num_tasks
|
140 |
+
|
141 |
+
# While loop to ensure that all captions are processed.
|
142 |
+
while True:
|
143 |
+
try:
|
144 |
+
# Files that have not been processed yet.
|
145 |
+
completed_files = os.listdir(output_dir)
|
146 |
+
print(f"completed_files: {len(completed_files)}")
|
147 |
+
|
148 |
+
# Files that have not been processed yet.
|
149 |
+
incomplete_files = [f for f in caption_files if f not in completed_files]
|
150 |
+
print(f"incomplete_files: {len(incomplete_files)}")
|
151 |
+
|
152 |
+
# Break the loop when there are no incomplete files
|
153 |
+
if len(incomplete_files) == 0:
|
154 |
+
break
|
155 |
+
if len(incomplete_files) <= num_tasks:
|
156 |
+
num_tasks = 1
|
157 |
+
|
158 |
+
# Split tasks into parts.
|
159 |
+
part_len = len(incomplete_files) // num_tasks
|
160 |
+
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
|
161 |
+
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
|
162 |
+
|
163 |
+
# Use a pool of workers to process the files in parallel.
|
164 |
+
with Pool() as pool:
|
165 |
+
pool.starmap(annotate, task_args)
|
166 |
+
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error: {e}")
|
169 |
+
|
170 |
+
# Combine all the processed files into one
|
171 |
+
combined_contents = {}
|
172 |
+
json_path = args.output_json
|
173 |
+
|
174 |
+
# Iterate through json files
|
175 |
+
for file_name in os.listdir(output_dir):
|
176 |
+
if file_name.endswith(".json"):
|
177 |
+
file_path = os.path.join(output_dir, file_name)
|
178 |
+
with open(file_path, "r") as json_file:
|
179 |
+
content = json.load(json_file)
|
180 |
+
combined_contents[file_name[:-5]] = content
|
181 |
+
|
182 |
+
# Write combined content to a json file
|
183 |
+
with open(json_path, "w") as json_file:
|
184 |
+
json.dump(combined_contents, json_file)
|
185 |
+
print("All evaluation completed!")
|
186 |
+
|
187 |
+
# Calculate average score
|
188 |
+
score_sum = 0
|
189 |
+
count = 0
|
190 |
+
for key, result in combined_contents.items():
|
191 |
+
count += 1
|
192 |
+
score_match = result[0]['score']
|
193 |
+
score = int(score_match)
|
194 |
+
score_sum += score
|
195 |
+
average_score = score_sum / count
|
196 |
+
|
197 |
+
print("Average score for consistency:", average_score)
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
|
202 |
+
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
|
203 |
+
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
|
204 |
+
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
|
205 |
+
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
|
206 |
+
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
|
207 |
+
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
|
208 |
+
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
|
209 |
+
args = parser.parse_args()
|
210 |
+
|
211 |
+
# Set the OpenAI API key.
|
212 |
+
os.environ["AZURE_OPENAI_KEY"] = args.api_key
|
213 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
|
214 |
+
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
|
215 |
+
|
216 |
+
client = init()
|
217 |
+
|
218 |
+
main(args)
|
videollama2/eval/inference_video_cap_msvc.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import warnings
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from torch.utils.data import Dataset, DataLoader
|
9 |
+
|
10 |
+
import sys
|
11 |
+
sys.path.append('./')
|
12 |
+
from videollama2 import model_init, mm_infer
|
13 |
+
from videollama2.utils import disable_torch_init
|
14 |
+
|
15 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
16 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
17 |
+
|
18 |
+
|
19 |
+
def split_list(lst, n):
|
20 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
21 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
22 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
23 |
+
|
24 |
+
|
25 |
+
def get_chunk(lst, n, k):
|
26 |
+
chunks = split_list(lst, n)
|
27 |
+
return chunks[k]
|
28 |
+
|
29 |
+
|
30 |
+
class MSVCDataset(Dataset):
|
31 |
+
|
32 |
+
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
|
33 |
+
|
34 |
+
def __init__(self, folder, questions, processor):
|
35 |
+
self.folder = folder
|
36 |
+
self.questions = questions
|
37 |
+
self.processor = processor
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.questions)
|
41 |
+
|
42 |
+
def __getitem__(self, idx):
|
43 |
+
sample = self.questions[idx]
|
44 |
+
|
45 |
+
video_name = sample['video_path']
|
46 |
+
question = sample['question']
|
47 |
+
answer = sample['captions']
|
48 |
+
|
49 |
+
video_path = os.path.join(self.folder, video_name)
|
50 |
+
video_tensor = self.processor(video_path)
|
51 |
+
|
52 |
+
return {
|
53 |
+
'video': video_tensor,
|
54 |
+
'video_name': video_name,
|
55 |
+
'question': question,
|
56 |
+
'answer': answer,
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def collate_fn(batch):
|
61 |
+
vid = [x['video'] for x in batch]
|
62 |
+
v_id = [x['video_name'] for x in batch]
|
63 |
+
qus = [x['question'] for x in batch]
|
64 |
+
ans = [x['answer'] for x in batch]
|
65 |
+
return vid, v_id, qus, ans
|
66 |
+
|
67 |
+
|
68 |
+
def run_inference(args):
|
69 |
+
disable_torch_init()
|
70 |
+
|
71 |
+
model, processor, tokenizer = model_init(args.model_path)
|
72 |
+
|
73 |
+
gt_questions = json.load(open(args.question_file, "r"))
|
74 |
+
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
|
75 |
+
|
76 |
+
answer_file = os.path.join(args.output_file)
|
77 |
+
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
|
78 |
+
ans_file = open(answer_file, "w")
|
79 |
+
|
80 |
+
assert args.batch_size == 1, "Batch size must be 1 for inference"
|
81 |
+
dataset = MSVCDataset(args.video_folder, gt_questions, processor['video'])
|
82 |
+
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
|
83 |
+
|
84 |
+
# Iterate over each sample in the ground truth file
|
85 |
+
for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):
|
86 |
+
video_tensor = video_tensors[0]
|
87 |
+
video_name = video_names[0]
|
88 |
+
question = questions[0]
|
89 |
+
answer = answers[0]
|
90 |
+
|
91 |
+
output = mm_infer(
|
92 |
+
video_tensor,
|
93 |
+
question,
|
94 |
+
model=model,
|
95 |
+
tokenizer=tokenizer,
|
96 |
+
modal='video',
|
97 |
+
do_sample=False,
|
98 |
+
)
|
99 |
+
|
100 |
+
sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output}
|
101 |
+
ans_file.write(json.dumps(sample_set) + "\n")
|
102 |
+
|
103 |
+
ans_file.close()
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
parser = argparse.ArgumentParser()
|
108 |
+
|
109 |
+
parser.add_argument('--model-path', help='', required=True)
|
110 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
111 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
112 |
+
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
|
113 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
114 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
115 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
116 |
+
parser.add_argument("--batch-size", type=int, required=False, default=1)
|
117 |
+
parser.add_argument("--num-workers", type=int, required=False, default=8)
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
run_inference(args)
|
videollama2/eval/inference_video_mcqa_egoschema.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import warnings
|
7 |
+
import traceback
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
import sys
|
13 |
+
sys.path.append('./')
|
14 |
+
from videollama2 import model_init, mm_infer
|
15 |
+
from videollama2.utils import disable_torch_init
|
16 |
+
|
17 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
18 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
19 |
+
|
20 |
+
|
21 |
+
def split_list(lst, n):
|
22 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
23 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
24 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
25 |
+
|
26 |
+
|
27 |
+
def get_chunk(lst, n, k):
|
28 |
+
chunks = split_list(lst, n)
|
29 |
+
return chunks[k]
|
30 |
+
|
31 |
+
|
32 |
+
class EgoschemaDataset(Dataset):
|
33 |
+
|
34 |
+
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
|
35 |
+
|
36 |
+
def __init__(self, data_folder, data_list, processor):
|
37 |
+
self.data_folder = data_folder
|
38 |
+
self.data_list = data_list
|
39 |
+
self.processor = processor
|
40 |
+
|
41 |
+
def __len__(self):
|
42 |
+
return len(self.data_list)
|
43 |
+
|
44 |
+
def __getitem__(self, idx):
|
45 |
+
line = self.data_list[idx]
|
46 |
+
q_uid = line['q_uid']
|
47 |
+
|
48 |
+
for fmt in self.video_formats: # Added this line
|
49 |
+
temp_path = os.path.join(self.data_folder, f"{q_uid}{fmt}")
|
50 |
+
if os.path.exists(temp_path):
|
51 |
+
video_path = temp_path
|
52 |
+
break
|
53 |
+
|
54 |
+
video_tensor = self.processor(video_path)
|
55 |
+
|
56 |
+
question = line['question']
|
57 |
+
a0 = line['option 0']
|
58 |
+
a1 = line['option 1']
|
59 |
+
a2 = line['option 2']
|
60 |
+
a3 = line['option 3']
|
61 |
+
a4 = line['option 4']
|
62 |
+
axs = [a0, a1, a2, a3, a4]
|
63 |
+
ops = ['(A)', '(B)', '(C)', '(D)', '(E)']
|
64 |
+
|
65 |
+
instruct = f'Select the best answer to the following multiple-choice question based on the video.\n{question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option. The best answer is: '
|
66 |
+
|
67 |
+
return {
|
68 |
+
'q_uid': q_uid,
|
69 |
+
'video': video_tensor,
|
70 |
+
'instruct': instruct,
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def build_egoschema_eval(args, processor):
|
75 |
+
questions = json.load(open(args.question_file, "r"))
|
76 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
77 |
+
dataset = EgoschemaDataset(args.video_folder, questions, processor)
|
78 |
+
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
|
79 |
+
|
80 |
+
return dataloader
|
81 |
+
|
82 |
+
|
83 |
+
def egoschema_dump(ans_file, line, outputs):
|
84 |
+
for idx, output in enumerate(outputs):
|
85 |
+
q_uid = line['q_uid'][idx]
|
86 |
+
instruct = line['instruct'][idx]
|
87 |
+
letters = ['A', 'B', 'C', 'D', 'E']
|
88 |
+
|
89 |
+
output = output.replace('answer', '')
|
90 |
+
output = output.replace('Answer', '')
|
91 |
+
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output)
|
92 |
+
try:
|
93 |
+
|
94 |
+
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(line['q_uid'], instruct, output)
|
95 |
+
pred_answer = pred_answer[0].strip()
|
96 |
+
pred_answer = pred_answer.strip('()')
|
97 |
+
pred_idx = letters.index(pred_answer)
|
98 |
+
except:
|
99 |
+
traceback.print_exc()
|
100 |
+
pred_idx = 2
|
101 |
+
|
102 |
+
ans_file.write(f'{q_uid}, {pred_idx}\n')
|
103 |
+
|
104 |
+
|
105 |
+
def run_inference(args):
|
106 |
+
disable_torch_init()
|
107 |
+
|
108 |
+
model, processor, tokenizer = model_init(args.model_path)
|
109 |
+
|
110 |
+
answer_file = os.path.expanduser(args.answer_file)
|
111 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
112 |
+
ans_file = open(answer_file, "w")
|
113 |
+
|
114 |
+
val_loader = build_egoschema_eval(args, processor['video'])
|
115 |
+
|
116 |
+
# Iterate over each sample in the ground truth file
|
117 |
+
for i, line in enumerate(tqdm(val_loader)):
|
118 |
+
video_tensor = line['video'][0]
|
119 |
+
instruct = line['instruct'][0]
|
120 |
+
|
121 |
+
try:
|
122 |
+
pred = mm_infer(
|
123 |
+
video_tensor,
|
124 |
+
instruct,
|
125 |
+
model=model,
|
126 |
+
tokenizer=tokenizer,
|
127 |
+
modal='video',
|
128 |
+
do_sample=False,
|
129 |
+
)
|
130 |
+
except:
|
131 |
+
traceback.print_exc()
|
132 |
+
pred = 'C'
|
133 |
+
|
134 |
+
egoschema_dump(ans_file, line, [pred])
|
135 |
+
|
136 |
+
ans_file.close()
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.')
|
141 |
+
|
142 |
+
parser.add_argument('--model-path', help='', required=True)
|
143 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
144 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
145 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
146 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
147 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
148 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
149 |
+
parser.add_argument("--batch-size", type=int, default=1)
|
150 |
+
parser.add_argument("--num-workers", type=int, default=8)
|
151 |
+
args = parser.parse_args()
|
152 |
+
|
153 |
+
run_inference(args)
|
videollama2/eval/inference_video_mcqa_mvbench.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import warnings
|
7 |
+
import traceback
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from tqdm import tqdm
|
13 |
+
from decord import VideoReader, cpu
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
|
16 |
+
import sys
|
17 |
+
sys.path.append('./')
|
18 |
+
from videollama2 import model_init, mm_infer
|
19 |
+
from videollama2.utils import disable_torch_init
|
20 |
+
|
21 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
22 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
23 |
+
|
24 |
+
|
25 |
+
def split_list(lst, n):
|
26 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
27 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
28 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
29 |
+
|
30 |
+
|
31 |
+
def get_chunk(lst, n, k):
|
32 |
+
chunks = split_list(lst, n)
|
33 |
+
return chunks[k]
|
34 |
+
|
35 |
+
|
36 |
+
class MVBenchDataset(Dataset):
|
37 |
+
|
38 |
+
def __init__(self, data_list, processor):
|
39 |
+
self.data_list = data_list
|
40 |
+
self.processor = processor
|
41 |
+
|
42 |
+
def __len__(self):
|
43 |
+
return len(self.data_list)
|
44 |
+
|
45 |
+
def __getitem__(self, idx):
|
46 |
+
bound = (None, None)
|
47 |
+
if self.data_list[idx]['bound']:
|
48 |
+
bound = (self.data_list[idx]['data']['start'], self.data_list[idx]['data']['end'])
|
49 |
+
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video'])
|
50 |
+
torch_imgs = self.processor(video_path, s=bound[0], e=bound[1])
|
51 |
+
question = self.data_list[idx]['data']['question']
|
52 |
+
options = self.data_list[idx]['data']['candidates']
|
53 |
+
answer = self.data_list[idx]['data']['answer']
|
54 |
+
task_type = self.data_list[idx]['task_type']
|
55 |
+
|
56 |
+
answer_idx = -1
|
57 |
+
letters = []
|
58 |
+
options_string = ''
|
59 |
+
for option_idx, c in enumerate(options):
|
60 |
+
letters.append(f"{chr(ord('A') + option_idx)}")
|
61 |
+
options_string += f"({chr(ord('A') + option_idx)}) {c}\n"
|
62 |
+
if c == answer:
|
63 |
+
answer_idx = option_idx
|
64 |
+
|
65 |
+
instruct = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.'
|
66 |
+
|
67 |
+
return {
|
68 |
+
'video': torch_imgs,
|
69 |
+
'video_path': video_path,
|
70 |
+
'instruct': instruct,
|
71 |
+
'letters': letters,
|
72 |
+
'options': options,
|
73 |
+
'answer_idx': answer_idx,
|
74 |
+
'task_type': task_type
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
tasks = {
|
79 |
+
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
|
80 |
+
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
|
81 |
+
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
|
82 |
+
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False),
|
83 |
+
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
|
84 |
+
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
|
85 |
+
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
|
86 |
+
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
|
87 |
+
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
|
88 |
+
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
|
89 |
+
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
|
90 |
+
"Action Count": ("action_count.json", "perception/videos/", "video", False),
|
91 |
+
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
|
92 |
+
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
|
93 |
+
"State Change": ("state_change.json", "perception/videos/", "video", False),
|
94 |
+
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
|
95 |
+
"Character Order": ("character_order.json", "perception/videos/", "video", False),
|
96 |
+
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
|
97 |
+
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
|
98 |
+
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
def build_mvbench_eval(args, processor):
|
103 |
+
data_list = []
|
104 |
+
for task_name, task in tasks.items():
|
105 |
+
json_file = os.path.join(args.question_file, task[0])
|
106 |
+
vis_folder = os.path.join(args.video_folder, task[1])
|
107 |
+
with open(json_file, 'r') as f:
|
108 |
+
json_data = json.load(f)
|
109 |
+
for data in json_data:
|
110 |
+
data_list.append({
|
111 |
+
'task_type': task_name,
|
112 |
+
'prefix': vis_folder,
|
113 |
+
'data_type': task[2],
|
114 |
+
'bound': task[3],
|
115 |
+
'data': data
|
116 |
+
})
|
117 |
+
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx)
|
118 |
+
dataset = MVBenchDataset(data_list, processor)
|
119 |
+
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
|
120 |
+
|
121 |
+
return dataloader
|
122 |
+
|
123 |
+
|
124 |
+
def mvbench_dump(vid, instruct, letters, options, output):
|
125 |
+
|
126 |
+
output = output.replace('answer', '')
|
127 |
+
output = output.replace('Answer', '')
|
128 |
+
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output)
|
129 |
+
try:
|
130 |
+
find_flag = False
|
131 |
+
if len(pred_answer) == 0:
|
132 |
+
for idx, opt in enumerate(options):
|
133 |
+
# Arabic numerals -> English words
|
134 |
+
if opt.lower() in output.lower():
|
135 |
+
pred_idx = idx
|
136 |
+
find_flag = True
|
137 |
+
break
|
138 |
+
else:
|
139 |
+
pred_answer = pred_answer[0].strip()
|
140 |
+
pred_answer = pred_answer.strip('()')
|
141 |
+
pred_idx = letters.index(pred_answer)
|
142 |
+
find_flag = True
|
143 |
+
|
144 |
+
assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(vid, instruct, output)
|
145 |
+
except:
|
146 |
+
traceback.print_exc()
|
147 |
+
pred_idx = 2
|
148 |
+
|
149 |
+
return pred_idx
|
150 |
+
|
151 |
+
|
152 |
+
def run_inference(args):
|
153 |
+
disable_torch_init()
|
154 |
+
|
155 |
+
model, processor, tokenizer = model_init(args.model_path)
|
156 |
+
|
157 |
+
answer_file = os.path.expanduser(args.answer_file)
|
158 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
159 |
+
ans_file = open(answer_file, "w")
|
160 |
+
|
161 |
+
val_loader = build_mvbench_eval(args, processor['video'])
|
162 |
+
|
163 |
+
# NOTE: only support batch size 1 for now
|
164 |
+
for i, line in enumerate(tqdm(val_loader)):
|
165 |
+
vid = line['video_path'][0]
|
166 |
+
video_tensor = line['video'][0]
|
167 |
+
task_type = line['task_type'][0]
|
168 |
+
instruct = line['instruct'][0]
|
169 |
+
letters = list(zip(*line['letters']))[0]
|
170 |
+
options = list(zip(*line['options']))[0]
|
171 |
+
answer_idx = line['answer_idx'][0].item()
|
172 |
+
|
173 |
+
output = mm_infer(
|
174 |
+
video_tensor,
|
175 |
+
instruct,
|
176 |
+
model=model,
|
177 |
+
tokenizer=tokenizer,
|
178 |
+
modal='video',
|
179 |
+
do_sample=False,
|
180 |
+
)
|
181 |
+
|
182 |
+
pred_idx = mvbench_dump(vid, instruct, letters, options, output)
|
183 |
+
|
184 |
+
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n')
|
185 |
+
|
186 |
+
ans_file.close()
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
parser = argparse.ArgumentParser()
|
191 |
+
|
192 |
+
parser.add_argument('--model-path', help='', required=True)
|
193 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
194 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
195 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
196 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
197 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
198 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
199 |
+
parser.add_argument("--batch-size", type=int, default=1)
|
200 |
+
parser.add_argument("--num-workers", type=int, default=8)
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
run_inference(args)
|
videollama2/eval/inference_video_mcqa_perception_test_mcqa.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import warnings
|
7 |
+
import traceback
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import Dataset, DataLoader
|
12 |
+
|
13 |
+
import sys
|
14 |
+
sys.path.append('./')
|
15 |
+
from videollama2 import model_init, mm_infer
|
16 |
+
from videollama2.utils import disable_torch_init
|
17 |
+
|
18 |
+
|
19 |
+
def split_list(lst, n):
|
20 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
21 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
22 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
23 |
+
|
24 |
+
|
25 |
+
def get_chunk(lst, n, k):
|
26 |
+
chunks = split_list(lst, n)
|
27 |
+
return chunks[k]
|
28 |
+
|
29 |
+
|
30 |
+
class PerceptionTestMCQADataset(Dataset):
|
31 |
+
|
32 |
+
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
|
33 |
+
|
34 |
+
def __init__(self, data_list, processor):
|
35 |
+
self.data_list = data_list
|
36 |
+
self.processor = processor
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.data_list)
|
40 |
+
|
41 |
+
def __getitem__(self, idx):
|
42 |
+
line = self.data_list[idx]
|
43 |
+
video_name = line['metadata']['video_id']
|
44 |
+
mc_questions = line['mc_question']
|
45 |
+
|
46 |
+
for fmt in self.video_formats: # Added this line
|
47 |
+
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
|
48 |
+
if os.path.exists(temp_path):
|
49 |
+
video_path = temp_path
|
50 |
+
break
|
51 |
+
|
52 |
+
video_tensor = self.processor(video_path)
|
53 |
+
|
54 |
+
instructs = []
|
55 |
+
qids = []
|
56 |
+
ops = []
|
57 |
+
for q in mc_questions:
|
58 |
+
question = q['question']
|
59 |
+
qid = q['id']
|
60 |
+
options = q['options']
|
61 |
+
instruct = f'Question: {question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C) {options[2]}\nAnswer with the option\'s letter from the given choices directly and only give the best option.'
|
62 |
+
|
63 |
+
instructs.append(instruct)
|
64 |
+
qids.append(qid)
|
65 |
+
ops.append(options)
|
66 |
+
|
67 |
+
return {
|
68 |
+
'video': video_tensor,
|
69 |
+
'video_id': video_name,
|
70 |
+
'instructs': instructs,
|
71 |
+
'question_ids': qids,
|
72 |
+
'options': ops,
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
def collate_fn(batch):
|
77 |
+
vid = [x['video'] for x in batch]
|
78 |
+
v_id = [x['video_id'] for x in batch]
|
79 |
+
ins = [x['instructs'] for x in batch]
|
80 |
+
q_ids = [x['question_ids'] for x in batch]
|
81 |
+
ops = [x['options'] for x in batch]
|
82 |
+
vid = torch.stack(vid, dim=0)
|
83 |
+
return vid, v_id, ins, q_ids, ops
|
84 |
+
|
85 |
+
|
86 |
+
def run_inference(args):
|
87 |
+
disable_torch_init()
|
88 |
+
|
89 |
+
model, processor, tokenizer = model_init(args.model_path)
|
90 |
+
|
91 |
+
questions = json.load(open(args.question_file, "r"))
|
92 |
+
questions = list(questions.values())
|
93 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
94 |
+
|
95 |
+
assert args.batch_size == 1, "Batch size must be 1 for inference"
|
96 |
+
dataset = PerceptionTestMCQADataset(questions, processor['video'])
|
97 |
+
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
|
98 |
+
|
99 |
+
answer_file = os.path.expanduser(args.answer_file)
|
100 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
101 |
+
ans_file = open(answer_file, "w")
|
102 |
+
|
103 |
+
# Iterate over each sample in the ground truth file
|
104 |
+
for i, (video_tensor, video_id, instructs, question_ids, options) in enumerate(tqdm(dataloader)):
|
105 |
+
|
106 |
+
# reduce batch dimension
|
107 |
+
video_tensor = video_tensor[0]
|
108 |
+
video_id = video_id[0]
|
109 |
+
instructs = instructs[0]
|
110 |
+
question_ids = question_ids[0]
|
111 |
+
options = options[0]
|
112 |
+
|
113 |
+
qas = []
|
114 |
+
for idx, instruct in enumerate(instructs):
|
115 |
+
letters = ['(A)', '(B)', '(C)']
|
116 |
+
question_id = question_ids[idx]
|
117 |
+
_options = options[idx]
|
118 |
+
|
119 |
+
output = mm_infer(
|
120 |
+
video_tensor,
|
121 |
+
instruct,
|
122 |
+
model=model,
|
123 |
+
tokenizer=tokenizer,
|
124 |
+
modal='video',
|
125 |
+
do_sample=False,
|
126 |
+
)
|
127 |
+
|
128 |
+
output = output.replace('answer', '')
|
129 |
+
output = output.replace('Answer', '')
|
130 |
+
pred_answer = re.findall('\(*[A-C]\)*', output)
|
131 |
+
try:
|
132 |
+
assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(video_id, instruct, output)
|
133 |
+
pred_answer = pred_answer[0].strip()
|
134 |
+
# if not pred_answer.startswith('('):
|
135 |
+
pred_answer = pred_answer.strip('()')
|
136 |
+
pred_answer = f'({pred_answer})'
|
137 |
+
pred_idx = letters.index(pred_answer)
|
138 |
+
except:
|
139 |
+
traceback.print_exc()
|
140 |
+
tmp_options = [x.lower() for x in _options]
|
141 |
+
if output.lower() in tmp_options:
|
142 |
+
tmp_options = [x.lower() for x in _options]
|
143 |
+
pred_idx = tmp_options.index(output.lower())
|
144 |
+
else:
|
145 |
+
pred_idx = 2
|
146 |
+
|
147 |
+
qas.append({'id': question_id, 'answer_id': pred_idx, 'answer': _options[pred_idx]})
|
148 |
+
|
149 |
+
ans_file.write('\"{}\": {},\n'.format(video_id, json.dumps(qas)))
|
150 |
+
|
151 |
+
ans_file.close()
|
152 |
+
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
parser = argparse.ArgumentParser()
|
156 |
+
|
157 |
+
parser.add_argument('--model-path', help='', required=True)
|
158 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
159 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
160 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
161 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
162 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
163 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
164 |
+
parser.add_argument("--model_max_length", type=int, required=False, default=2048)
|
165 |
+
parser.add_argument("--batch-size", type=int, required=False, default=1)
|
166 |
+
parser.add_argument("--num-workers", type=int, required=False, default=8)
|
167 |
+
args = parser.parse_args()
|
168 |
+
|
169 |
+
run_inference(args)
|
videollama2/eval/inference_video_mcqa_videomme.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import copy
|
6 |
+
import argparse
|
7 |
+
import warnings
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import torch
|
12 |
+
import pysubs2
|
13 |
+
import numpy as np
|
14 |
+
import pyarrow.parquet as pq
|
15 |
+
from tqdm import tqdm
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
|
18 |
+
import sys
|
19 |
+
sys.path.append('./')
|
20 |
+
from videollama2 import model_init, mm_infer
|
21 |
+
from videollama2.utils import disable_torch_init
|
22 |
+
|
23 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
24 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
25 |
+
|
26 |
+
|
27 |
+
def split_list(lst, n):
|
28 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
29 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
30 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
31 |
+
|
32 |
+
|
33 |
+
def get_chunk(lst, n, k):
|
34 |
+
chunks = split_list(lst, n)
|
35 |
+
return chunks[k]
|
36 |
+
|
37 |
+
|
38 |
+
def get_seq_frames(total_num_frames, desired_num_frames):
|
39 |
+
"""
|
40 |
+
Calculate the indices of frames to extract from a video.
|
41 |
+
|
42 |
+
Parameters:
|
43 |
+
total_num_frames (int): Total number of frames in the video.
|
44 |
+
desired_num_frames (int): Desired number of frames to extract.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
list: List of indices of frames to extract.
|
48 |
+
"""
|
49 |
+
|
50 |
+
# Calculate the size of each segment from which a frame will be extracted
|
51 |
+
seg_size = float(total_num_frames - 1) / desired_num_frames
|
52 |
+
|
53 |
+
seq = []
|
54 |
+
for i in range(desired_num_frames):
|
55 |
+
# Calculate the start and end indices of each segment
|
56 |
+
start = int(np.round(seg_size * i))
|
57 |
+
end = int(np.round(seg_size * (i + 1)))
|
58 |
+
|
59 |
+
# Append the middle index of the segment to the list
|
60 |
+
seq.append((start + end) // 2)
|
61 |
+
|
62 |
+
return seq
|
63 |
+
|
64 |
+
|
65 |
+
class VideoMMEDataset(Dataset):
|
66 |
+
|
67 |
+
video_formats = ['.mp4', '.avi', '.mov', '.mkv']
|
68 |
+
|
69 |
+
def __init__(self, video_folder, subtitle_folder, data_list, processor):
|
70 |
+
self.video_folder = video_folder
|
71 |
+
self.subtitle_folder = subtitle_folder
|
72 |
+
self.data_list = data_list
|
73 |
+
self.processor = processor
|
74 |
+
|
75 |
+
def __len__(self):
|
76 |
+
return len(self.data_list)
|
77 |
+
|
78 |
+
def __getitem__(self, idx):
|
79 |
+
line = self.data_list[idx]
|
80 |
+
|
81 |
+
video_ytid = line['url'].split('watch?v=')[-1]
|
82 |
+
|
83 |
+
for fmt in self.video_formats: # Added this line
|
84 |
+
temp_path = os.path.join(self.video_folder, f'{video_ytid}{fmt}')
|
85 |
+
if os.path.exists(temp_path):
|
86 |
+
video_path = temp_path
|
87 |
+
break
|
88 |
+
|
89 |
+
subtitle_path = os.path.join(self.subtitle_folder, f'{video_ytid}.srt')
|
90 |
+
|
91 |
+
try:
|
92 |
+
video_tensor = self.processor(video_path)
|
93 |
+
num_frames = video_tensor.shape[0]
|
94 |
+
except:
|
95 |
+
traceback.print_exc()
|
96 |
+
print(f'It occurs error when reading {video_ytid}')
|
97 |
+
video_tensor = None
|
98 |
+
num_frames = 0
|
99 |
+
|
100 |
+
if video_tensor is not None and os.path.exists(subtitle_path):
|
101 |
+
cv2_vr = cv2.VideoCapture(video_path)
|
102 |
+
duration = int(cv2_vr.get(cv2.CAP_PROP_FRAME_COUNT))
|
103 |
+
fps = cv2_vr.get(cv2.CAP_PROP_FPS)
|
104 |
+
selected_frame_ids = get_seq_frames(duration, num_frames)
|
105 |
+
|
106 |
+
subs = pysubs2.load(subtitle_path, encoding="utf-8")
|
107 |
+
subtitles = []
|
108 |
+
for seleced_frame_id in selected_frame_ids:
|
109 |
+
sub_text = ""
|
110 |
+
cur_time = pysubs2.make_time(fps=fps, frames=seleced_frame_id)
|
111 |
+
for sub in subs:
|
112 |
+
if sub.start < cur_time and sub.end > cur_time:
|
113 |
+
sub_text = sub.text.replace("\\N", " ")
|
114 |
+
break
|
115 |
+
if sub_text.strip():
|
116 |
+
subtitles.append(sub_text)
|
117 |
+
subtitles = "\n".join(subtitles)
|
118 |
+
else:
|
119 |
+
subtitles = ""
|
120 |
+
|
121 |
+
return {
|
122 |
+
'video': video_tensor,
|
123 |
+
'subtitle': subtitles,
|
124 |
+
'record': line,
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
def collate_fn(batch):
|
129 |
+
vid = [x['video'] for x in batch]
|
130 |
+
sub = [x['subtitle'] for x in batch]
|
131 |
+
rcs = [x['record'] for x in batch]
|
132 |
+
return vid, sub, rcs
|
133 |
+
|
134 |
+
|
135 |
+
def load_parquet(parquet_file):
|
136 |
+
table = pq.read_table(parquet_file)
|
137 |
+
|
138 |
+
# Convert PyArrow Table to pandas DataFrame
|
139 |
+
df = table.to_pandas()
|
140 |
+
|
141 |
+
jsons = []
|
142 |
+
for record in df.itertuples():
|
143 |
+
|
144 |
+
if len(jsons) < int(record.video_id):
|
145 |
+
jsons.append({
|
146 |
+
"video_id": record.video_id,
|
147 |
+
"youtube_id": record.videoID,
|
148 |
+
"url": record.url,
|
149 |
+
"duration": record.duration,
|
150 |
+
"domain": record.domain,
|
151 |
+
"sub_category": record.sub_category,
|
152 |
+
"questions": [
|
153 |
+
{
|
154 |
+
"question_id": record.question_id,
|
155 |
+
"task_type": record.task_type,
|
156 |
+
"question": record.question,
|
157 |
+
"choices": list(record.options),
|
158 |
+
"answer": record.answer,
|
159 |
+
}
|
160 |
+
]
|
161 |
+
})
|
162 |
+
else:
|
163 |
+
jsons[-1]['questions'].append({
|
164 |
+
"question_id": record.question_id,
|
165 |
+
"task_type": record.task_type,
|
166 |
+
"question": record.question,
|
167 |
+
"choices": list(record.options),
|
168 |
+
"answer": record.answer,
|
169 |
+
})
|
170 |
+
|
171 |
+
return jsons
|
172 |
+
|
173 |
+
|
174 |
+
def build_videomme_eval(args, processor):
|
175 |
+
# convert parquet to json
|
176 |
+
questions = load_parquet(args.question_file)
|
177 |
+
# questions = json.load(open(args.question_file, "r"))
|
178 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
179 |
+
dataset = VideoMMEDataset(args.video_folder, args.subtitle_folder, questions, processor)
|
180 |
+
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)
|
181 |
+
|
182 |
+
return dataloader
|
183 |
+
|
184 |
+
|
185 |
+
def videomme_dump(record, instruct, options, output):
|
186 |
+
letters = ['A', 'B', 'C', 'D']
|
187 |
+
|
188 |
+
digit2word = {
|
189 |
+
'1': 'one',
|
190 |
+
'2': 'two',
|
191 |
+
'3': 'three',
|
192 |
+
'4': 'four',
|
193 |
+
'5': 'five',
|
194 |
+
'6': 'six',
|
195 |
+
'7': 'seven',
|
196 |
+
'8': 'eight',
|
197 |
+
'9': 'nine',
|
198 |
+
'0': 'zero',
|
199 |
+
}
|
200 |
+
|
201 |
+
output = output.replace('answer', '')
|
202 |
+
output = output.replace('Answer', '')
|
203 |
+
pred_answer = re.findall('[\(\ \[]*([A-D])[\)\.\ \]]*', output)
|
204 |
+
try:
|
205 |
+
find_flag = False
|
206 |
+
if len(pred_answer) == 0:
|
207 |
+
for idx, opt in enumerate(options):
|
208 |
+
# Arabic numerals -> English words
|
209 |
+
opt2 = opt
|
210 |
+
if opt in digit2word:
|
211 |
+
opt2 = digit2word[opt]
|
212 |
+
if opt.lower() in output.lower() or opt2.lower() in output.lower():
|
213 |
+
pred_idx = idx
|
214 |
+
find_flag = True
|
215 |
+
break
|
216 |
+
else:
|
217 |
+
pred_answer = pred_answer[0].strip()
|
218 |
+
pred_answer = pred_answer.strip('()')
|
219 |
+
pred_idx = letters.index(pred_answer)
|
220 |
+
find_flag = True
|
221 |
+
|
222 |
+
assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(record['youtube_id'], instruct, output)
|
223 |
+
except:
|
224 |
+
traceback.print_exc()
|
225 |
+
pred_idx = 2
|
226 |
+
|
227 |
+
return letters[pred_idx]
|
228 |
+
|
229 |
+
|
230 |
+
def run_inference(args):
|
231 |
+
disable_torch_init()
|
232 |
+
|
233 |
+
# Initialize the model
|
234 |
+
model, processor, tokenizer = model_init(args.model_path)
|
235 |
+
|
236 |
+
answer_file = os.path.expanduser(args.answer_file)
|
237 |
+
answer_sub_file = answer_file.replace('.json', '_sub.json')
|
238 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
239 |
+
ans_file = open(answer_file, "w")
|
240 |
+
ans_sub_file = open(answer_sub_file, "w")
|
241 |
+
|
242 |
+
val_loader = build_videomme_eval(args, processor['video'])
|
243 |
+
|
244 |
+
# Iterate over each sample in the ground truth file
|
245 |
+
for i, (videos, subtitles, records) in enumerate(tqdm(val_loader)):
|
246 |
+
video_tensor = videos[0]
|
247 |
+
subtitle = subtitles[0]
|
248 |
+
record = records[0]
|
249 |
+
|
250 |
+
new_record = copy.deepcopy(record)
|
251 |
+
new_record_sub = copy.deepcopy(record)
|
252 |
+
|
253 |
+
if video_tensor is None:
|
254 |
+
new_record['missing'] = True
|
255 |
+
ans_file.write(json.dumps(new_record) + ",\n")
|
256 |
+
new_record_sub['missing'] = True
|
257 |
+
ans_sub_file.write(json.dumps(new_record_sub) + ",\n")
|
258 |
+
continue
|
259 |
+
else:
|
260 |
+
new_record['missing'] = False
|
261 |
+
new_record_sub['missing'] = False
|
262 |
+
|
263 |
+
questions = record['questions']
|
264 |
+
for idx, question in enumerate(questions):
|
265 |
+
q = question['question']
|
266 |
+
choices = question['choices']
|
267 |
+
options = [re.findall('[A-D]\. (.*).', c)[0] for c in choices]
|
268 |
+
|
269 |
+
instruct = "Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option.\n"
|
270 |
+
instruct += f"{q}\n"
|
271 |
+
for cho_idx, cho in enumerate(choices):
|
272 |
+
instruct += f"{cho}\n"
|
273 |
+
# instruct += "The best option is: "
|
274 |
+
instruct += "Answer with the option\'s letter from the given choices directly and only give the best option. The best answer is: "
|
275 |
+
output = mm_infer(video_tensor, instruct, model=model, tokenizer=tokenizer, modal='video', do_sample=False)
|
276 |
+
new_record['questions'][idx]['response'] = videomme_dump(record, instruct, options, output)
|
277 |
+
|
278 |
+
instruct = f"This video's subtitles are listed below:\n{subtitle}\n" + instruct
|
279 |
+
output = mm_infer(video_tensor, instruct, model=model, tokenizer=tokenizer, modal='video', do_sample=False)
|
280 |
+
new_record_sub['questions'][idx]['response'] = videomme_dump(record, instruct, options, output)
|
281 |
+
|
282 |
+
ans_file.write(json.dumps(new_record) + ",\n")
|
283 |
+
ans_sub_file.write(json.dumps(new_record_sub) + ",\n")
|
284 |
+
|
285 |
+
ans_file.close()
|
286 |
+
ans_sub_file.close()
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
parser = argparse.ArgumentParser()
|
291 |
+
|
292 |
+
parser.add_argument('--model-path', help='', required=True)
|
293 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
294 |
+
parser.add_argument('--subtitle-folder', help='Directory containing subtitle files.', required=True)
|
295 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
296 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
297 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
298 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
299 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
300 |
+
parser.add_argument("--batch-size", type=int, default=1)
|
301 |
+
parser.add_argument("--num-workers", type=int, default=8)
|
302 |
+
args = parser.parse_args()
|
303 |
+
|
304 |
+
run_inference(args)
|
videollama2/eval/inference_video_oqa_activitynet.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import argparse
|
5 |
+
import warnings
|
6 |
+
import traceback
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from torch.utils.data import Dataset, DataLoader
|
10 |
+
|
11 |
+
import sys
|
12 |
+
sys.path.append('./')
|
13 |
+
from videollama2 import model_init, mm_infer
|
14 |
+
from videollama2.utils import disable_torch_init
|
15 |
+
|
16 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
17 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
18 |
+
|
19 |
+
|
20 |
+
def split_list(lst, n):
|
21 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
22 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
23 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
24 |
+
|
25 |
+
|
26 |
+
def get_chunk(lst, n, k):
|
27 |
+
chunks = split_list(lst, n)
|
28 |
+
return chunks[k]
|
29 |
+
|
30 |
+
|
31 |
+
class ActivitynetDataset(Dataset):
|
32 |
+
|
33 |
+
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
|
34 |
+
|
35 |
+
def __init__(self, questions, answers, processor):
|
36 |
+
self.questions = questions
|
37 |
+
self.answers = answers
|
38 |
+
self.processor = processor
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.questions)
|
42 |
+
|
43 |
+
def __getitem__(self, idx):
|
44 |
+
sample = self.questions[idx]
|
45 |
+
answer = self.answers[idx]
|
46 |
+
|
47 |
+
video_name = sample['video_name']
|
48 |
+
question = sample['question']
|
49 |
+
question_id = sample['question_id']
|
50 |
+
answer = answer['answer']
|
51 |
+
|
52 |
+
for fmt in self.video_formats: # Added this line
|
53 |
+
temp_path = os.path.join(args.video_folder, f"v_{video_name}{fmt}")
|
54 |
+
if os.path.exists(temp_path):
|
55 |
+
video_path = temp_path
|
56 |
+
break
|
57 |
+
# BUG: compatibility for MSVD, MSRVTT, TGIF
|
58 |
+
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
|
59 |
+
if os.path.exists(temp_path):
|
60 |
+
video_path = temp_path
|
61 |
+
break
|
62 |
+
|
63 |
+
video_tensor = self.processor(video_path)
|
64 |
+
|
65 |
+
return {
|
66 |
+
'video': video_tensor,
|
67 |
+
'video_name': video_name,
|
68 |
+
'question': question,
|
69 |
+
'question_id': question_id,
|
70 |
+
'answer': answer,
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def collate_fn(batch):
|
75 |
+
vid = [x['video'] for x in batch]
|
76 |
+
v_id = [x['video_name'] for x in batch]
|
77 |
+
qus = [x['question'] for x in batch]
|
78 |
+
qid = [x['question_id'] for x in batch]
|
79 |
+
ans = [x['answer'] for x in batch]
|
80 |
+
return vid, v_id, qus, qid, ans
|
81 |
+
|
82 |
+
|
83 |
+
def run_inference(args):
|
84 |
+
disable_torch_init()
|
85 |
+
|
86 |
+
# Initialize the model
|
87 |
+
model, processor, tokenizer = model_init(args.model_path)
|
88 |
+
|
89 |
+
gt_questions = json.load(open(args.question_file, "r"))
|
90 |
+
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
|
91 |
+
gt_answers = json.load(open(args.answer_file, "r"))
|
92 |
+
gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx)
|
93 |
+
|
94 |
+
assert args.batch_size == 1, "Batch size must be 1 for inference"
|
95 |
+
dataset = ActivitynetDataset(gt_questions, gt_answers, processor['video'])
|
96 |
+
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
|
97 |
+
|
98 |
+
answer_file = os.path.join(args.output_file)
|
99 |
+
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
|
100 |
+
ans_file = open(answer_file, "w")
|
101 |
+
|
102 |
+
# Iterate over each sample in the ground truth file
|
103 |
+
for i, (video_tensors, video_names, questions, question_ids, answers) in enumerate(tqdm(dataloader)):
|
104 |
+
video_tensor = video_tensors[0]
|
105 |
+
video_name = video_names[0]
|
106 |
+
question = questions[0]
|
107 |
+
question_id = question_ids[0]
|
108 |
+
answer = answers[0]
|
109 |
+
|
110 |
+
# question = question + '\n' + 'Answer the question using a single word or a short phrase with multiple words.'
|
111 |
+
|
112 |
+
try:
|
113 |
+
output = mm_infer(
|
114 |
+
video_tensor,
|
115 |
+
question,
|
116 |
+
model=model,
|
117 |
+
tokenizer=tokenizer,
|
118 |
+
modal='video',
|
119 |
+
do_sample=False,
|
120 |
+
)
|
121 |
+
except:
|
122 |
+
traceback.print_exc()
|
123 |
+
output = "error"
|
124 |
+
|
125 |
+
sample_set = {'id': question_id, 'question': question, 'answer': answer, 'pred': output}
|
126 |
+
ans_file.write(json.dumps(sample_set) + "\n")
|
127 |
+
|
128 |
+
ans_file.close()
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
parser = argparse.ArgumentParser()
|
133 |
+
|
134 |
+
parser.add_argument('--model-path', help='', required=True)
|
135 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
136 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
137 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
138 |
+
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
|
139 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
140 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
141 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
142 |
+
parser.add_argument("--batch-size", type=int, required=False, default=1)
|
143 |
+
parser.add_argument("--num-workers", type=int, required=False, default=8)
|
144 |
+
args = parser.parse_args()
|
145 |
+
|
146 |
+
run_inference(args)
|
videollama2/eval/inference_video_oqa_vcgpt_consistency.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import warnings
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
import sys
|
13 |
+
sys.path.append('./')
|
14 |
+
from videollama2 import model_init, mm_infer
|
15 |
+
from videollama2.utils import disable_torch_init
|
16 |
+
|
17 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
18 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
19 |
+
|
20 |
+
|
21 |
+
def split_list(lst, n):
|
22 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
23 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
24 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
25 |
+
|
26 |
+
|
27 |
+
def get_chunk(lst, n, k):
|
28 |
+
chunks = split_list(lst, n)
|
29 |
+
return chunks[k]
|
30 |
+
|
31 |
+
|
32 |
+
class VCGPTDataset(Dataset):
|
33 |
+
|
34 |
+
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
|
35 |
+
|
36 |
+
def __init__(self, data_list, processor):
|
37 |
+
self.data_list = data_list
|
38 |
+
self.processor = processor
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.data_list)
|
42 |
+
|
43 |
+
def __getitem__(self, idx):
|
44 |
+
line = self.data_list[idx]
|
45 |
+
question1 = line['Q1']
|
46 |
+
question2 = line['Q2']
|
47 |
+
answer = line['A']
|
48 |
+
video_name = line['video_name']
|
49 |
+
|
50 |
+
for fmt in self.video_formats: # Added this line
|
51 |
+
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
|
52 |
+
if os.path.exists(temp_path):
|
53 |
+
video_path = temp_path
|
54 |
+
break
|
55 |
+
|
56 |
+
video_tensor = self.processor(video_path)
|
57 |
+
|
58 |
+
return {
|
59 |
+
'video': video_tensor,
|
60 |
+
'video_name': video_name,
|
61 |
+
'question1': question1,
|
62 |
+
'question2': question2,
|
63 |
+
'answer': answer,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def collate_fn(batch):
|
68 |
+
vid = [x['video'] for x in batch]
|
69 |
+
v_id = [x['video_name'] for x in batch]
|
70 |
+
qus1 = [x['question1'] for x in batch]
|
71 |
+
qus2 = [x['question2'] for x in batch]
|
72 |
+
ans = [x['answer'] for x in batch]
|
73 |
+
vid = torch.stack(vid, dim=0)
|
74 |
+
return vid, v_id, qus1, qus2, ans
|
75 |
+
|
76 |
+
|
77 |
+
def run_inference(args):
|
78 |
+
disable_torch_init()
|
79 |
+
|
80 |
+
# Initialize the model
|
81 |
+
model, processor, tokenizer = model_init(args.model_path)
|
82 |
+
|
83 |
+
questions = json.load(open(args.question_file, "r"))
|
84 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
85 |
+
|
86 |
+
assert args.batch_size == 1, "Batch size must be 1 for inference"
|
87 |
+
dataset = VCGPTDataset(questions, processor['video'])
|
88 |
+
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
|
89 |
+
|
90 |
+
answer_file = os.path.expanduser(args.answer_file)
|
91 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
92 |
+
ans_file = open(answer_file, "w")
|
93 |
+
|
94 |
+
output_list = [] # List to store the output results
|
95 |
+
|
96 |
+
# Iterate over each sample in the ground truth file
|
97 |
+
for i, (video_tensors, video_names, questions1, questions2, answers) in enumerate(tqdm(dataloader)):
|
98 |
+
|
99 |
+
# reduce batch dimension
|
100 |
+
video_tensor = video_tensors[0]
|
101 |
+
video_name = video_names[0]
|
102 |
+
question1 = questions1[0]
|
103 |
+
question2 = questions2[0]
|
104 |
+
answer = answers[0]
|
105 |
+
|
106 |
+
output1 = mm_infer(
|
107 |
+
video_tensor,
|
108 |
+
question1,
|
109 |
+
model=model,
|
110 |
+
tokenizer=tokenizer,
|
111 |
+
modal='video',
|
112 |
+
do_sample=False,
|
113 |
+
)
|
114 |
+
|
115 |
+
output2 = mm_infer(
|
116 |
+
video_tensor,
|
117 |
+
question2,
|
118 |
+
model=model,
|
119 |
+
tokenizer=tokenizer,
|
120 |
+
do_sample=False,
|
121 |
+
modal='video',
|
122 |
+
)
|
123 |
+
|
124 |
+
qa = {'video_name': video_name, 'Q1': question1, 'Q2': question2, 'A': answer, 'P1': output1, 'P2': output2}
|
125 |
+
|
126 |
+
ans_file.write(json.dumps(qa) + "\n")
|
127 |
+
|
128 |
+
ans_file.close()
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
parser = argparse.ArgumentParser()
|
133 |
+
|
134 |
+
# Define the command-line arguments
|
135 |
+
parser.add_argument('--model-path', help='', required=True)
|
136 |
+
parser.add_argument('--model_base', help='', default=None, type=str, required=False)
|
137 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
138 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
139 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
140 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
141 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
142 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
143 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
144 |
+
parser.add_argument("--model_max_length", type=int, required=False, default=2048)
|
145 |
+
parser.add_argument("--batch-size", type=int, required=False, default=1)
|
146 |
+
parser.add_argument("--num-workers", type=int, required=False, default=8)
|
147 |
+
|
148 |
+
args = parser.parse_args()
|
149 |
+
|
150 |
+
run_inference(args)
|
videollama2/eval/inference_video_oqa_vcgpt_general.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import json
|
5 |
+
import argparse
|
6 |
+
import warnings
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
import sys
|
13 |
+
sys.path.append('./')
|
14 |
+
from videollama2 import model_init, mm_infer
|
15 |
+
from videollama2.utils import disable_torch_init
|
16 |
+
|
17 |
+
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
|
18 |
+
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
19 |
+
|
20 |
+
|
21 |
+
def split_list(lst, n):
|
22 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
23 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
24 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
25 |
+
|
26 |
+
|
27 |
+
def get_chunk(lst, n, k):
|
28 |
+
chunks = split_list(lst, n)
|
29 |
+
return chunks[k]
|
30 |
+
|
31 |
+
|
32 |
+
class VCGPTDataset(Dataset):
|
33 |
+
|
34 |
+
video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
|
35 |
+
|
36 |
+
def __init__(self, data_list, processor):
|
37 |
+
self.data_list = data_list
|
38 |
+
self.processor = processor
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.data_list)
|
42 |
+
|
43 |
+
def __getitem__(self, idx):
|
44 |
+
line = self.data_list[idx]
|
45 |
+
question = line['Q']
|
46 |
+
answer = line['A']
|
47 |
+
video_name = line['video_name']
|
48 |
+
|
49 |
+
for fmt in self.video_formats: # Added this line
|
50 |
+
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
|
51 |
+
if os.path.exists(temp_path):
|
52 |
+
video_path = temp_path
|
53 |
+
break
|
54 |
+
|
55 |
+
video_tensor = self.processor(video_path)
|
56 |
+
|
57 |
+
return {
|
58 |
+
'video': video_tensor,
|
59 |
+
'video_name': video_name,
|
60 |
+
'question': question,
|
61 |
+
'answer': answer,
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
def collate_fn(batch):
|
66 |
+
vid = [x['video'] for x in batch]
|
67 |
+
v_id = [x['video_name'] for x in batch]
|
68 |
+
qus = [x['question'] for x in batch]
|
69 |
+
ans = [x['answer'] for x in batch]
|
70 |
+
vid = torch.stack(vid, dim=0)
|
71 |
+
return vid, v_id, qus, ans
|
72 |
+
|
73 |
+
|
74 |
+
def run_inference(args):
|
75 |
+
disable_torch_init()
|
76 |
+
|
77 |
+
# Initialize the model
|
78 |
+
model, processor, tokenizer = model_init(args.model_path)
|
79 |
+
|
80 |
+
questions = json.load(open(args.question_file, "r"))
|
81 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
82 |
+
|
83 |
+
assert args.batch_size == 1, "Batch size must be 1 for inference"
|
84 |
+
dataset = VCGPTDataset(questions, processor['video'])
|
85 |
+
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
|
86 |
+
|
87 |
+
answer_file = os.path.expanduser(args.answer_file)
|
88 |
+
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
|
89 |
+
ans_file = open(answer_file, "w")
|
90 |
+
|
91 |
+
# Iterate over each sample in the ground truth file
|
92 |
+
for i, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):
|
93 |
+
|
94 |
+
# reduce batch dimension
|
95 |
+
video_tensor = video_tensors[0]
|
96 |
+
video_name = video_names[0]
|
97 |
+
question = questions[0]
|
98 |
+
answer = answers[0]
|
99 |
+
|
100 |
+
output = mm_infer(
|
101 |
+
video_tensor,
|
102 |
+
question,
|
103 |
+
model=model,
|
104 |
+
tokenizer=tokenizer,
|
105 |
+
modal='video',
|
106 |
+
do_sample=False,
|
107 |
+
)
|
108 |
+
|
109 |
+
qa = {'video_name': video_name, 'Q': question, 'A': answer, 'P': output}
|
110 |
+
|
111 |
+
ans_file.write(json.dumps(qa) + "\n")
|
112 |
+
|
113 |
+
ans_file.close()
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
parser = argparse.ArgumentParser()
|
118 |
+
|
119 |
+
parser.add_argument('--model-path', help='', required=True)
|
120 |
+
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
|
121 |
+
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
|
122 |
+
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
|
123 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
124 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
125 |
+
parser.add_argument("--device", type=str, required=False, default='cuda:0')
|
126 |
+
parser.add_argument("--batch-size", type=int, required=False, default=1)
|
127 |
+
parser.add_argument("--num-workers", type=int, required=False, default=8)
|
128 |
+
args = parser.parse_args()
|
129 |
+
|
130 |
+
run_inference(args)
|
videollama2/mm_utils.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import base64
|
5 |
+
import traceback
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import torch
|
10 |
+
import imageio
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
from decord import VideoReader, cpu
|
14 |
+
from moviepy.editor import VideoFileClip
|
15 |
+
from transformers import StoppingCriteria
|
16 |
+
|
17 |
+
from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MODAL_INDEX_MAP, DEFAULT_IMAGE_TOKEN
|
18 |
+
|
19 |
+
|
20 |
+
def chunk_list(input_list, chunk_size):
|
21 |
+
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]
|
22 |
+
|
23 |
+
|
24 |
+
def load_image_from_base64(image):
|
25 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
26 |
+
|
27 |
+
|
28 |
+
def expand2square(pil_img, background_color):
|
29 |
+
width, height = pil_img.size
|
30 |
+
if width == height:
|
31 |
+
return pil_img
|
32 |
+
elif width > height:
|
33 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
34 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
35 |
+
return result
|
36 |
+
else:
|
37 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
38 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
39 |
+
return result
|
40 |
+
|
41 |
+
|
42 |
+
def create_photo_grid(arr, rows=None, cols=None):
|
43 |
+
"""
|
44 |
+
Create a photo grid from a 4D numpy array with shape [t, h, w, c].
|
45 |
+
|
46 |
+
Parameters:
|
47 |
+
arr (numpy.ndarray): Input array with shape [t, h, w, c].
|
48 |
+
rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`.
|
49 |
+
cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
numpy.ndarray: A 3D numpy array representing the photo grid.
|
53 |
+
"""
|
54 |
+
|
55 |
+
if isinstance(arr, list):
|
56 |
+
if isinstance(arr[0], Image.Image):
|
57 |
+
arr = np.stack([np.array(img) for img in arr])
|
58 |
+
elif isinstance(arr[0], np.ndarray):
|
59 |
+
arr = np.stack(arr)
|
60 |
+
else:
|
61 |
+
raise ValueError("Invalid input type. Expected list of Images or numpy arrays.")
|
62 |
+
|
63 |
+
t, h, w, c = arr.shape
|
64 |
+
|
65 |
+
# Calculate the number of rows and columns if not provided
|
66 |
+
if rows is None and cols is None:
|
67 |
+
rows = math.ceil(math.sqrt(t))
|
68 |
+
cols = math.ceil(t / rows)
|
69 |
+
elif rows is None:
|
70 |
+
rows = math.ceil(t / cols)
|
71 |
+
elif cols is None:
|
72 |
+
cols = math.ceil(t / rows)
|
73 |
+
|
74 |
+
# Check if the grid can hold all the images
|
75 |
+
if rows * cols < t:
|
76 |
+
raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).")
|
77 |
+
|
78 |
+
# Create the grid array with appropriate height and width
|
79 |
+
grid_height = h * rows
|
80 |
+
grid_width = w * cols
|
81 |
+
grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype)
|
82 |
+
|
83 |
+
# Fill the grid with images
|
84 |
+
for i in range(t):
|
85 |
+
row_idx = i // cols
|
86 |
+
col_idx = i % cols
|
87 |
+
grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i]
|
88 |
+
|
89 |
+
return grid
|
90 |
+
|
91 |
+
|
92 |
+
def process_image(image_path, processor, aspect_ratio='pad'):
|
93 |
+
image = Image.open(image_path).convert('RGB')
|
94 |
+
|
95 |
+
images = [np.array(image)]
|
96 |
+
|
97 |
+
if aspect_ratio == 'pad':
|
98 |
+
images = [Image.fromarray(f) for f in images]
|
99 |
+
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
|
100 |
+
else:
|
101 |
+
images = [Image.fromarray(f) for f in images]
|
102 |
+
|
103 |
+
images = processor.preprocess(images, return_tensors='pt')['pixel_values']
|
104 |
+
return images
|
105 |
+
|
106 |
+
|
107 |
+
def frame_sample(duration, mode='uniform', num_frames=None, fps=None):
|
108 |
+
if mode == 'uniform':
|
109 |
+
assert num_frames is not None, "Number of frames must be provided for uniform sampling."
|
110 |
+
# NOTE: v1 version
|
111 |
+
# Calculate the size of each segment from which a frame will be extracted
|
112 |
+
seg_size = float(duration - 1) / num_frames
|
113 |
+
|
114 |
+
frame_ids = []
|
115 |
+
for i in range(num_frames):
|
116 |
+
# Calculate the start and end indices of each segment
|
117 |
+
start = seg_size * i
|
118 |
+
end = seg_size * (i + 1)
|
119 |
+
# Append the middle index of the segment to the list
|
120 |
+
frame_ids.append((start + end) / 2)
|
121 |
+
|
122 |
+
return np.round(np.array(frame_ids) + 1e-6).astype(int)
|
123 |
+
# NOTE: v0 version
|
124 |
+
# return np.linspace(0, duration-1, num_frames, dtype=int)
|
125 |
+
elif mode == 'fps':
|
126 |
+
assert fps is not None, "FPS must be provided for FPS sampling."
|
127 |
+
segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration)
|
128 |
+
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
|
129 |
+
else:
|
130 |
+
raise ImportError(f'Unsupported frame sampling mode: {mode}')
|
131 |
+
|
132 |
+
|
133 |
+
def process_video(video_path, processor, s=None, e=None, aspect_ratio='pad', num_frames=NUM_FRAMES):
|
134 |
+
if isinstance(video_path, str):
|
135 |
+
if s is not None and e is not None:
|
136 |
+
s = s if s >= 0. else 0.
|
137 |
+
e = e if e >= 0. else 0.
|
138 |
+
if s > e:
|
139 |
+
s, e = e, s
|
140 |
+
elif s == e:
|
141 |
+
e = s + 1
|
142 |
+
|
143 |
+
# 1. Loading Video
|
144 |
+
if os.path.isdir(video_path):
|
145 |
+
frame_files = sorted(os.listdir(video_path))
|
146 |
+
|
147 |
+
fps = 3
|
148 |
+
num_frames_of_video = len(frame_files)
|
149 |
+
elif video_path.endswith('.gif'):
|
150 |
+
gif_reader = imageio.get_reader(video_path)
|
151 |
+
|
152 |
+
fps = 25
|
153 |
+
num_frames_of_video = len(gif_reader)
|
154 |
+
else:
|
155 |
+
vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
156 |
+
|
157 |
+
fps = vreader.get_avg_fps()
|
158 |
+
num_frames_of_video = len(vreader)
|
159 |
+
|
160 |
+
# 2. Determine frame range & Calculate frame indices
|
161 |
+
f_start = 0 if s is None else max(int(s * fps) - 1, 0)
|
162 |
+
f_end = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1)
|
163 |
+
frame_indices = list(range(f_start, f_end + 1))
|
164 |
+
|
165 |
+
duration = len(frame_indices)
|
166 |
+
# 3. Sampling frame indices
|
167 |
+
if num_frames is None:
|
168 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='fps', fps=fps)]
|
169 |
+
else:
|
170 |
+
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode='uniform', num_frames=num_frames)]
|
171 |
+
|
172 |
+
# 4. Acquire frame data
|
173 |
+
if os.path.isdir(video_path):
|
174 |
+
video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices]
|
175 |
+
elif video_path.endswith('.gif'):
|
176 |
+
video_data = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)) for idx, frame in enumerate(gif_reader) if idx in sampled_frame_indices]
|
177 |
+
else:
|
178 |
+
video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()]
|
179 |
+
|
180 |
+
elif isinstance(video_path, np.ndarray):
|
181 |
+
video_data = [Image.fromarray(f) for f in video_path]
|
182 |
+
elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray):
|
183 |
+
video_data = [Image.fromarray(f) for f in video_path]
|
184 |
+
elif isinstance(video_path, list) and isinstance(video_path[0], str):
|
185 |
+
video_data = [Image.open(f) for f in video_path]
|
186 |
+
elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image):
|
187 |
+
video_data = video_path
|
188 |
+
else:
|
189 |
+
raise ValueError(f"Unsupported video path type: {type(video_path)}")
|
190 |
+
|
191 |
+
while num_frames is not None and len(video_data) < num_frames:
|
192 |
+
video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8)))
|
193 |
+
|
194 |
+
# MAX_FRAMES filter
|
195 |
+
video_data = video_data[:MAX_FRAMES]
|
196 |
+
|
197 |
+
if aspect_ratio == 'pad':
|
198 |
+
images = [expand2square(f, tuple(int(x*255) for x in processor.image_mean)) for f in video_data]
|
199 |
+
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
|
200 |
+
else:
|
201 |
+
images = [f for f in video_data]
|
202 |
+
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
|
203 |
+
return video
|
204 |
+
|
205 |
+
|
206 |
+
def process_video_old(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'):
|
207 |
+
def frame_sample(duration, mode='uniform', local_fps=None):
|
208 |
+
if mode == 'uniform':
|
209 |
+
# Calculate the size of each segment from which a frame will be extracted
|
210 |
+
seg_size = float(duration - 1) / num_frames
|
211 |
+
|
212 |
+
frame_ids = []
|
213 |
+
for i in range(num_frames):
|
214 |
+
# Calculate the start and end indices of each segment
|
215 |
+
start = int(np.round(seg_size * i))
|
216 |
+
end = int(np.round(seg_size * (i + 1)))
|
217 |
+
# Append the middle index of the segment to the list
|
218 |
+
frame_ids.append((start + end) // 2)
|
219 |
+
|
220 |
+
return frame_ids
|
221 |
+
# NOTE: old version
|
222 |
+
# return np.linspace(0, duration-1, num_frames, dtype=int)
|
223 |
+
elif mode == 'fps':
|
224 |
+
assert local_fps is not None
|
225 |
+
segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration)
|
226 |
+
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
|
227 |
+
else:
|
228 |
+
raise ImportError(f'Unsupported frame sampling mode: {mode}')
|
229 |
+
|
230 |
+
if isinstance(video_path, str):
|
231 |
+
if video_path.endswith('.gif'):
|
232 |
+
video_gif = imageio.get_reader(video_path)
|
233 |
+
duration, local_fps = len(video_gif), 10
|
234 |
+
|
235 |
+
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
|
236 |
+
# limit the max input frames
|
237 |
+
if len(frame_id_list) > MAX_FRAMES:
|
238 |
+
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
|
239 |
+
video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list]
|
240 |
+
# added by lixin4ever, include the support of .webm files from sthsthv2
|
241 |
+
elif video_path.endswith('.webm'):
|
242 |
+
video_webm = VideoFileClip(video_path)
|
243 |
+
video_frames = np.array(list(video_webm.iter_frames()))
|
244 |
+
|
245 |
+
duration, local_fps = len(video_frames), video_webm.fps
|
246 |
+
|
247 |
+
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
|
248 |
+
# limit the max input frames
|
249 |
+
if len(frame_id_list) > MAX_FRAMES:
|
250 |
+
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
|
251 |
+
video_data = video_frames[frame_id_list]
|
252 |
+
else:
|
253 |
+
# NOTE: num_threads=1 is required to avoid deadlock in multiprocessing
|
254 |
+
decord_vr = VideoReader(uri=video_path, ctx=cpu(0), num_threads=1)
|
255 |
+
duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps())
|
256 |
+
|
257 |
+
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
|
258 |
+
# limit the max input frames
|
259 |
+
if len(frame_id_list) > MAX_FRAMES:
|
260 |
+
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
|
261 |
+
try:
|
262 |
+
video_data = decord_vr.get_batch(frame_id_list).numpy()
|
263 |
+
except:
|
264 |
+
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
|
265 |
+
|
266 |
+
elif isinstance(video_path, np.ndarray):
|
267 |
+
assert len(video_path) == num_frames
|
268 |
+
video_data = video_path
|
269 |
+
elif isinstance(video_path, list):
|
270 |
+
assert len(video_path) == num_frames
|
271 |
+
video_data = np.stack([np.array(x) for x in video_path])
|
272 |
+
|
273 |
+
if image_grid:
|
274 |
+
grid_h = grid_w = math.ceil(math.sqrt(num_frames))
|
275 |
+
pg = create_photo_grid(video_data, grid_h, grid_w)
|
276 |
+
video_data = [pg, *video_data]
|
277 |
+
|
278 |
+
if aspect_ratio == 'pad':
|
279 |
+
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
|
280 |
+
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
|
281 |
+
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
|
282 |
+
else:
|
283 |
+
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
|
284 |
+
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
|
285 |
+
|
286 |
+
return video
|
287 |
+
|
288 |
+
|
289 |
+
def tokenizer_multimodal_token(prompt, tokenizer, multimodal_token=DEFAULT_IMAGE_TOKEN, return_tensors=None):
|
290 |
+
"""Tokenize text and multimodal tag to input_ids.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
prompt (str): Text prompt (w/ multimodal tag), e.g., '<video>\nDescribe the video.'
|
294 |
+
tokenizer (transformers.PreTrainedTokenizer): Tokenizer object.
|
295 |
+
multimodal_token (int): Token index corresponding to the multimodal tag.
|
296 |
+
"""
|
297 |
+
multimodal_token_index = MODAL_INDEX_MAP.get(multimodal_token, None)
|
298 |
+
if multimodal_token_index is None:
|
299 |
+
input_ids = tokenizer(prompt, add_special_tokens=False).input_ids
|
300 |
+
else:
|
301 |
+
prompt_chunks = [tokenizer(chunk, add_special_tokens=False).input_ids for idx, chunk in enumerate(prompt.split(multimodal_token))]
|
302 |
+
|
303 |
+
input_ids = []
|
304 |
+
for i in range(1, 2 * len(prompt_chunks)):
|
305 |
+
if i % 2 == 1:
|
306 |
+
input_ids.extend(prompt_chunks[i // 2])
|
307 |
+
else:
|
308 |
+
input_ids.append(multimodal_token_index)
|
309 |
+
|
310 |
+
if return_tensors is not None:
|
311 |
+
if return_tensors == 'pt':
|
312 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
313 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
314 |
+
return input_ids
|
315 |
+
|
316 |
+
|
317 |
+
def get_model_name_from_path(model_path):
|
318 |
+
model_path = model_path.strip("/")
|
319 |
+
model_paths = model_path.split("/")
|
320 |
+
if model_paths[-1].startswith('checkpoint-'):
|
321 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
322 |
+
else:
|
323 |
+
return model_paths[-1]
|
324 |
+
|
325 |
+
|
326 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
327 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
328 |
+
self.keywords = keywords
|
329 |
+
self.keyword_ids = []
|
330 |
+
self.max_keyword_len = 0
|
331 |
+
for keyword in keywords:
|
332 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
333 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
334 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
335 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
336 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
337 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
338 |
+
self.tokenizer = tokenizer
|
339 |
+
self.start_len = input_ids.shape[1]
|
340 |
+
|
341 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
342 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
343 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
344 |
+
for keyword_id in self.keyword_ids:
|
345 |
+
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
|
346 |
+
return True
|
347 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
348 |
+
for keyword in self.keywords:
|
349 |
+
if keyword in outputs:
|
350 |
+
return True
|
351 |
+
return False
|
352 |
+
|
353 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
354 |
+
outputs = []
|
355 |
+
for i in range(output_ids.shape[0]):
|
356 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
357 |
+
return all(outputs)
|
videollama2/model/__init__.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
import shutil
|
20 |
+
import logging
|
21 |
+
import torch
|
22 |
+
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
23 |
+
|
24 |
+
from .projector import load_mm_projector
|
25 |
+
from .videollama2_llama import Videollama2LlamaForCausalLM, Videollama2LlamaConfig
|
26 |
+
from .videollama2_mistral import Videollama2MistralForCausalLM, Videollama2MistralConfig
|
27 |
+
from .videollama2_mixtral import Videollama2MixtralForCausalLM, Videollama2MixtralConfig
|
28 |
+
from .videollama2_qwen2 import Videollama2Qwen2ForCausalLM, Videollama2Qwen2Config
|
29 |
+
from .videollama2_gemma2 import Videollama2Gemma2ForCausalLM, Videollama2Gemma2Config
|
30 |
+
from .videollama2_phi3 import Videollama2Phi3ForCausalLM, Videollama2Phi3Config
|
31 |
+
|
32 |
+
|
33 |
+
VLLMs = {
|
34 |
+
"videollama2": Videollama2MistralForCausalLM,
|
35 |
+
"videollama2_llama": Videollama2LlamaForCausalLM,
|
36 |
+
"videollama2_mistral": Videollama2MistralForCausalLM,
|
37 |
+
"videollama2_mixtral": Videollama2MixtralForCausalLM,
|
38 |
+
"videollama2_qwen2": Videollama2Qwen2ForCausalLM,
|
39 |
+
"videollama2_gemma2": Videollama2Gemma2ForCausalLM,
|
40 |
+
"videollama2_phi3": Videollama2Phi3ForCausalLM,
|
41 |
+
}
|
42 |
+
|
43 |
+
VLLMConfigs = {
|
44 |
+
"videollama2": Videollama2MistralConfig,
|
45 |
+
"videollama2_llama": Videollama2LlamaConfig,
|
46 |
+
"videollama2_mistral": Videollama2MistralConfig,
|
47 |
+
"videollama2_mixtral": Videollama2MixtralConfig,
|
48 |
+
"videollama2_qwen2": Videollama2Qwen2Config,
|
49 |
+
"videollama2_gemma2": Videollama2Gemma2Config,
|
50 |
+
"videollama2_phi3": Videollama2Phi3Config,
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
|
55 |
+
logging.info(f"Loading model from path: {model_path}")
|
56 |
+
logging.info(f"Model base: {model_base}, Model name: {model_name}")
|
57 |
+
logging.info(f"Device: {device}, Device map: {device_map}")
|
58 |
+
|
59 |
+
if 'token' in kwargs:
|
60 |
+
token = kwargs['token']
|
61 |
+
else:
|
62 |
+
token = None
|
63 |
+
|
64 |
+
kwargs = {"device_map": device_map, **kwargs}
|
65 |
+
|
66 |
+
if device != "cuda":
|
67 |
+
kwargs['device_map'] = {"": device}
|
68 |
+
|
69 |
+
if load_8bit:
|
70 |
+
kwargs['load_in_8bit'] = True
|
71 |
+
elif load_4bit:
|
72 |
+
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
|
73 |
+
# kwargs['load_in_4bit'] = True
|
74 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
75 |
+
load_in_4bit=True,
|
76 |
+
bnb_4bit_compute_dtype=torch.float16,
|
77 |
+
bnb_4bit_use_double_quant=True,
|
78 |
+
bnb_4bit_quant_type='nf4'
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
kwargs['torch_dtype'] = torch.float16
|
82 |
+
|
83 |
+
if use_flash_attn:
|
84 |
+
kwargs['attn_implementation'] = 'flash_attention_2'
|
85 |
+
|
86 |
+
try:
|
87 |
+
config = AutoConfig.from_pretrained(model_path)
|
88 |
+
logging.info(f"Model configuration loaded successfully.")
|
89 |
+
except Exception as e:
|
90 |
+
logging.error(f"Error loading model configuration: {e}")
|
91 |
+
raise e
|
92 |
+
|
93 |
+
# judge model type
|
94 |
+
model_type = config.model_type
|
95 |
+
|
96 |
+
# judge pretrain/finetune
|
97 |
+
try:
|
98 |
+
is_pretraining = config.tune_mm_mlp_adapter
|
99 |
+
except:
|
100 |
+
is_pretraining = False
|
101 |
+
|
102 |
+
# NOTE: lora/qlora model loading
|
103 |
+
if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
|
104 |
+
logging.info(f"inside lora if")
|
105 |
+
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
|
106 |
+
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
|
107 |
+
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
|
108 |
+
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
|
109 |
+
|
110 |
+
# NOTE: remove qlora training quantization config
|
111 |
+
if hasattr(lora_cfg_pretrained, 'quantization_config'):
|
112 |
+
del lora_cfg_pretrained.quantization_config
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
|
114 |
+
print('Loading VideoLLaMA from base model...')
|
115 |
+
|
116 |
+
if 'vicuna' in model_base.lower():
|
117 |
+
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
118 |
+
elif 'mistral' in model_base.lower():
|
119 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
120 |
+
else:
|
121 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
122 |
+
|
123 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
124 |
+
if model.lm_head.weight.shape[0] != token_num:
|
125 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
126 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
127 |
+
|
128 |
+
print('Loading additional VideoLLaMA weights...')
|
129 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
130 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
131 |
+
else:
|
132 |
+
# this is probably from HF Hub
|
133 |
+
from huggingface_hub import hf_hub_download
|
134 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
135 |
+
cache_file = hf_hub_download(
|
136 |
+
repo_id=repo_id,
|
137 |
+
filename=filename,
|
138 |
+
subfolder=subfolder)
|
139 |
+
return torch.load(cache_file, map_location='cpu')
|
140 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
141 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
142 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
143 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
144 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
145 |
+
|
146 |
+
from peft import PeftModel
|
147 |
+
print('Loading LoRA weights...')
|
148 |
+
model = PeftModel.from_pretrained(model, model_path)
|
149 |
+
print('Merging LoRA weights...')
|
150 |
+
model = model.merge_and_unload()
|
151 |
+
print('Model is loaded...')
|
152 |
+
elif model_base is not None or '-base' in model_name.lower() or is_pretraining:
|
153 |
+
# NOTE: Base/Pretrain model loading
|
154 |
+
logging.info(f"inside else if base model")
|
155 |
+
print('Loading VideoLLaMA 2 from base model...')
|
156 |
+
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
|
157 |
+
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
|
158 |
+
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
|
159 |
+
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
|
160 |
+
|
161 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
|
162 |
+
|
163 |
+
if model_type in ['videollama2', 'videollama2_mistral']:
|
164 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
165 |
+
elif model_type in ['videollama2_mixtral']:
|
166 |
+
model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
167 |
+
elif model_type in ['videollama2_qwen2']:
|
168 |
+
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
169 |
+
elif model_type in ['videollama2_gemma2']:
|
170 |
+
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
171 |
+
elif model_type in ['videollama2_phi3']:
|
172 |
+
model = Videollama2Phi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
173 |
+
else:
|
174 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
175 |
+
|
176 |
+
# NOTE; loading vision-language projector
|
177 |
+
# * old codes for loading local mm_projector.bin
|
178 |
+
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
179 |
+
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
180 |
+
# model.load_state_dict(mm_projector_weights, strict=False)
|
181 |
+
# * new codes which supports loading mm_projector.bin both offline and online
|
182 |
+
mm_projector_weights = load_mm_projector(model_path, token=token)
|
183 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
184 |
+
elif 'videollama2' in model_type:
|
185 |
+
# NOTE: SFT model loading
|
186 |
+
logging.info(f"inside AutoTokenizer else if")
|
187 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
|
188 |
+
|
189 |
+
if model_type in ['videollama2', 'videollama2_mistral']:
|
190 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
191 |
+
elif model_type in ['videollama2_mixtral']:
|
192 |
+
logging.info(f"Loading videollama2_mixtral")
|
193 |
+
logging.info(f"Config: {config}")
|
194 |
+
model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
195 |
+
elif model_type in ['videollama2_qwen2']:
|
196 |
+
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
197 |
+
elif model_type in ['videollama2_gemma2']:
|
198 |
+
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
199 |
+
elif model_type in ['videollama2_phi3']:
|
200 |
+
model = Videollama2Phi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
201 |
+
else:
|
202 |
+
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
|
203 |
+
else:
|
204 |
+
logging.info(f"inside else")
|
205 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
|
206 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)
|
207 |
+
|
208 |
+
processor = None
|
209 |
+
|
210 |
+
if "videollama" in model_type:
|
211 |
+
vision_tower = model.get_vision_tower()
|
212 |
+
if not vision_tower.is_loaded:
|
213 |
+
vision_tower.load_model()
|
214 |
+
vision_tower.to(device=device, dtype=torch.float16)
|
215 |
+
# NOTE: videollama2 adopts the same processor for processing image and video.
|
216 |
+
processor = vision_tower.image_processor
|
217 |
+
|
218 |
+
if hasattr(model.config, "max_sequence_length"):
|
219 |
+
context_len = model.config.max_sequence_length
|
220 |
+
else:
|
221 |
+
context_len = 2048
|
222 |
+
logging.info(f"Model: {model}")
|
223 |
+
logging.info(f"context_len: {context_len}")
|
224 |
+
return tokenizer, model, processor, context_len
|
videollama2/model/encoder.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig,
|
8 |
+
SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
class CLIPVisionTower(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.is_loaded = False
|
18 |
+
|
19 |
+
self.vision_tower_name = vision_tower
|
20 |
+
self.select_layer = args.mm_vision_select_layer
|
21 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
22 |
+
|
23 |
+
if not delay_load:
|
24 |
+
self.load_model()
|
25 |
+
else:
|
26 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
27 |
+
|
28 |
+
def load_model(self):
|
29 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
30 |
+
|
31 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
32 |
+
self.vision_tower.requires_grad_(False)
|
33 |
+
|
34 |
+
self.is_loaded = True
|
35 |
+
|
36 |
+
def feature_select(self, image_forward_outs):
|
37 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
38 |
+
if self.select_feature == 'patch':
|
39 |
+
image_features = image_features[:, 1:]
|
40 |
+
elif self.select_feature == 'cls_patch':
|
41 |
+
image_features = image_features
|
42 |
+
else:
|
43 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
44 |
+
return image_features
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def forward(self, images):
|
48 |
+
if type(images) is list:
|
49 |
+
image_features = []
|
50 |
+
for image in images:
|
51 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
52 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
53 |
+
image_features.append(image_feature)
|
54 |
+
else:
|
55 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
56 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
57 |
+
|
58 |
+
return image_features
|
59 |
+
|
60 |
+
@property
|
61 |
+
def dummy_feature(self):
|
62 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
63 |
+
|
64 |
+
@property
|
65 |
+
def dtype(self):
|
66 |
+
return self.vision_tower.dtype
|
67 |
+
|
68 |
+
@property
|
69 |
+
def device(self):
|
70 |
+
return self.vision_tower.device
|
71 |
+
|
72 |
+
@property
|
73 |
+
def config(self):
|
74 |
+
if self.is_loaded:
|
75 |
+
return self.vision_tower.config
|
76 |
+
else:
|
77 |
+
return self.cfg_only
|
78 |
+
|
79 |
+
@property
|
80 |
+
def hidden_size(self):
|
81 |
+
return self.config.hidden_size
|
82 |
+
|
83 |
+
@property
|
84 |
+
def num_patches(self):
|
85 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
86 |
+
|
87 |
+
@property
|
88 |
+
def num_patches_per_side(self):
|
89 |
+
return self.config.image_size // self.config.patch_size
|
90 |
+
|
91 |
+
@property
|
92 |
+
def image_size(self):
|
93 |
+
return self.config.image_size
|
94 |
+
|
95 |
+
|
96 |
+
class SiglipVisionTower(nn.Module):
|
97 |
+
|
98 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.is_loaded = False
|
102 |
+
|
103 |
+
self.vision_tower_name = vision_tower
|
104 |
+
self.select_layer = args.mm_vision_select_layer
|
105 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
106 |
+
|
107 |
+
if not delay_load:
|
108 |
+
self.load_model()
|
109 |
+
else:
|
110 |
+
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name)
|
111 |
+
|
112 |
+
def load_model(self):
|
113 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
|
114 |
+
|
115 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
116 |
+
self.vision_tower.requires_grad_(False)
|
117 |
+
|
118 |
+
self.is_loaded = True
|
119 |
+
|
120 |
+
def feature_select(self, image_forward_outs):
|
121 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
122 |
+
if self.select_feature == 'patch':
|
123 |
+
image_features = image_features
|
124 |
+
else:
|
125 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
126 |
+
return image_features
|
127 |
+
|
128 |
+
@torch.no_grad()
|
129 |
+
def forward(self, images):
|
130 |
+
if type(images) is list:
|
131 |
+
image_features = []
|
132 |
+
for image in images:
|
133 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
134 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
135 |
+
image_features.append(image_feature)
|
136 |
+
else:
|
137 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
138 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
139 |
+
|
140 |
+
return image_features
|
141 |
+
|
142 |
+
@property
|
143 |
+
def dummy_feature(self):
|
144 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
145 |
+
|
146 |
+
@property
|
147 |
+
def dtype(self):
|
148 |
+
return self.vision_tower.dtype
|
149 |
+
|
150 |
+
@property
|
151 |
+
def device(self):
|
152 |
+
return self.vision_tower.device
|
153 |
+
|
154 |
+
@property
|
155 |
+
def config(self):
|
156 |
+
if self.is_loaded:
|
157 |
+
return self.vision_tower.config
|
158 |
+
else:
|
159 |
+
return self.cfg_only
|
160 |
+
|
161 |
+
@property
|
162 |
+
def hidden_size(self):
|
163 |
+
return self.config.hidden_size
|
164 |
+
|
165 |
+
@property
|
166 |
+
def num_patches(self):
|
167 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
168 |
+
|
169 |
+
@property
|
170 |
+
def num_patches_per_side(self):
|
171 |
+
return self.config.image_size // self.config.patch_size
|
172 |
+
|
173 |
+
@property
|
174 |
+
def image_size(self):
|
175 |
+
return self.config.image_size
|
176 |
+
|
177 |
+
|
178 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
179 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
180 |
+
|
181 |
+
if 'clip' in vision_tower:
|
182 |
+
vision_tower = CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
183 |
+
elif 'siglip' in vision_tower:
|
184 |
+
vision_tower = SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
185 |
+
else:
|
186 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
187 |
+
|
188 |
+
return vision_tower
|
videollama2/model/projector.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Alibaba DAMO Academy
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import re
|
17 |
+
|
18 |
+
import einops
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from timm.models.regnet import RegStage
|
23 |
+
from timm.models.layers import LayerNorm, LayerNorm2d
|
24 |
+
from transformers import TRANSFORMERS_CACHE
|
25 |
+
|
26 |
+
|
27 |
+
def parse_snapshot_folder(repo_id, cache_dir=None, repo_type="model"):
|
28 |
+
revision = "main"
|
29 |
+
# 1. parse the downloaded cache folder
|
30 |
+
if cache_dir is None:
|
31 |
+
cache_dir = TRANSFORMERS_CACHE
|
32 |
+
else:
|
33 |
+
cache_dir = cache_dir
|
34 |
+
object_id = repo_id.replace("/", "--")
|
35 |
+
repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}")
|
36 |
+
# 2. resolve refs (for instance to convert main to the associated commit sha)
|
37 |
+
refs_dir = os.path.join(repo_cache, "refs")
|
38 |
+
if os.path.isdir(refs_dir):
|
39 |
+
revision_file = os.path.join(refs_dir, revision)
|
40 |
+
if os.path.isfile(revision_file):
|
41 |
+
with open(revision_file) as f:
|
42 |
+
revision = f.read()
|
43 |
+
# 3. acquire the snapshot folder
|
44 |
+
folder = os.path.join(repo_cache, "snapshots", revision)
|
45 |
+
|
46 |
+
return folder
|
47 |
+
|
48 |
+
|
49 |
+
def load_mm_projector(model_path, cache_dir=None, token=None):
|
50 |
+
if os.path.exists(os.path.join(model_path, 'mm_projector.bin')):
|
51 |
+
is_local = True
|
52 |
+
folder = model_path
|
53 |
+
else:
|
54 |
+
is_local = False
|
55 |
+
folder = parse_snapshot_folder(model_path, cache_dir=cache_dir, repo_type="model")
|
56 |
+
if not os.path.exists(os.path.join(folder, 'mm_projector.bin')):
|
57 |
+
# downloading from remote repo
|
58 |
+
from huggingface_hub import snapshot_download
|
59 |
+
snapshot_download(repo_id=model_path, cache_dir=cache_dir, token=token)
|
60 |
+
|
61 |
+
mm_projector_weights = torch.load(os.path.join(folder, 'mm_projector.bin'), map_location='cpu')
|
62 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
63 |
+
return mm_projector_weights
|
64 |
+
|
65 |
+
|
66 |
+
class IdentityMap(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self):
|
69 |
+
super().__init__()
|
70 |
+
|
71 |
+
def forward(self, x, *args, **kwargs):
|
72 |
+
return x
|
73 |
+
|
74 |
+
@property
|
75 |
+
def config(self):
|
76 |
+
return {"mm_projector_type": 'identity'}
|
77 |
+
|
78 |
+
|
79 |
+
class SimpleResBlock(nn.Module):
|
80 |
+
|
81 |
+
def __init__(self, channels):
|
82 |
+
super().__init__()
|
83 |
+
self.pre_norm = nn.LayerNorm(channels)
|
84 |
+
|
85 |
+
self.proj = nn.Sequential(
|
86 |
+
nn.Linear(channels, channels),
|
87 |
+
nn.GELU(),
|
88 |
+
nn.Linear(channels, channels)
|
89 |
+
)
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.pre_norm(x)
|
92 |
+
return x + self.proj(x)
|
93 |
+
|
94 |
+
|
95 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
96 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
97 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
98 |
+
if mlp_gelu_match:
|
99 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
100 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
101 |
+
for _ in range(1, mlp_depth):
|
102 |
+
modules.append(nn.GELU())
|
103 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
104 |
+
return nn.Sequential(*modules)
|
105 |
+
|
106 |
+
if projector_type == "linear":
|
107 |
+
# NOTE: for both linear and mlp2x_gelu projector type, mean pooling is adopted to aggreate video features
|
108 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
109 |
+
elif projector_type == "stc_connector":
|
110 |
+
return STCConnector(config)
|
111 |
+
elif projector_type == "stp_connector":
|
112 |
+
return STPConnector(config)
|
113 |
+
elif projector_type == "stc_connector_v35":
|
114 |
+
return STCConnectorV35(config)
|
115 |
+
elif projector_type == "spatial_conv":
|
116 |
+
return SpatialConv(config)
|
117 |
+
elif projector_type == "spatial_pool":
|
118 |
+
return SpatialPool(config)
|
119 |
+
if projector_type == 'identity':
|
120 |
+
return IdentityMap()
|
121 |
+
|
122 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
123 |
+
|
124 |
+
|
125 |
+
def build_mlp(depth, hidden_size, output_hidden_size):
|
126 |
+
modules = [nn.Linear(hidden_size, output_hidden_size)]
|
127 |
+
for _ in range(1, depth):
|
128 |
+
modules.append(nn.GELU())
|
129 |
+
modules.append(nn.Linear(output_hidden_size, output_hidden_size))
|
130 |
+
return nn.Sequential(*modules)
|
131 |
+
|
132 |
+
|
133 |
+
class STCConnector(nn.Module):
|
134 |
+
|
135 |
+
def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
|
136 |
+
"""Temporal Convolutional Vision-Language Connector.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
config: config object.
|
140 |
+
downsample: (temporal, height, width) downsample rate.
|
141 |
+
depth: depth of the spatial interaction blocks.
|
142 |
+
mlp_depth: depth of the vision-language projector layers.
|
143 |
+
"""
|
144 |
+
super().__init__()
|
145 |
+
self.encoder_hidden_size = encoder_hidden_size = config.mm_hidden_size
|
146 |
+
self.hidden_size = hidden_size = config.hidden_size
|
147 |
+
self.output_hidden_size = output_hidden_size = config.hidden_size
|
148 |
+
# TODO: make these as config arguments
|
149 |
+
self.depth = depth
|
150 |
+
self.mlp_depth = mlp_depth
|
151 |
+
self.downsample = downsample
|
152 |
+
if depth != 0:
|
153 |
+
self.s1 = RegStage(
|
154 |
+
depth=depth,
|
155 |
+
in_chs=encoder_hidden_size,
|
156 |
+
out_chs=hidden_size,
|
157 |
+
stride=1,
|
158 |
+
dilation=1,
|
159 |
+
act_layer=nn.SiLU,
|
160 |
+
norm_layer=LayerNorm2d,
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
self.s1 = nn.Identity()
|
164 |
+
self.sampler = nn.Sequential(
|
165 |
+
nn.Conv3d(
|
166 |
+
in_channels=hidden_size,
|
167 |
+
out_channels=hidden_size,
|
168 |
+
kernel_size=downsample,
|
169 |
+
stride=downsample,
|
170 |
+
padding=1,
|
171 |
+
bias=True
|
172 |
+
),
|
173 |
+
nn.SiLU()
|
174 |
+
)
|
175 |
+
if depth != 0:
|
176 |
+
self.s2 = RegStage(
|
177 |
+
depth=depth,
|
178 |
+
in_chs=hidden_size,
|
179 |
+
out_chs=hidden_size,
|
180 |
+
stride=1,
|
181 |
+
dilation=1,
|
182 |
+
act_layer=nn.SiLU,
|
183 |
+
norm_layer=LayerNorm2d,
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
self.s2 = nn.Identity()
|
187 |
+
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
"""Aggregate tokens on the temporal and spatial dimensions.
|
191 |
+
Args:
|
192 |
+
x: input tokens [b, t, h, w, d] / [b, t, l, d]
|
193 |
+
Returns:
|
194 |
+
aggregated tokens [b, l, d]
|
195 |
+
"""
|
196 |
+
t = x.size(1)
|
197 |
+
if x.ndim == 4:
|
198 |
+
hw = int(x.size(2) ** 0.5)
|
199 |
+
x = einops.rearrange(x, "b t (h w) d -> b d t h w", h=hw, w=hw)
|
200 |
+
elif x.ndim == 5:
|
201 |
+
x = einops.rearrange(x, "b t h w d -> b d t h w")
|
202 |
+
|
203 |
+
x = einops.rearrange(x, "b d t h w -> (b t) d h w")
|
204 |
+
# 1. the first stage of the adapter
|
205 |
+
x = self.s1(x)
|
206 |
+
x = einops.rearrange(x, "(b t) d h w -> b d t h w", t=t)
|
207 |
+
# 2. downsampler
|
208 |
+
x = self.sampler(x)
|
209 |
+
new_t = x.size(2)
|
210 |
+
# 3. the second stage of the adapter
|
211 |
+
x = einops.rearrange(x, "b d t h w -> (b t) d h w")
|
212 |
+
x = self.s2(x)
|
213 |
+
x = einops.rearrange(x, "(b t) d h w -> b (t h w) d", t=new_t)
|
214 |
+
x = self.readout(x)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class STPConnector(STCConnector):
|
219 |
+
|
220 |
+
def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
|
221 |
+
super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
|
222 |
+
self.sampler = nn.Sequential(nn.AvgPool3d(downsample), nn.SiLU())
|
223 |
+
|
224 |
+
|
225 |
+
class STCConnectorV35(STCConnector):
|
226 |
+
|
227 |
+
def __init__(self, config, downsample=(2, 2, 2), depth=4, mlp_depth=2):
|
228 |
+
super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
|
229 |
+
self.sampler = nn.Sequential(
|
230 |
+
nn.Conv3d(
|
231 |
+
in_channels=self.hidden_size,
|
232 |
+
out_channels=self.hidden_size,
|
233 |
+
kernel_size=downsample,
|
234 |
+
stride=downsample,
|
235 |
+
padding=0,
|
236 |
+
bias=True
|
237 |
+
),
|
238 |
+
nn.SiLU())
|
239 |
+
|
240 |
+
|
241 |
+
class SpatialConv(STCConnector):
|
242 |
+
|
243 |
+
def __init__(self, config, downsample=(1, 2, 2), depth=0, mlp_depth=2):
|
244 |
+
super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
|
245 |
+
|
246 |
+
|
247 |
+
class SpatialPool(STPConnector):
|
248 |
+
|
249 |
+
def __init__(self, config, downsample=(1, 2, 2), depth=0, mlp_depth=2):
|
250 |
+
super().__init__(config=config, downsample=downsample, depth=depth, mlp_depth=mlp_depth)
|
videollama2/model/videollama2_arch.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from abc import ABC, abstractmethod
|
18 |
+
|
19 |
+
import einops
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
from .projector import load_mm_projector, build_vision_projector
|
24 |
+
from .encoder import build_vision_tower
|
25 |
+
from ..constants import IGNORE_INDEX, NUM_FRAMES, MODAL_INDEX_MAP
|
26 |
+
|
27 |
+
|
28 |
+
class Videollama2MetaModel:
|
29 |
+
|
30 |
+
def __init__(self, config):
|
31 |
+
super(Videollama2MetaModel, self).__init__(config)
|
32 |
+
|
33 |
+
if hasattr(config, "mm_vision_tower"):
|
34 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
35 |
+
self.mm_projector = build_vision_projector(config)
|
36 |
+
|
37 |
+
def get_vision_tower(self):
|
38 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
39 |
+
if type(vision_tower) is list:
|
40 |
+
vision_tower = vision_tower[0]
|
41 |
+
return vision_tower
|
42 |
+
|
43 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
44 |
+
vision_tower = model_args.vision_tower
|
45 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
46 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
47 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
48 |
+
|
49 |
+
self.config.mm_vision_tower = vision_tower
|
50 |
+
|
51 |
+
if self.get_vision_tower() is None:
|
52 |
+
vision_tower = build_vision_tower(model_args)
|
53 |
+
|
54 |
+
if fsdp is not None and len(fsdp) > 0:
|
55 |
+
self.vision_tower = [vision_tower]
|
56 |
+
else:
|
57 |
+
self.vision_tower = vision_tower
|
58 |
+
else:
|
59 |
+
if fsdp is not None and len(fsdp) > 0:
|
60 |
+
vision_tower = self.vision_tower[0]
|
61 |
+
else:
|
62 |
+
vision_tower = self.vision_tower
|
63 |
+
vision_tower.load_model()
|
64 |
+
|
65 |
+
self.config.use_mm_proj = True
|
66 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
67 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
68 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
69 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
70 |
+
|
71 |
+
if getattr(self, 'mm_projector', None) is None:
|
72 |
+
self.mm_projector = build_vision_projector(self.config)
|
73 |
+
else:
|
74 |
+
# In case it is frozen by LoRA
|
75 |
+
for p in self.mm_projector.parameters():
|
76 |
+
p.requires_grad = True
|
77 |
+
|
78 |
+
if pretrain_mm_mlp_adapter is not None:
|
79 |
+
if os.path.exists(pretrain_mm_mlp_adapter):
|
80 |
+
is_local = True
|
81 |
+
if os.path.isdir(pretrain_mm_mlp_adapter):
|
82 |
+
mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter)
|
83 |
+
else:
|
84 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
85 |
+
else:
|
86 |
+
# Support loading projector weights from remote HuggingFace model hub
|
87 |
+
is_local = False
|
88 |
+
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.replace('mm_projector.bin', '')
|
89 |
+
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.strip('/').strip('\\').strip()
|
90 |
+
mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter)
|
91 |
+
|
92 |
+
def get_w(weights, keyword):
|
93 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
94 |
+
|
95 |
+
# self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
96 |
+
# set strict=False to avoid missing key error regarding bert.embeddings.position_ids
|
97 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
|
98 |
+
|
99 |
+
|
100 |
+
class Videollama2MetaForCausalLM(ABC):
|
101 |
+
|
102 |
+
@abstractmethod
|
103 |
+
def get_model(self):
|
104 |
+
pass
|
105 |
+
|
106 |
+
def num_frames(self):
|
107 |
+
if hasattr(self.config, 'num_frames'):
|
108 |
+
return self.config.num_frames
|
109 |
+
else:
|
110 |
+
return NUM_FRAMES
|
111 |
+
|
112 |
+
def get_vision_tower(self):
|
113 |
+
return self.get_model().get_vision_tower()
|
114 |
+
|
115 |
+
def encode_images_or_videos(self, images):
|
116 |
+
num_frames = self.config.num_frames if hasattr(self.config, 'num_frames') else NUM_FRAMES
|
117 |
+
|
118 |
+
data_batch = []
|
119 |
+
for i, (data, modal) in enumerate(images):
|
120 |
+
if modal == 'image':
|
121 |
+
data = data.expand(num_frames, -1, -1, -1)
|
122 |
+
else:
|
123 |
+
data = data
|
124 |
+
data_batch.append(data)
|
125 |
+
|
126 |
+
data_batch = torch.stack(data_batch, dim=0)
|
127 |
+
|
128 |
+
assert len(data_batch.size()) == 5
|
129 |
+
batch_size = data_batch.size(0)
|
130 |
+
|
131 |
+
frames = einops.rearrange(data_batch, 'b t c h w -> (b t) c h w')
|
132 |
+
frames_features = self.get_model().get_vision_tower()(frames)
|
133 |
+
frames_features = einops.rearrange(frames_features, '(b t) n h -> b t n h', b = batch_size)
|
134 |
+
|
135 |
+
return self.temporal_aggregator(frames_features)
|
136 |
+
|
137 |
+
def temporal_aggregator(self, frames_features):
|
138 |
+
"""Temporal aggregation of frame features.
|
139 |
+
Args:
|
140 |
+
frames_features (torch.Tensor): Frame features with shape (b, t, n, h).
|
141 |
+
Returns:
|
142 |
+
torch.Tensor: Video features with shape (b, n, h).
|
143 |
+
"""
|
144 |
+
# TODO: improve the merging method.
|
145 |
+
# *********** mean pooling *************
|
146 |
+
if self.config.mm_projector_type == "mlp2x_gelu" or self.config.mm_projector_type == "linear":
|
147 |
+
video_features = self.get_model().mm_projector(frames_features.mean(1))
|
148 |
+
# *********** spatial convolution *************
|
149 |
+
elif self.config.mm_projector_type == "spatial_conv":
|
150 |
+
video_features = self.get_model().mm_projector(frames_features)
|
151 |
+
# *********** spatial pooling *************
|
152 |
+
elif self.config.mm_projector_type == "spatial_pool":
|
153 |
+
video_features = self.get_model().mm_projector(frames_features)
|
154 |
+
# *********** time ************
|
155 |
+
elif "tc_connector" in self.config.mm_projector_type or "tp_connector" in self.config.mm_projector_type:
|
156 |
+
video_features = self.get_model().mm_projector(frames_features)
|
157 |
+
else:
|
158 |
+
raise Exception(f"Unsupported projector type {self.config.mm_projector_type}!!!")
|
159 |
+
|
160 |
+
return video_features
|
161 |
+
|
162 |
+
def prepare_inputs_labels_for_multimodal(
|
163 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
164 |
+
):
|
165 |
+
vision_tower = self.get_vision_tower()
|
166 |
+
# NOTE: text-only situation
|
167 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
168 |
+
# if past_key_values is not None and vision_tower is not None and Xs is not None and input_ids.shape[1] == 1:
|
169 |
+
# attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
|
170 |
+
return input_ids, attention_mask, past_key_values, None, labels
|
171 |
+
|
172 |
+
mm_features = self.encode_images_or_videos(images)
|
173 |
+
|
174 |
+
new_input_embeds = []
|
175 |
+
new_labels = [] if labels is not None else None
|
176 |
+
cur_mm_idx = 0
|
177 |
+
# replace image/video/audio tokens with pre-computed embeddings
|
178 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
179 |
+
num_multimodals = sum((cur_input_ids == mm_token_idx).sum() for mm_token_idx in MODAL_INDEX_MAP.values())
|
180 |
+
# pure text input
|
181 |
+
if num_multimodals == 0:
|
182 |
+
half_len = cur_input_ids.shape[0] // 2
|
183 |
+
cur_mm_features = mm_features[cur_mm_idx]
|
184 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
|
185 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
|
186 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_mm_features[0:0], cur_input_embeds_2], dim=0)
|
187 |
+
new_input_embeds.append(cur_input_embeds)
|
188 |
+
if labels is not None:
|
189 |
+
new_labels.append(labels[batch_idx])
|
190 |
+
cur_mm_idx += 1
|
191 |
+
continue
|
192 |
+
|
193 |
+
cur_new_input_embeds = []
|
194 |
+
if labels is not None:
|
195 |
+
cur_labels = labels[batch_idx]
|
196 |
+
cur_new_labels = []
|
197 |
+
assert cur_labels.shape == cur_input_ids.shape
|
198 |
+
|
199 |
+
mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0]
|
200 |
+
while mm_token_indices.numel() > 0:
|
201 |
+
cur_mm_features = mm_features[cur_mm_idx]
|
202 |
+
mm_token_start = mm_token_indices[0]
|
203 |
+
|
204 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:mm_token_start]))
|
205 |
+
cur_new_input_embeds.append(cur_mm_features)
|
206 |
+
if labels is not None:
|
207 |
+
cur_new_labels.append(cur_labels[:mm_token_start])
|
208 |
+
cur_new_labels.append(torch.full((cur_mm_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
209 |
+
cur_labels = cur_labels[mm_token_start+1:]
|
210 |
+
|
211 |
+
cur_mm_idx += 1
|
212 |
+
cur_input_ids = cur_input_ids[mm_token_start+1:]
|
213 |
+
mm_token_indices = torch.where(sum([cur_input_ids == mm_token_idx for mm_token_idx in MODAL_INDEX_MAP.values()]))[0]
|
214 |
+
|
215 |
+
if cur_input_ids.numel() > 0:
|
216 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
|
217 |
+
if labels is not None:
|
218 |
+
cur_new_labels.append(cur_labels)
|
219 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
220 |
+
# NOTE: one cur_new_input_embeds per each
|
221 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
222 |
+
new_input_embeds.append(cur_new_input_embeds)
|
223 |
+
if labels is not None:
|
224 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
225 |
+
new_labels.append(cur_new_labels)
|
226 |
+
|
227 |
+
# padding
|
228 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
229 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
230 |
+
|
231 |
+
new_input_embeds_align = []
|
232 |
+
for cur_new_embed in new_input_embeds:
|
233 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
234 |
+
new_input_embeds_align.append(cur_new_embed)
|
235 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
236 |
+
|
237 |
+
if labels is not None:
|
238 |
+
new_labels_align = []
|
239 |
+
_new_labels = new_labels
|
240 |
+
for cur_new_label in new_labels:
|
241 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
242 |
+
new_labels_align.append(cur_new_label)
|
243 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
244 |
+
|
245 |
+
if attention_mask is not None:
|
246 |
+
new_attention_mask = []
|
247 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
248 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
249 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
250 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
251 |
+
new_attention_mask.append(cur_new_attention_mask)
|
252 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
253 |
+
assert attention_mask.shape == new_labels.shape
|
254 |
+
else:
|
255 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
256 |
+
if labels is not None:
|
257 |
+
new_labels = torch.stack(new_labels, dim=0)
|
258 |
+
|
259 |
+
if attention_mask is not None:
|
260 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
261 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
262 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
263 |
+
|
264 |
+
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
videollama2/model/videollama2_gemma2.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
|
23 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
24 |
+
Gemma2Config, Gemma2Model, Gemma2ForCausalLM
|
25 |
+
|
26 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
27 |
+
from transformers.generation.utils import GenerateOutput
|
28 |
+
|
29 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
30 |
+
|
31 |
+
|
32 |
+
class Videollama2Gemma2Config(Gemma2Config):
|
33 |
+
model_type = "videollama2_gemma2"
|
34 |
+
|
35 |
+
def __init__(self, **kwargs):
|
36 |
+
super().__init__(**kwargs)
|
37 |
+
self.model_type = "videollama2_gemma2"
|
38 |
+
|
39 |
+
|
40 |
+
class Videollama2Gemma2Model(Videollama2MetaModel, Gemma2Model):
|
41 |
+
config_class = Videollama2Gemma2Config
|
42 |
+
|
43 |
+
def __init__(self, config: Gemma2Config):
|
44 |
+
super(Videollama2Gemma2Model, self).__init__(config)
|
45 |
+
|
46 |
+
|
47 |
+
class Videollama2Gemma2ForCausalLM(Gemma2ForCausalLM, Videollama2MetaForCausalLM):
|
48 |
+
config_class = Videollama2Gemma2Config
|
49 |
+
|
50 |
+
def __init__(self, config, **kwargs):
|
51 |
+
super(Gemma2ForCausalLM, self).__init__(config)
|
52 |
+
self.model = Videollama2Gemma2Model(config)
|
53 |
+
# self.pretraining_tp = config.pretraining_tp
|
54 |
+
self.vocab_size = config.vocab_size
|
55 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
56 |
+
|
57 |
+
# Initialize weights and apply final processing
|
58 |
+
self.post_init()
|
59 |
+
|
60 |
+
def get_model(self):
|
61 |
+
return self.model
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
input_ids: torch.LongTensor = None,
|
66 |
+
attention_mask: Optional[torch.Tensor] = None,
|
67 |
+
position_ids: Optional[torch.LongTensor] = None,
|
68 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
69 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
70 |
+
labels: Optional[torch.LongTensor] = None,
|
71 |
+
use_cache: Optional[bool] = None,
|
72 |
+
output_attentions: Optional[bool] = None,
|
73 |
+
output_hidden_states: Optional[bool] = None,
|
74 |
+
images: Optional[torch.FloatTensor] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
cache_position: Optional[int] = None,
|
77 |
+
**kwargs
|
78 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
79 |
+
|
80 |
+
if inputs_embeds is None:
|
81 |
+
(
|
82 |
+
input_ids,
|
83 |
+
attention_mask,
|
84 |
+
past_key_values,
|
85 |
+
inputs_embeds,
|
86 |
+
labels
|
87 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
88 |
+
input_ids,
|
89 |
+
attention_mask,
|
90 |
+
past_key_values,
|
91 |
+
labels,
|
92 |
+
images
|
93 |
+
)
|
94 |
+
|
95 |
+
outputs = super().forward(
|
96 |
+
input_ids=input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
past_key_values=past_key_values,
|
99 |
+
inputs_embeds=inputs_embeds,
|
100 |
+
labels=labels,
|
101 |
+
use_cache=use_cache,
|
102 |
+
output_attentions=output_attentions,
|
103 |
+
output_hidden_states=output_hidden_states,
|
104 |
+
return_dict=return_dict,
|
105 |
+
cache_position=cache_position,
|
106 |
+
)
|
107 |
+
|
108 |
+
outputs.labels = labels
|
109 |
+
|
110 |
+
return outputs
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def generate(
|
114 |
+
self,
|
115 |
+
inputs: Optional[torch.Tensor] = None,
|
116 |
+
images: Optional[torch.Tensor] = None,
|
117 |
+
**kwargs,
|
118 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
119 |
+
position_ids = kwargs.pop("position_ids", None)
|
120 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
121 |
+
if "inputs_embeds" in kwargs:
|
122 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
123 |
+
|
124 |
+
if images is not None:
|
125 |
+
(
|
126 |
+
input_ids,
|
127 |
+
attention_mask,
|
128 |
+
past_key_values,
|
129 |
+
inputs_embeds,
|
130 |
+
_
|
131 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
132 |
+
input_ids=inputs,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
past_key_values=None,
|
135 |
+
labels=None,
|
136 |
+
images=images
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
140 |
+
|
141 |
+
return super().generate(
|
142 |
+
position_ids=position_ids,
|
143 |
+
attention_mask=attention_mask,
|
144 |
+
inputs_embeds=inputs_embeds,
|
145 |
+
**kwargs
|
146 |
+
)
|
147 |
+
|
148 |
+
def _prepare_generated_length(self, model_input_name, inputs_tensor, **kwargs):
|
149 |
+
if model_input_name == "inputs_embeds":
|
150 |
+
self.inputs_embeds_length = inputs_tensor.size(1)
|
151 |
+
else:
|
152 |
+
self.inputs_embeds_length = 0
|
153 |
+
return super()._prepare_generated_length(
|
154 |
+
model_input_name=model_input_name,
|
155 |
+
inputs_tensor=inputs_tensor,
|
156 |
+
**kwargs)
|
157 |
+
|
158 |
+
def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, **kwargs):
|
159 |
+
return super()._get_cache(
|
160 |
+
cache_implementation=cache_implementation,
|
161 |
+
max_batch_size=max_batch_size,
|
162 |
+
max_cache_len=max_cache_len + self.inputs_embeds_length,
|
163 |
+
**kwargs)
|
164 |
+
|
165 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
166 |
+
images = kwargs.pop("images", None)
|
167 |
+
_inputs = super().prepare_inputs_for_generation(
|
168 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
169 |
+
)
|
170 |
+
if images is not None:
|
171 |
+
_inputs['images'] = images
|
172 |
+
return _inputs
|
173 |
+
|
174 |
+
|
175 |
+
AutoConfig.register("videollama2_gemma2", Videollama2Gemma2Config)
|
176 |
+
AutoModelForCausalLM.register(Videollama2Gemma2Config, Videollama2Gemma2ForCausalLM)
|
videollama2/model/videollama2_llama.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM
|
24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
+
from transformers.generation.utils import GenerateOutput
|
26 |
+
|
27 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class Videollama2LlamaConfig(LlamaConfig):
|
31 |
+
model_type = "videollama2_llama"
|
32 |
+
|
33 |
+
def __init__(self, **kwargs):
|
34 |
+
super().__init__(**kwargs)
|
35 |
+
self.model_type = "videollama2_llama"
|
36 |
+
|
37 |
+
|
38 |
+
class Videollama2LlamaModel(Videollama2MetaModel, LlamaModel):
|
39 |
+
config_class = Videollama2LlamaConfig
|
40 |
+
|
41 |
+
def __init__(self, config: LlamaConfig):
|
42 |
+
super(Videollama2LlamaModel, self).__init__(config)
|
43 |
+
|
44 |
+
|
45 |
+
class Videollama2LlamaForCausalLM(LlamaForCausalLM, Videollama2MetaForCausalLM):
|
46 |
+
config_class = Videollama2LlamaConfig
|
47 |
+
|
48 |
+
def __init__(self, config, **kwargs):
|
49 |
+
super(LlamaForCausalLM, self).__init__(config)
|
50 |
+
self.model = Videollama2LlamaModel(config)
|
51 |
+
self.pretraining_tp = config.pretraining_tp
|
52 |
+
self.vocab_size = config.vocab_size
|
53 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
54 |
+
|
55 |
+
# Initialize weights and apply final processing
|
56 |
+
self.post_init()
|
57 |
+
|
58 |
+
def get_model(self):
|
59 |
+
return self.model
|
60 |
+
|
61 |
+
def forward(
|
62 |
+
self,
|
63 |
+
input_ids: torch.LongTensor = None,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
position_ids: Optional[torch.LongTensor] = None,
|
66 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
67 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
68 |
+
labels: Optional[torch.LongTensor] = None,
|
69 |
+
use_cache: Optional[bool] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
images: Optional[torch.FloatTensor] = None,
|
73 |
+
return_dict: Optional[bool] = None,
|
74 |
+
cache_position: Optional[torch.LongTensor] = None,
|
75 |
+
**kwargs
|
76 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
77 |
+
|
78 |
+
if inputs_embeds is None:
|
79 |
+
(
|
80 |
+
input_ids,
|
81 |
+
attention_mask,
|
82 |
+
past_key_values,
|
83 |
+
inputs_embeds,
|
84 |
+
labels
|
85 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
86 |
+
input_ids,
|
87 |
+
attention_mask,
|
88 |
+
past_key_values,
|
89 |
+
labels,
|
90 |
+
images
|
91 |
+
)
|
92 |
+
|
93 |
+
outputs = super().forward(
|
94 |
+
input_ids=input_ids,
|
95 |
+
attention_mask=attention_mask,
|
96 |
+
past_key_values=past_key_values,
|
97 |
+
inputs_embeds=inputs_embeds,
|
98 |
+
labels=labels,
|
99 |
+
use_cache=use_cache,
|
100 |
+
output_attentions=output_attentions,
|
101 |
+
output_hidden_states=output_hidden_states,
|
102 |
+
return_dict=return_dict,
|
103 |
+
cache_position=cache_position,
|
104 |
+
)
|
105 |
+
|
106 |
+
outputs.labels = labels
|
107 |
+
|
108 |
+
return outputs
|
109 |
+
|
110 |
+
@torch.no_grad()
|
111 |
+
def generate(
|
112 |
+
self,
|
113 |
+
inputs: Optional[torch.Tensor] = None,
|
114 |
+
images: Optional[torch.Tensor] = None,
|
115 |
+
**kwargs,
|
116 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
117 |
+
position_ids = kwargs.pop("position_ids", None)
|
118 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
119 |
+
if "inputs_embeds" in kwargs:
|
120 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
121 |
+
|
122 |
+
if images is not None:
|
123 |
+
(
|
124 |
+
input_ids,
|
125 |
+
attention_mask,
|
126 |
+
past_key_values,
|
127 |
+
inputs_embeds,
|
128 |
+
_
|
129 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
130 |
+
input_ids=inputs,
|
131 |
+
attention_mask=attention_mask,
|
132 |
+
past_key_values=None,
|
133 |
+
labels=None,
|
134 |
+
images=images
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
138 |
+
|
139 |
+
return super().generate(
|
140 |
+
position_ids=position_ids,
|
141 |
+
attention_mask=attention_mask,
|
142 |
+
inputs_embeds=inputs_embeds,
|
143 |
+
**kwargs
|
144 |
+
)
|
145 |
+
|
146 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
147 |
+
images = kwargs.pop("images", None)
|
148 |
+
_inputs = super().prepare_inputs_for_generation(
|
149 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
150 |
+
)
|
151 |
+
if images is not None:
|
152 |
+
_inputs['images'] = images
|
153 |
+
return _inputs
|
154 |
+
|
155 |
+
|
156 |
+
AutoConfig.register("videollama2_llama", Videollama2LlamaConfig)
|
157 |
+
AutoModelForCausalLM.register(Videollama2LlamaConfig, Videollama2LlamaForCausalLM)
|
videollama2/model/videollama2_mistral.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
|
23 |
+
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, \
|
24 |
+
MistralConfig, MistralModel, MistralForCausalLM
|
25 |
+
|
26 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
27 |
+
from transformers.generation.utils import GenerateOutput
|
28 |
+
|
29 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
30 |
+
|
31 |
+
|
32 |
+
class Videollama2MistralConfig(MistralConfig):
|
33 |
+
model_type = "videollama2_mistral"
|
34 |
+
|
35 |
+
def __init__(self, **kwargs):
|
36 |
+
super().__init__(**kwargs)
|
37 |
+
self.model_type = "videollama2_mistral"
|
38 |
+
|
39 |
+
|
40 |
+
class Videollama2MistralModel(Videollama2MetaModel, MistralModel):
|
41 |
+
config_class = Videollama2MistralConfig
|
42 |
+
|
43 |
+
def __init__(self, config: MistralConfig):
|
44 |
+
super(Videollama2MistralModel, self).__init__(config)
|
45 |
+
|
46 |
+
|
47 |
+
class Videollama2MistralForCausalLM(MistralForCausalLM, Videollama2MetaForCausalLM):
|
48 |
+
config_class = Videollama2MistralConfig
|
49 |
+
|
50 |
+
def __init__(self, config, **kwargs):
|
51 |
+
super(MistralForCausalLM, self).__init__(config)
|
52 |
+
self.model = Videollama2MistralModel(config)
|
53 |
+
# self.pretraining_tp = config.pretraining_tp
|
54 |
+
self.vocab_size = config.vocab_size
|
55 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
56 |
+
|
57 |
+
# Initialize weights and apply final processing
|
58 |
+
self.post_init()
|
59 |
+
|
60 |
+
def get_model(self):
|
61 |
+
return self.model
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
input_ids: torch.LongTensor = None,
|
66 |
+
attention_mask: Optional[torch.Tensor] = None,
|
67 |
+
position_ids: Optional[torch.LongTensor] = None,
|
68 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
69 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
70 |
+
labels: Optional[torch.LongTensor] = None,
|
71 |
+
use_cache: Optional[bool] = None,
|
72 |
+
output_attentions: Optional[bool] = None,
|
73 |
+
output_hidden_states: Optional[bool] = None,
|
74 |
+
images: Optional[torch.FloatTensor] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
cache_position: Optional[int] = None,
|
77 |
+
**kwargs
|
78 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
79 |
+
|
80 |
+
if inputs_embeds is None:
|
81 |
+
(
|
82 |
+
input_ids,
|
83 |
+
attention_mask,
|
84 |
+
past_key_values,
|
85 |
+
inputs_embeds,
|
86 |
+
labels
|
87 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
88 |
+
input_ids,
|
89 |
+
attention_mask,
|
90 |
+
past_key_values,
|
91 |
+
labels,
|
92 |
+
images
|
93 |
+
)
|
94 |
+
|
95 |
+
outputs = super().forward(
|
96 |
+
input_ids=input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
past_key_values=past_key_values,
|
99 |
+
inputs_embeds=inputs_embeds,
|
100 |
+
labels=labels,
|
101 |
+
use_cache=use_cache,
|
102 |
+
output_attentions=output_attentions,
|
103 |
+
output_hidden_states=output_hidden_states,
|
104 |
+
return_dict=return_dict,
|
105 |
+
cache_position=cache_position,
|
106 |
+
)
|
107 |
+
|
108 |
+
outputs.labels = labels
|
109 |
+
|
110 |
+
return outputs
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def generate(
|
114 |
+
self,
|
115 |
+
inputs: Optional[torch.Tensor] = None,
|
116 |
+
images: Optional[torch.Tensor] = None,
|
117 |
+
**kwargs,
|
118 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
119 |
+
position_ids = kwargs.pop("position_ids", None)
|
120 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
121 |
+
if "inputs_embeds" in kwargs:
|
122 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
123 |
+
|
124 |
+
if images is not None:
|
125 |
+
(
|
126 |
+
input_ids,
|
127 |
+
attention_mask,
|
128 |
+
past_key_values,
|
129 |
+
inputs_embeds,
|
130 |
+
_
|
131 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
132 |
+
input_ids=inputs,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
past_key_values=None,
|
135 |
+
labels=None,
|
136 |
+
images=images
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
140 |
+
|
141 |
+
return super().generate(
|
142 |
+
position_ids=position_ids,
|
143 |
+
attention_mask=attention_mask,
|
144 |
+
inputs_embeds=inputs_embeds,
|
145 |
+
**kwargs
|
146 |
+
)
|
147 |
+
|
148 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
149 |
+
images = kwargs.pop("images", None)
|
150 |
+
_inputs = super().prepare_inputs_for_generation(
|
151 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
152 |
+
)
|
153 |
+
if images is not None:
|
154 |
+
_inputs['images'] = images
|
155 |
+
return _inputs
|
156 |
+
|
157 |
+
|
158 |
+
AutoConfig.register("videollama2_mistral", Videollama2MistralConfig)
|
159 |
+
AutoModelForCausalLM.register(Videollama2MistralConfig, Videollama2MistralForCausalLM)
|
videollama2/model/videollama2_mixtral.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
MixtralConfig, MixtralModel, MixtralForCausalLM
|
24 |
+
|
25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
26 |
+
from transformers.generation.utils import GenerateOutput
|
27 |
+
|
28 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
29 |
+
|
30 |
+
|
31 |
+
class Videollama2MixtralConfig(MixtralConfig):
|
32 |
+
model_type = "videollama2_mixtral"
|
33 |
+
|
34 |
+
def __init__(self, **kwargs):
|
35 |
+
super().__init__(**kwargs)
|
36 |
+
self.model_type = "videollama2_mixtral"
|
37 |
+
|
38 |
+
|
39 |
+
class Videollama2MixtralModel(Videollama2MetaModel, MixtralModel):
|
40 |
+
config_class = Videollama2MixtralConfig
|
41 |
+
|
42 |
+
def __init__(self, config: MixtralConfig):
|
43 |
+
super(Videollama2MixtralModel, self).__init__(config)
|
44 |
+
|
45 |
+
|
46 |
+
class Videollama2MixtralForCausalLM(MixtralForCausalLM, Videollama2MetaForCausalLM):
|
47 |
+
config_class = Videollama2MixtralConfig
|
48 |
+
|
49 |
+
def __init__(self, config, **kwargs):
|
50 |
+
super(MixtralForCausalLM, self).__init__(config)
|
51 |
+
self.model = Videollama2MixtralModel(config)
|
52 |
+
# self.pretraining_tp = config.pretraining_tp
|
53 |
+
self.vocab_size = config.vocab_size
|
54 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
55 |
+
|
56 |
+
# Initialize weights and apply final processing
|
57 |
+
self.post_init()
|
58 |
+
|
59 |
+
def get_model(self):
|
60 |
+
return self.model
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
input_ids: torch.LongTensor = None,
|
65 |
+
attention_mask: Optional[torch.Tensor] = None,
|
66 |
+
position_ids: Optional[torch.LongTensor] = None,
|
67 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
68 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
69 |
+
labels: Optional[torch.LongTensor] = None,
|
70 |
+
use_cache: Optional[bool] = None,
|
71 |
+
output_attentions: Optional[bool] = None,
|
72 |
+
output_hidden_states: Optional[bool] = None,
|
73 |
+
images: Optional[torch.FloatTensor] = None,
|
74 |
+
return_dict: Optional[bool] = None,
|
75 |
+
cache_position: Optional[int] = None,
|
76 |
+
**kwargs
|
77 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
78 |
+
|
79 |
+
if inputs_embeds is None:
|
80 |
+
(
|
81 |
+
input_ids,
|
82 |
+
attention_mask,
|
83 |
+
past_key_values,
|
84 |
+
inputs_embeds,
|
85 |
+
labels
|
86 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
87 |
+
input_ids,
|
88 |
+
attention_mask,
|
89 |
+
past_key_values,
|
90 |
+
labels,
|
91 |
+
images
|
92 |
+
)
|
93 |
+
|
94 |
+
return super().forward(
|
95 |
+
input_ids=input_ids,
|
96 |
+
attention_mask=attention_mask,
|
97 |
+
past_key_values=past_key_values,
|
98 |
+
inputs_embeds=inputs_embeds,
|
99 |
+
labels=labels,
|
100 |
+
use_cache=use_cache,
|
101 |
+
output_attentions=output_attentions,
|
102 |
+
output_hidden_states=output_hidden_states,
|
103 |
+
return_dict=return_dict,
|
104 |
+
cache_position=cache_position,
|
105 |
+
)
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def generate(
|
109 |
+
self,
|
110 |
+
inputs: Optional[torch.Tensor] = None,
|
111 |
+
images: Optional[torch.Tensor] = None,
|
112 |
+
**kwargs,
|
113 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
114 |
+
position_ids = kwargs.pop("position_ids", None)
|
115 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
116 |
+
if "inputs_embeds" in kwargs:
|
117 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
118 |
+
|
119 |
+
if images is not None:
|
120 |
+
(
|
121 |
+
input_ids,
|
122 |
+
attention_mask,
|
123 |
+
past_key_values,
|
124 |
+
inputs_embeds,
|
125 |
+
_
|
126 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
127 |
+
input_ids=inputs,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
past_key_values=None,
|
130 |
+
labels=None,
|
131 |
+
images=images
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
135 |
+
|
136 |
+
return super().generate(
|
137 |
+
position_ids=position_ids,
|
138 |
+
attention_mask=attention_mask,
|
139 |
+
inputs_embeds=inputs_embeds,
|
140 |
+
**kwargs
|
141 |
+
)
|
142 |
+
|
143 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
144 |
+
images = kwargs.pop("images", None)
|
145 |
+
_inputs = super().prepare_inputs_for_generation(
|
146 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
147 |
+
)
|
148 |
+
if images is not None:
|
149 |
+
_inputs['images'] = images
|
150 |
+
return _inputs
|
151 |
+
|
152 |
+
|
153 |
+
AutoConfig.register("videollama2_mixtral", Videollama2MixtralConfig)
|
154 |
+
AutoModelForCausalLM.register(Videollama2MixtralConfig, Videollama2MixtralForCausalLM)
|
videollama2/model/videollama2_phi3.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn import CrossEntropyLoss
|
22 |
+
|
23 |
+
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, \
|
24 |
+
Phi3Config, Phi3Model, Phi3ForCausalLM
|
25 |
+
|
26 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
27 |
+
from transformers.generation.utils import GenerateOutput
|
28 |
+
|
29 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
30 |
+
|
31 |
+
|
32 |
+
class Videollama2Phi3Config(Phi3Config):
|
33 |
+
model_type = "videollama2_phi3"
|
34 |
+
|
35 |
+
def __init__(self, **kwargs):
|
36 |
+
super().__init__(**kwargs)
|
37 |
+
self.model_type = "videollama2_phi3"
|
38 |
+
|
39 |
+
|
40 |
+
class Videollama2Phi3Model(Videollama2MetaModel, Phi3Model):
|
41 |
+
config_class = Videollama2Phi3Config
|
42 |
+
|
43 |
+
def __init__(self, config: Phi3Config):
|
44 |
+
super(Videollama2Phi3Model, self).__init__(config)
|
45 |
+
|
46 |
+
|
47 |
+
class Videollama2Phi3ForCausalLM(Phi3ForCausalLM, Videollama2MetaForCausalLM):
|
48 |
+
config_class = Videollama2Phi3Config
|
49 |
+
|
50 |
+
def __init__(self, config, **kwargs):
|
51 |
+
super(Phi3ForCausalLM, self).__init__(config)
|
52 |
+
self.model = Videollama2Phi3Model(config)
|
53 |
+
# self.pretraining_tp = config.pretraining_tp
|
54 |
+
self.vocab_size = config.vocab_size
|
55 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
56 |
+
|
57 |
+
# Initialize weights and apply final processing
|
58 |
+
self.post_init()
|
59 |
+
|
60 |
+
def get_model(self):
|
61 |
+
return self.model
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
input_ids: torch.LongTensor = None,
|
66 |
+
attention_mask: Optional[torch.Tensor] = None,
|
67 |
+
position_ids: Optional[torch.LongTensor] = None,
|
68 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
69 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
70 |
+
labels: Optional[torch.LongTensor] = None,
|
71 |
+
use_cache: Optional[bool] = None,
|
72 |
+
output_attentions: Optional[bool] = None,
|
73 |
+
output_hidden_states: Optional[bool] = None,
|
74 |
+
images: Optional[torch.FloatTensor] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
cache_position: Optional[int] = None,
|
77 |
+
**kwargs
|
78 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
79 |
+
|
80 |
+
if inputs_embeds is None:
|
81 |
+
(
|
82 |
+
input_ids,
|
83 |
+
attention_mask,
|
84 |
+
past_key_values,
|
85 |
+
inputs_embeds,
|
86 |
+
labels
|
87 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
88 |
+
input_ids,
|
89 |
+
attention_mask,
|
90 |
+
past_key_values,
|
91 |
+
labels,
|
92 |
+
images
|
93 |
+
)
|
94 |
+
|
95 |
+
outputs = super().forward(
|
96 |
+
input_ids=input_ids,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
past_key_values=past_key_values,
|
99 |
+
inputs_embeds=inputs_embeds,
|
100 |
+
labels=labels,
|
101 |
+
use_cache=use_cache,
|
102 |
+
output_attentions=output_attentions,
|
103 |
+
output_hidden_states=output_hidden_states,
|
104 |
+
return_dict=return_dict,
|
105 |
+
cache_position=cache_position,
|
106 |
+
)
|
107 |
+
|
108 |
+
outputs.labels = labels
|
109 |
+
|
110 |
+
return outputs
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def generate(
|
114 |
+
self,
|
115 |
+
inputs: Optional[torch.Tensor] = None,
|
116 |
+
images: Optional[torch.Tensor] = None,
|
117 |
+
**kwargs,
|
118 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
119 |
+
position_ids = kwargs.pop("position_ids", None)
|
120 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
121 |
+
if "inputs_embeds" in kwargs:
|
122 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
123 |
+
|
124 |
+
if images is not None:
|
125 |
+
(
|
126 |
+
input_ids,
|
127 |
+
attention_mask,
|
128 |
+
past_key_values,
|
129 |
+
inputs_embeds,
|
130 |
+
_
|
131 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
132 |
+
input_ids=inputs,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
past_key_values=None,
|
135 |
+
labels=None,
|
136 |
+
images=images
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
140 |
+
|
141 |
+
return super().generate(
|
142 |
+
position_ids=position_ids,
|
143 |
+
attention_mask=attention_mask,
|
144 |
+
inputs_embeds=inputs_embeds,
|
145 |
+
**kwargs
|
146 |
+
)
|
147 |
+
|
148 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
149 |
+
images = kwargs.pop("images", None)
|
150 |
+
_inputs = super().prepare_inputs_for_generation(
|
151 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
152 |
+
)
|
153 |
+
if images is not None:
|
154 |
+
_inputs['images'] = images
|
155 |
+
return _inputs
|
156 |
+
|
157 |
+
|
158 |
+
AutoConfig.register("videollama2_phi3", Videollama2Phi3Config)
|
159 |
+
AutoModelForCausalLM.register(Videollama2Phi3Config, Videollama2Phi3ForCausalLM)
|
videollama2/model/videollama2_qwen2.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
+
from transformers.generation.utils import GenerateOutput
|
26 |
+
|
27 |
+
from .videollama2_arch import Videollama2MetaModel, Videollama2MetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class Videollama2Qwen2Config(Qwen2Config):
|
31 |
+
model_type = "videollama2_qwen2"
|
32 |
+
|
33 |
+
def __init__(self, **kwargs):
|
34 |
+
super().__init__(**kwargs)
|
35 |
+
self.model_type = "videollama2_qwen2"
|
36 |
+
|
37 |
+
|
38 |
+
class Videollama2Qwen2Model(Videollama2MetaModel, Qwen2Model):
|
39 |
+
config_class = Videollama2Qwen2Config
|
40 |
+
|
41 |
+
def __init__(self, config: Videollama2Qwen2Config):
|
42 |
+
super(Videollama2Qwen2Model, self).__init__(config)
|
43 |
+
|
44 |
+
|
45 |
+
class Videollama2Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama2MetaForCausalLM):
|
46 |
+
config_class = Videollama2Qwen2Config
|
47 |
+
|
48 |
+
def __init__(self, config, **kwargs):
|
49 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
50 |
+
self.model = Videollama2Qwen2Model(config)
|
51 |
+
# self.pretraining_tp = config.pretraining_tp
|
52 |
+
self.vocab_size = config.vocab_size
|
53 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
54 |
+
|
55 |
+
# Initialize weights and apply final processing
|
56 |
+
self.post_init()
|
57 |
+
|
58 |
+
def get_model(self):
|
59 |
+
return self.model
|
60 |
+
|
61 |
+
def forward(
|
62 |
+
self,
|
63 |
+
input_ids: torch.LongTensor = None,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
position_ids: Optional[torch.LongTensor] = None,
|
66 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
67 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
68 |
+
labels: Optional[torch.LongTensor] = None,
|
69 |
+
use_cache: Optional[bool] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
images: Optional[torch.FloatTensor] = None,
|
73 |
+
return_dict: Optional[bool] = None,
|
74 |
+
cache_position: Optional[int] = None,
|
75 |
+
**kwargs
|
76 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
77 |
+
|
78 |
+
if inputs_embeds is None:
|
79 |
+
(
|
80 |
+
input_ids,
|
81 |
+
attention_mask,
|
82 |
+
past_key_values,
|
83 |
+
inputs_embeds,
|
84 |
+
labels
|
85 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
86 |
+
input_ids,
|
87 |
+
attention_mask,
|
88 |
+
past_key_values,
|
89 |
+
labels,
|
90 |
+
images
|
91 |
+
)
|
92 |
+
|
93 |
+
return super().forward(
|
94 |
+
input_ids=input_ids,
|
95 |
+
attention_mask=attention_mask,
|
96 |
+
past_key_values=past_key_values,
|
97 |
+
inputs_embeds=inputs_embeds,
|
98 |
+
labels=labels,
|
99 |
+
use_cache=use_cache,
|
100 |
+
output_attentions=output_attentions,
|
101 |
+
output_hidden_states=output_hidden_states,
|
102 |
+
return_dict=return_dict,
|
103 |
+
cache_position=cache_position,
|
104 |
+
)
|
105 |
+
|
106 |
+
@torch.no_grad()
|
107 |
+
def generate(
|
108 |
+
self,
|
109 |
+
inputs: Optional[torch.Tensor] = None,
|
110 |
+
images: Optional[torch.Tensor] = None,
|
111 |
+
**kwargs,
|
112 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
113 |
+
position_ids = kwargs.pop("position_ids", None)
|
114 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
115 |
+
if "inputs_embeds" in kwargs:
|
116 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
117 |
+
|
118 |
+
if images is not None:
|
119 |
+
(
|
120 |
+
input_ids,
|
121 |
+
attention_mask,
|
122 |
+
past_key_values,
|
123 |
+
inputs_embeds,
|
124 |
+
_
|
125 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
126 |
+
input_ids=inputs,
|
127 |
+
attention_mask=attention_mask,
|
128 |
+
past_key_values=None,
|
129 |
+
labels=None,
|
130 |
+
images=images
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
134 |
+
|
135 |
+
return super().generate(
|
136 |
+
position_ids=position_ids,
|
137 |
+
attention_mask=attention_mask,
|
138 |
+
inputs_embeds=inputs_embeds,
|
139 |
+
**kwargs
|
140 |
+
)
|
141 |
+
|
142 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
143 |
+
images = kwargs.pop("images", None)
|
144 |
+
_inputs = super().prepare_inputs_for_generation(
|
145 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
146 |
+
)
|
147 |
+
if images is not None:
|
148 |
+
_inputs['images'] = images
|
149 |
+
return _inputs
|
150 |
+
|
151 |
+
|
152 |
+
AutoConfig.register("videollama2_qwen2", Videollama2Qwen2Config)
|
153 |
+
AutoModelForCausalLM.register(Videollama2Qwen2Config, Videollama2Qwen2ForCausalLM)
|
videollama2/serve/cli.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from videollama2.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, NUM_FRAMES
|
5 |
+
from videollama2.conversation import conv_templates, SeparatorStyle
|
6 |
+
from videollama2.model.builder import load_pretrained_model
|
7 |
+
from videollama2.utils import disable_torch_init
|
8 |
+
from videollama2.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, tokenizer_MMODAL_token
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
|
13 |
+
import requests
|
14 |
+
from io import BytesIO
|
15 |
+
from transformers import TextStreamer
|
16 |
+
|
17 |
+
|
18 |
+
def load_image(image_file):
|
19 |
+
if image_file.startswith('http://') or image_file.startswith('https://'):
|
20 |
+
response = requests.get(image_file)
|
21 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
22 |
+
else:
|
23 |
+
image = Image.open(image_file).convert('RGB')
|
24 |
+
return image
|
25 |
+
|
26 |
+
def load_video(video_file):
|
27 |
+
decord_vr = VideoReader(uri=video_file, ctx=cpu(0))
|
28 |
+
duration = len(decord_vr)
|
29 |
+
frame_id_list = np.linspace(0, duration-1, NUM_FRAMES, dtype=int)
|
30 |
+
video = decord_vr.get_batch(frame_id_list)
|
31 |
+
return video
|
32 |
+
|
33 |
+
def load_image_or_video(image_or_video_file):
|
34 |
+
if file_path.endswith(('.jpg', '.jpeg', '.png', '.bmp')):
|
35 |
+
return load_image(image_file=image_or_video_file)
|
36 |
+
elif file_path.endswith(('.mp4', '.avi', '.mov')):
|
37 |
+
return load_video(video_file=image_or_video_file)
|
38 |
+
else:
|
39 |
+
raise Exception(f"File type of {image_or_video_file} not supported!!!")
|
40 |
+
|
41 |
+
|
42 |
+
def main(args):
|
43 |
+
# Model
|
44 |
+
disable_torch_init()
|
45 |
+
|
46 |
+
model_name = get_model_name_from_path(args.model_path)
|
47 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
48 |
+
|
49 |
+
# if "llama-2" in model_name.lower():
|
50 |
+
# conv_mode = "llava_llama2"
|
51 |
+
# elif "mistral" in model_name.lower():
|
52 |
+
# conv_mode = "mistral"
|
53 |
+
# elif "v1.6-34b" in model_name.lower():
|
54 |
+
# conv_mode = "chatml_direct"
|
55 |
+
# elif "v1" in model_name.lower():
|
56 |
+
# conv_mode = "llava_v1"
|
57 |
+
# else:
|
58 |
+
# conv_mode = "llava_v0"
|
59 |
+
conv_mode = "llava_v1" # fix conversation mode for now
|
60 |
+
|
61 |
+
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
62 |
+
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
|
63 |
+
else:
|
64 |
+
args.conv_mode = conv_mode
|
65 |
+
|
66 |
+
conv = conv_templates[args.conv_mode].copy()
|
67 |
+
roles = conv.roles
|
68 |
+
|
69 |
+
image = load_image(args.image_file)
|
70 |
+
image_size = image.size
|
71 |
+
# Similar operation in model_worker.py
|
72 |
+
image_tensor = process_images([image], image_processor, model.config)
|
73 |
+
if type(image_tensor) is list:
|
74 |
+
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
75 |
+
else:
|
76 |
+
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
77 |
+
|
78 |
+
while True:
|
79 |
+
try:
|
80 |
+
inp = input(f"{roles[0]}: ")
|
81 |
+
except EOFError:
|
82 |
+
inp = ""
|
83 |
+
if not inp:
|
84 |
+
print("exit...")
|
85 |
+
break
|
86 |
+
|
87 |
+
print(f"{roles[1]}: ", end="")
|
88 |
+
|
89 |
+
if image is not None:
|
90 |
+
# first message
|
91 |
+
if model.config.mm_use_im_start_end:
|
92 |
+
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
|
93 |
+
else:
|
94 |
+
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
95 |
+
conv.append_message(conv.roles[0], inp)
|
96 |
+
image = None
|
97 |
+
else:
|
98 |
+
# later messages
|
99 |
+
conv.append_message(conv.roles[0], inp)
|
100 |
+
conv.append_message(conv.roles[1], None)
|
101 |
+
prompt = conv.get_prompt()
|
102 |
+
|
103 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
104 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
105 |
+
keywords = [stop_str]
|
106 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
107 |
+
|
108 |
+
with torch.inference_mode():
|
109 |
+
output_ids = model.generate(
|
110 |
+
input_ids,
|
111 |
+
images=image_tensor,
|
112 |
+
image_sizes=[image_size],
|
113 |
+
do_sample=True if args.temperature > 0 else False,
|
114 |
+
temperature=args.temperature,
|
115 |
+
max_new_tokens=args.max_new_tokens,
|
116 |
+
streamer=streamer,
|
117 |
+
use_cache=True)
|
118 |
+
|
119 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
120 |
+
conv.messages[-1][-1] = outputs
|
121 |
+
|
122 |
+
if args.debug:
|
123 |
+
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
parser = argparse.ArgumentParser()
|
128 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
129 |
+
parser.add_argument("--model-base", type=str, default=None)
|
130 |
+
parser.add_argument("--image-file", type=str, required=True)
|
131 |
+
parser.add_argument("--device", type=str, default="cuda")
|
132 |
+
parser.add_argument("--conv-mode", type=str, default=None)
|
133 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
134 |
+
parser.add_argument("--max-new-tokens", type=int, default=512)
|
135 |
+
parser.add_argument("--load-8bit", action="store_true")
|
136 |
+
parser.add_argument("--load-4bit", action="store_true")
|
137 |
+
parser.add_argument("--debug", action="store_true")
|
138 |
+
args = parser.parse_args()
|
139 |
+
main(args)
|
videollama2/serve/controller.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A controller manages distributed workers.
|
3 |
+
It sends worker addresses to clients.
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
import asyncio
|
7 |
+
import dataclasses
|
8 |
+
from enum import Enum, auto
|
9 |
+
import json
|
10 |
+
import logging
|
11 |
+
import time
|
12 |
+
from typing import List, Union
|
13 |
+
import threading
|
14 |
+
|
15 |
+
from fastapi import FastAPI, Request
|
16 |
+
from fastapi.responses import StreamingResponse
|
17 |
+
import numpy as np
|
18 |
+
import requests
|
19 |
+
import uvicorn
|
20 |
+
|
21 |
+
from videollama2.constants import CONTROLLER_HEART_BEAT_EXPIRATION
|
22 |
+
from videollama2.utils import build_logger, server_error_msg
|
23 |
+
|
24 |
+
|
25 |
+
logger = build_logger("controller", "controller.log")
|
26 |
+
|
27 |
+
|
28 |
+
class DispatchMethod(Enum):
|
29 |
+
LOTTERY = auto()
|
30 |
+
SHORTEST_QUEUE = auto()
|
31 |
+
|
32 |
+
@classmethod
|
33 |
+
def from_str(cls, name):
|
34 |
+
if name == "lottery":
|
35 |
+
return cls.LOTTERY
|
36 |
+
elif name == "shortest_queue":
|
37 |
+
return cls.SHORTEST_QUEUE
|
38 |
+
else:
|
39 |
+
raise ValueError(f"Invalid dispatch method")
|
40 |
+
|
41 |
+
|
42 |
+
@dataclasses.dataclass
|
43 |
+
class WorkerInfo:
|
44 |
+
model_names: List[str]
|
45 |
+
speed: int
|
46 |
+
queue_length: int
|
47 |
+
check_heart_beat: bool
|
48 |
+
last_heart_beat: str
|
49 |
+
|
50 |
+
|
51 |
+
def heart_beat_controller(controller):
|
52 |
+
while True:
|
53 |
+
time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION)
|
54 |
+
controller.remove_stable_workers_by_expiration()
|
55 |
+
|
56 |
+
|
57 |
+
class Controller:
|
58 |
+
def __init__(self, dispatch_method: str):
|
59 |
+
# Dict[str -> WorkerInfo]
|
60 |
+
self.worker_info = {}
|
61 |
+
self.dispatch_method = DispatchMethod.from_str(dispatch_method)
|
62 |
+
|
63 |
+
self.heart_beat_thread = threading.Thread(
|
64 |
+
target=heart_beat_controller, args=(self,), daemon=True)
|
65 |
+
self.heart_beat_thread.start()
|
66 |
+
|
67 |
+
logger.info("Init controller")
|
68 |
+
|
69 |
+
def register_worker(self, worker_name: str, check_heart_beat: bool,
|
70 |
+
worker_status: dict):
|
71 |
+
if worker_name not in self.worker_info:
|
72 |
+
logger.info(f"Register a new worker: {worker_name}")
|
73 |
+
else:
|
74 |
+
logger.info(f"Register an existing worker: {worker_name}")
|
75 |
+
|
76 |
+
if not worker_status:
|
77 |
+
worker_status = self.get_worker_status(worker_name)
|
78 |
+
if not worker_status:
|
79 |
+
return False
|
80 |
+
|
81 |
+
self.worker_info[worker_name] = WorkerInfo(
|
82 |
+
worker_status["model_names"], worker_status["speed"], worker_status["queue_length"],
|
83 |
+
check_heart_beat, time.time())
|
84 |
+
|
85 |
+
logger.info(f"Register done: {worker_name}, {worker_status}")
|
86 |
+
return True
|
87 |
+
|
88 |
+
def get_worker_status(self, worker_name: str):
|
89 |
+
try:
|
90 |
+
r = requests.post(worker_name + "/worker_get_status", timeout=5)
|
91 |
+
except requests.exceptions.RequestException as e:
|
92 |
+
logger.error(f"Get status fails: {worker_name}, {e}")
|
93 |
+
return None
|
94 |
+
|
95 |
+
if r.status_code != 200:
|
96 |
+
logger.error(f"Get status fails: {worker_name}, {r}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
return r.json()
|
100 |
+
|
101 |
+
def remove_worker(self, worker_name: str):
|
102 |
+
del self.worker_info[worker_name]
|
103 |
+
|
104 |
+
def refresh_all_workers(self):
|
105 |
+
old_info = dict(self.worker_info)
|
106 |
+
self.worker_info = {}
|
107 |
+
|
108 |
+
for w_name, w_info in old_info.items():
|
109 |
+
if not self.register_worker(w_name, w_info.check_heart_beat, None):
|
110 |
+
logger.info(f"Remove stale worker: {w_name}")
|
111 |
+
|
112 |
+
def list_models(self):
|
113 |
+
model_names = set()
|
114 |
+
|
115 |
+
for w_name, w_info in self.worker_info.items():
|
116 |
+
model_names.update(w_info.model_names)
|
117 |
+
|
118 |
+
return list(model_names)
|
119 |
+
|
120 |
+
def get_worker_address(self, model_name: str):
|
121 |
+
if self.dispatch_method == DispatchMethod.LOTTERY:
|
122 |
+
worker_names = []
|
123 |
+
worker_speeds = []
|
124 |
+
for w_name, w_info in self.worker_info.items():
|
125 |
+
if model_name in w_info.model_names:
|
126 |
+
worker_names.append(w_name)
|
127 |
+
worker_speeds.append(w_info.speed)
|
128 |
+
worker_speeds = np.array(worker_speeds, dtype=np.float32)
|
129 |
+
norm = np.sum(worker_speeds)
|
130 |
+
if norm < 1e-4:
|
131 |
+
return ""
|
132 |
+
worker_speeds = worker_speeds / norm
|
133 |
+
if True: # Directly return address
|
134 |
+
pt = np.random.choice(np.arange(len(worker_names)),
|
135 |
+
p=worker_speeds)
|
136 |
+
worker_name = worker_names[pt]
|
137 |
+
return worker_name
|
138 |
+
|
139 |
+
# Check status before returning
|
140 |
+
while True:
|
141 |
+
pt = np.random.choice(np.arange(len(worker_names)),
|
142 |
+
p=worker_speeds)
|
143 |
+
worker_name = worker_names[pt]
|
144 |
+
|
145 |
+
if self.get_worker_status(worker_name):
|
146 |
+
break
|
147 |
+
else:
|
148 |
+
self.remove_worker(worker_name)
|
149 |
+
worker_speeds[pt] = 0
|
150 |
+
norm = np.sum(worker_speeds)
|
151 |
+
if norm < 1e-4:
|
152 |
+
return ""
|
153 |
+
worker_speeds = worker_speeds / norm
|
154 |
+
continue
|
155 |
+
return worker_name
|
156 |
+
elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE:
|
157 |
+
worker_names = []
|
158 |
+
worker_qlen = []
|
159 |
+
for w_name, w_info in self.worker_info.items():
|
160 |
+
if model_name in w_info.model_names:
|
161 |
+
worker_names.append(w_name)
|
162 |
+
worker_qlen.append(w_info.queue_length / w_info.speed)
|
163 |
+
if len(worker_names) == 0:
|
164 |
+
return ""
|
165 |
+
min_index = np.argmin(worker_qlen)
|
166 |
+
w_name = worker_names[min_index]
|
167 |
+
self.worker_info[w_name].queue_length += 1
|
168 |
+
logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}")
|
169 |
+
return w_name
|
170 |
+
else:
|
171 |
+
raise ValueError(f"Invalid dispatch method: {self.dispatch_method}")
|
172 |
+
|
173 |
+
def receive_heart_beat(self, worker_name: str, queue_length: int):
|
174 |
+
if worker_name not in self.worker_info:
|
175 |
+
logger.info(f"Receive unknown heart beat. {worker_name}")
|
176 |
+
return False
|
177 |
+
|
178 |
+
self.worker_info[worker_name].queue_length = queue_length
|
179 |
+
self.worker_info[worker_name].last_heart_beat = time.time()
|
180 |
+
logger.info(f"Receive heart beat. {worker_name}")
|
181 |
+
return True
|
182 |
+
|
183 |
+
def remove_stable_workers_by_expiration(self):
|
184 |
+
expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION
|
185 |
+
to_delete = []
|
186 |
+
for worker_name, w_info in self.worker_info.items():
|
187 |
+
if w_info.check_heart_beat and w_info.last_heart_beat < expire:
|
188 |
+
to_delete.append(worker_name)
|
189 |
+
|
190 |
+
for worker_name in to_delete:
|
191 |
+
self.remove_worker(worker_name)
|
192 |
+
|
193 |
+
def worker_api_generate_stream(self, params):
|
194 |
+
worker_addr = self.get_worker_address(params["model"])
|
195 |
+
if not worker_addr:
|
196 |
+
logger.info(f"no worker: {params['model']}")
|
197 |
+
ret = {
|
198 |
+
"text": server_error_msg,
|
199 |
+
"error_code": 2,
|
200 |
+
}
|
201 |
+
yield json.dumps(ret).encode() + b"\0"
|
202 |
+
|
203 |
+
try:
|
204 |
+
response = requests.post(worker_addr + "/worker_generate_stream",
|
205 |
+
json=params, stream=True, timeout=5)
|
206 |
+
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
207 |
+
if chunk:
|
208 |
+
yield chunk + b"\0"
|
209 |
+
except requests.exceptions.RequestException as e:
|
210 |
+
logger.info(f"worker timeout: {worker_addr}")
|
211 |
+
ret = {
|
212 |
+
"text": server_error_msg,
|
213 |
+
"error_code": 3,
|
214 |
+
}
|
215 |
+
yield json.dumps(ret).encode() + b"\0"
|
216 |
+
|
217 |
+
|
218 |
+
# Let the controller act as a worker to achieve hierarchical
|
219 |
+
# management. This can be used to connect isolated sub networks.
|
220 |
+
def worker_api_get_status(self):
|
221 |
+
model_names = set()
|
222 |
+
speed = 0
|
223 |
+
queue_length = 0
|
224 |
+
|
225 |
+
for w_name in self.worker_info:
|
226 |
+
worker_status = self.get_worker_status(w_name)
|
227 |
+
if worker_status is not None:
|
228 |
+
model_names.update(worker_status["model_names"])
|
229 |
+
speed += worker_status["speed"]
|
230 |
+
queue_length += worker_status["queue_length"]
|
231 |
+
|
232 |
+
return {
|
233 |
+
"model_names": list(model_names),
|
234 |
+
"speed": speed,
|
235 |
+
"queue_length": queue_length,
|
236 |
+
}
|
237 |
+
|
238 |
+
|
239 |
+
app = FastAPI()
|
240 |
+
|
241 |
+
|
242 |
+
@app.post("/register_worker")
|
243 |
+
async def register_worker(request: Request):
|
244 |
+
data = await request.json()
|
245 |
+
controller.register_worker(
|
246 |
+
data["worker_name"], data["check_heart_beat"],
|
247 |
+
data.get("worker_status", None))
|
248 |
+
|
249 |
+
|
250 |
+
@app.post("/refresh_all_workers")
|
251 |
+
async def refresh_all_workers():
|
252 |
+
models = controller.refresh_all_workers()
|
253 |
+
|
254 |
+
|
255 |
+
@app.post("/list_models")
|
256 |
+
async def list_models():
|
257 |
+
models = controller.list_models()
|
258 |
+
return {"models": models}
|
259 |
+
|
260 |
+
|
261 |
+
@app.post("/get_worker_address")
|
262 |
+
async def get_worker_address(request: Request):
|
263 |
+
data = await request.json()
|
264 |
+
addr = controller.get_worker_address(data["model"])
|
265 |
+
return {"address": addr}
|
266 |
+
|
267 |
+
|
268 |
+
@app.post("/receive_heart_beat")
|
269 |
+
async def receive_heart_beat(request: Request):
|
270 |
+
data = await request.json()
|
271 |
+
exist = controller.receive_heart_beat(
|
272 |
+
data["worker_name"], data["queue_length"])
|
273 |
+
return {"exist": exist}
|
274 |
+
|
275 |
+
|
276 |
+
@app.post("/worker_generate_stream")
|
277 |
+
async def worker_api_generate_stream(request: Request):
|
278 |
+
params = await request.json()
|
279 |
+
generator = controller.worker_api_generate_stream(params)
|
280 |
+
return StreamingResponse(generator)
|
281 |
+
|
282 |
+
|
283 |
+
@app.post("/worker_get_status")
|
284 |
+
async def worker_api_get_status(request: Request):
|
285 |
+
return controller.worker_api_get_status()
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == "__main__":
|
289 |
+
parser = argparse.ArgumentParser()
|
290 |
+
parser.add_argument("--host", type=str, default="localhost")
|
291 |
+
parser.add_argument("--port", type=int, default=21001)
|
292 |
+
parser.add_argument("--dispatch-method", type=str, choices=[
|
293 |
+
"lottery", "shortest_queue"], default="shortest_queue")
|
294 |
+
args = parser.parse_args()
|
295 |
+
logger.info(f"args: {args}")
|
296 |
+
|
297 |
+
controller = Controller(args.dispatch_method)
|
298 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
videollama2/serve/examples/1034346401.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08b62a634fe49edc0a19fc53f6ea5cfb345d9b2a6a7047811344c16832dc42b2
|
3 |
+
size 1678095
|
videollama2/serve/examples/desert.jpg
ADDED
videollama2/serve/examples/extreme_ironing.jpg
ADDED
videollama2/serve/examples/sample_demo_1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6562a172eb9cb3c760a3c9992349c1faa2c793c112b7b9e50bd5cb17c2164d
|
3 |
+
size 1549315
|
videollama2/serve/examples/sample_demo_3.mp4
ADDED
Binary file (464 kB). View file
|
|
videollama2/serve/examples/sample_demo_9.mp4
ADDED
Binary file (632 kB). View file
|
|
videollama2/serve/examples/waterview.jpg
ADDED
videollama2/serve/gradio_web_server.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import hashlib
|
5 |
+
import requests
|
6 |
+
import argparse
|
7 |
+
import datetime
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
+
from decord import VideoReader, cpu
|
12 |
+
|
13 |
+
from videollama2.constants import LOGDIR, NUM_FRAMES
|
14 |
+
from videollama2.conversation import (default_conversation, conv_templates,SeparatorStyle)
|
15 |
+
from videollama2.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
|
16 |
+
|
17 |
+
|
18 |
+
logger = build_logger("gradio_web_server", "gradio_web_server.log")
|
19 |
+
|
20 |
+
headers = {"User-Agent": "Videollama2 Client"}
|
21 |
+
|
22 |
+
no_change_btn = gr.Button.update()
|
23 |
+
enable_btn = gr.Button.update(interactive=True)
|
24 |
+
disable_btn = gr.Button.update(interactive=False)
|
25 |
+
|
26 |
+
priority = {
|
27 |
+
"vicuna-13b": "aaaaaaa",
|
28 |
+
"koala-13b": "aaaaaab",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def get_conv_log_filename():
|
33 |
+
t = datetime.datetime.now()
|
34 |
+
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
|
35 |
+
return name
|
36 |
+
|
37 |
+
|
38 |
+
def get_model_list():
|
39 |
+
ret = requests.post(args.controller_url + "/refresh_all_workers")
|
40 |
+
assert ret.status_code == 200
|
41 |
+
ret = requests.post(args.controller_url + "/list_models")
|
42 |
+
models = ret.json()["models"]
|
43 |
+
models.sort(key=lambda x: priority.get(x, x))
|
44 |
+
logger.info(f"Models: {models}")
|
45 |
+
return models
|
46 |
+
|
47 |
+
|
48 |
+
get_window_url_params = """
|
49 |
+
function() {
|
50 |
+
const params = new URLSearchParams(window.location.search);
|
51 |
+
url_params = Object.fromEntries(params);
|
52 |
+
console.log(url_params);
|
53 |
+
return url_params;
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
def load_demo(url_params, request: gr.Request):
|
59 |
+
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
|
60 |
+
|
61 |
+
dropdown_update = gr.Dropdown.update(visible=True)
|
62 |
+
if "model" in url_params:
|
63 |
+
model = url_params["model"]
|
64 |
+
if model in models:
|
65 |
+
dropdown_update = gr.Dropdown.update(
|
66 |
+
value=model, visible=True)
|
67 |
+
|
68 |
+
state = default_conversation.copy()
|
69 |
+
return state, dropdown_update
|
70 |
+
|
71 |
+
|
72 |
+
def load_demo_refresh_model_list(request: gr.Request):
|
73 |
+
logger.info(f"load_demo. ip: {request.client.host}")
|
74 |
+
models = get_model_list()
|
75 |
+
state = default_conversation.copy()
|
76 |
+
dropdown_update = gr.Dropdown.update(
|
77 |
+
choices=models,
|
78 |
+
value=models[0] if len(models) > 0 else ""
|
79 |
+
)
|
80 |
+
return state, dropdown_update
|
81 |
+
|
82 |
+
|
83 |
+
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
|
84 |
+
with open(get_conv_log_filename(), "a") as fout:
|
85 |
+
data = {
|
86 |
+
"tstamp": round(time.time(), 4),
|
87 |
+
"type": vote_type,
|
88 |
+
"model": model_selector,
|
89 |
+
"state": state.dict(),
|
90 |
+
"ip": request.client.host,
|
91 |
+
}
|
92 |
+
fout.write(json.dumps(data) + "\n")
|
93 |
+
|
94 |
+
|
95 |
+
def upvote_last_response(state, model_selector, request: gr.Request):
|
96 |
+
logger.info(f"upvote. ip: {request.client.host}")
|
97 |
+
vote_last_response(state, "upvote", model_selector, request)
|
98 |
+
return ("",) + (disable_btn,) * 3
|
99 |
+
|
100 |
+
|
101 |
+
def downvote_last_response(state, model_selector, request: gr.Request):
|
102 |
+
logger.info(f"downvote. ip: {request.client.host}")
|
103 |
+
vote_last_response(state, "downvote", model_selector, request)
|
104 |
+
return ("",) + (disable_btn,) * 3
|
105 |
+
|
106 |
+
|
107 |
+
def flag_last_response(state, model_selector, request: gr.Request):
|
108 |
+
logger.info(f"flag. ip: {request.client.host}")
|
109 |
+
vote_last_response(state, "flag", model_selector, request)
|
110 |
+
return ("",) + (disable_btn,) * 3
|
111 |
+
|
112 |
+
|
113 |
+
def regenerate(state, image_process_mode, request: gr.Request):
|
114 |
+
logger.info(f"regenerate. ip: {request.client.host}")
|
115 |
+
state.messages[-1][-1] = None
|
116 |
+
prev_human_msg = state.messages[-2]
|
117 |
+
if type(prev_human_msg[1]) in (tuple, list):
|
118 |
+
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
119 |
+
state.skip_next = False
|
120 |
+
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
|
121 |
+
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
|
122 |
+
|
123 |
+
|
124 |
+
def clear_history(request: gr.Request):
|
125 |
+
logger.info(f"clear_history. ip: {request.client.host}")
|
126 |
+
state = default_conversation.copy()
|
127 |
+
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
|
128 |
+
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
|
129 |
+
|
130 |
+
|
131 |
+
def add_text_ori(state, text, image, video, image_process_mode, request: gr.Request):
|
132 |
+
# note: imagebox itself is PIL object while videobox is filepath
|
133 |
+
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
|
134 |
+
if len(text) <= 0 and image is None:
|
135 |
+
state.skip_next = True
|
136 |
+
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
|
137 |
+
if args.moderate:
|
138 |
+
flagged = violates_moderation(text)
|
139 |
+
if flagged:
|
140 |
+
state.skip_next = True
|
141 |
+
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
|
142 |
+
no_change_btn,) * 5
|
143 |
+
assert image is None or video is None, "Please don't feed image and video inputs at the same time!!!"
|
144 |
+
text = text[:1536] # Hard cut-off
|
145 |
+
if image is not None:
|
146 |
+
# here image is the PIL object itself
|
147 |
+
text = text[:1200] # Hard cut-off for images
|
148 |
+
if '<image>' not in text:
|
149 |
+
# text = '<Image><image></Image>' + text
|
150 |
+
text = text + '\n<image>'
|
151 |
+
text = (text, image, image_process_mode)
|
152 |
+
if len(state.get_images(return_pil=True)) > 0:
|
153 |
+
state = default_conversation.copy()
|
154 |
+
state.modality = "image"
|
155 |
+
if video is not None:
|
156 |
+
print("Video box:", video)
|
157 |
+
# here video is the file path of video
|
158 |
+
text = text[:1200] # Hard cut-off for images
|
159 |
+
if '<video>' not in text:
|
160 |
+
# text = '<Image><image></Image>' + text
|
161 |
+
text = text + '\n<video>'
|
162 |
+
text = (text, video, image_process_mode)
|
163 |
+
if len(state.get_videos(return_pil=True)) > 0:
|
164 |
+
state = default_conversation.copy()
|
165 |
+
state.modality = "video"
|
166 |
+
print("Set modality as video...")
|
167 |
+
state.append_message(state.roles[0], text)
|
168 |
+
state.append_message(state.roles[1], None)
|
169 |
+
state.skip_next = False
|
170 |
+
# (state, chatbot, textbox, imagebox, videobox, upvote, downvote, flag, generate, clear)
|
171 |
+
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
|
172 |
+
|
173 |
+
|
174 |
+
def add_text(state, text, image, video, image_process_mode, request: gr.Request):
|
175 |
+
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
|
176 |
+
|
177 |
+
# if input is new video or image ,reset the state
|
178 |
+
if image is not None or video is not None:
|
179 |
+
state = default_conversation.copy()
|
180 |
+
|
181 |
+
if len(text) <= 0 and image is None and video is None:
|
182 |
+
state.skip_next = True
|
183 |
+
return (state, state.to_gradio_chatbot(), "", None, None) + (no_change_btn,) * 5
|
184 |
+
|
185 |
+
if args.moderate:
|
186 |
+
flagged = violates_moderation(text)
|
187 |
+
if flagged:
|
188 |
+
state.skip_next = True
|
189 |
+
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (no_change_btn,) * 5
|
190 |
+
|
191 |
+
# process the input video
|
192 |
+
if video is not None:
|
193 |
+
text = text[:1200] #
|
194 |
+
if '<video>' not in text:
|
195 |
+
text = text + '\n<video>'
|
196 |
+
text = (text, video, image_process_mode)
|
197 |
+
state.modality = "video"
|
198 |
+
# process the input image
|
199 |
+
elif image is not None:
|
200 |
+
text = text[:1200] #
|
201 |
+
if '<image>' not in text:
|
202 |
+
text = text + '\n<image>'
|
203 |
+
text = (text, image, image_process_mode)
|
204 |
+
state.modality = "image"
|
205 |
+
elif state.modality == "image" and len(text)>0:
|
206 |
+
state.modality = "image_text"
|
207 |
+
text = text[:1536] # Hard cut-off
|
208 |
+
elif state.modality == "video" and len(text)>0:
|
209 |
+
state.modality = "video_text"
|
210 |
+
text = text[:1536] # Hard cut-off
|
211 |
+
|
212 |
+
state.append_message(state.roles[0], text)
|
213 |
+
state.append_message(state.roles[1], None)
|
214 |
+
state.skip_next = False
|
215 |
+
|
216 |
+
return (state, state.to_gradio_chatbot(), "", None, None) + (disable_btn,) * 5
|
217 |
+
|
218 |
+
|
219 |
+
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
|
220 |
+
logger.info(f"http_bot. ip: {request.client.host}")
|
221 |
+
start_tstamp = time.time()
|
222 |
+
model_name = model_selector
|
223 |
+
|
224 |
+
if state.skip_next:
|
225 |
+
# This generate call is skipped due to invalid inputs
|
226 |
+
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
227 |
+
return
|
228 |
+
|
229 |
+
if len(state.messages) == state.offset + 2:
|
230 |
+
# First round of conversation
|
231 |
+
if "llava" in model_name.lower():
|
232 |
+
if 'llama-2' in model_name.lower():
|
233 |
+
template_name = "llava_llama2"
|
234 |
+
elif "v1" in model_name.lower():
|
235 |
+
if 'mmtag' in model_name.lower():
|
236 |
+
template_name = "v1_mmtag"
|
237 |
+
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
238 |
+
template_name = "v1_mmtag"
|
239 |
+
else:
|
240 |
+
template_name = "llava_v1"
|
241 |
+
else:
|
242 |
+
if 'mmtag' in model_name.lower():
|
243 |
+
template_name = "v0_mmtag"
|
244 |
+
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
|
245 |
+
template_name = "v0_mmtag"
|
246 |
+
else:
|
247 |
+
template_name = "llava_v0"
|
248 |
+
elif "llama-2" in model_name:
|
249 |
+
template_name = "llama2"
|
250 |
+
else:
|
251 |
+
template_name = "vicuna_v1"
|
252 |
+
template_name = "llava_v1"
|
253 |
+
new_state = conv_templates[template_name].copy()
|
254 |
+
new_state.append_message(new_state.roles[0], state.messages[-2][1])
|
255 |
+
new_state.append_message(new_state.roles[1], None)
|
256 |
+
new_state.modality = state.modality
|
257 |
+
state = new_state
|
258 |
+
|
259 |
+
# Query worker address
|
260 |
+
controller_url = args.controller_url
|
261 |
+
ret = requests.post(controller_url + "/get_worker_address",
|
262 |
+
json={"model": model_name})
|
263 |
+
worker_addr = ret.json()["address"]
|
264 |
+
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
|
265 |
+
|
266 |
+
# No available worker
|
267 |
+
if worker_addr == "":
|
268 |
+
state.messages[-1][-1] = server_error_msg
|
269 |
+
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
270 |
+
return
|
271 |
+
|
272 |
+
# Construct prompt
|
273 |
+
prompt = state.get_prompt()
|
274 |
+
if state.modality == "image" or state.modality == "image_text":
|
275 |
+
all_images = state.get_images(return_pil=True) # return PIL.Image object
|
276 |
+
elif state.modality == "video" or state.modality == "video_text":
|
277 |
+
all_images = state.get_videos(return_pil=True) # return video frames where each frame is a PIL.Image object
|
278 |
+
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
|
279 |
+
for idx, (image, hash) in enumerate(zip(all_images, all_image_hash)):
|
280 |
+
t = datetime.datetime.now()
|
281 |
+
if state.modality == "image" or state.modality == "image_text":
|
282 |
+
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
|
283 |
+
elif state.modality == "video" or state.modality == "video_text":
|
284 |
+
filename = os.path.join(LOGDIR, "serve_videos", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}_{idx}.jpg")
|
285 |
+
if not os.path.isfile(filename):
|
286 |
+
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
287 |
+
image.save(filename)
|
288 |
+
|
289 |
+
# Make requests
|
290 |
+
pload = {
|
291 |
+
"model": model_name,
|
292 |
+
"prompt": prompt,
|
293 |
+
"temperature": float(temperature),
|
294 |
+
"top_p": float(top_p),
|
295 |
+
"max_new_tokens": min(int(max_new_tokens), 1536),
|
296 |
+
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE] else state.sep2,
|
297 |
+
#"images": f'List of {len(state.get_images())} images: {all_image_hash}',
|
298 |
+
"images": f'List of {len(all_image_hash)} images: {all_image_hash}',
|
299 |
+
}
|
300 |
+
logger.info(f"==== request ====\n{pload}")
|
301 |
+
|
302 |
+
if state.modality == "image" or state.modality == "image_text":
|
303 |
+
pload['images'] = state.get_images()
|
304 |
+
elif state.modality == "video" or state.modality == "video_text":
|
305 |
+
pload['images'] = state.get_videos()
|
306 |
+
|
307 |
+
state.messages[-1][-1] = "▌"
|
308 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
309 |
+
|
310 |
+
try:
|
311 |
+
# Stream output
|
312 |
+
response = requests.post(worker_addr + "/worker_generate_stream",
|
313 |
+
headers=headers, json=pload, stream=True, timeout=10)
|
314 |
+
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
315 |
+
if chunk:
|
316 |
+
data = json.loads(chunk.decode())
|
317 |
+
if data["error_code"] == 0:
|
318 |
+
output = data["text"][len(prompt):].strip()
|
319 |
+
state.messages[-1][-1] = output + "▌"
|
320 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
321 |
+
else:
|
322 |
+
output = data["text"] + f" (error_code: {data['error_code']})"
|
323 |
+
state.messages[-1][-1] = output
|
324 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
325 |
+
return
|
326 |
+
time.sleep(0.03)
|
327 |
+
except requests.exceptions.RequestException as e:
|
328 |
+
state.messages[-1][-1] = server_error_msg
|
329 |
+
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
330 |
+
return
|
331 |
+
|
332 |
+
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
333 |
+
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
334 |
+
|
335 |
+
finish_tstamp = time.time()
|
336 |
+
logger.info(f"{output}")
|
337 |
+
|
338 |
+
with open(get_conv_log_filename(), "a") as fout:
|
339 |
+
data = {
|
340 |
+
"tstamp": round(finish_tstamp, 4),
|
341 |
+
"type": "chat",
|
342 |
+
"model": model_name,
|
343 |
+
"start": round(start_tstamp, 4),
|
344 |
+
"finish": round(start_tstamp, 4),
|
345 |
+
#"state": state.dict(),
|
346 |
+
"images": all_image_hash,
|
347 |
+
"ip": request.client.host,
|
348 |
+
}
|
349 |
+
fout.write(json.dumps(data) + "\n")
|
350 |
+
|
351 |
+
title_markdown = ("""
|
352 |
+
# The publicl release of VideoLLaMA2
|
353 |
+
""")
|
354 |
+
|
355 |
+
tos_markdown = ("""
|
356 |
+
### Terms of use
|
357 |
+
By using this service, users are required to agree to the following terms:
|
358 |
+
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
|
359 |
+
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
|
360 |
+
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
|
361 |
+
""")
|
362 |
+
|
363 |
+
|
364 |
+
learn_more_markdown = ("""
|
365 |
+
### License
|
366 |
+
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
367 |
+
""")
|
368 |
+
|
369 |
+
block_css = """
|
370 |
+
|
371 |
+
#buttons button {
|
372 |
+
min-width: min(120px,100%);
|
373 |
+
}
|
374 |
+
|
375 |
+
"""
|
376 |
+
|
377 |
+
def build_demo(embed_mode):
|
378 |
+
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
379 |
+
with gr.Blocks(title="Video-Llama", theme=gr.themes.Default(), css=block_css) as demo:
|
380 |
+
state = gr.State()
|
381 |
+
|
382 |
+
if not embed_mode:
|
383 |
+
gr.Markdown(title_markdown)
|
384 |
+
|
385 |
+
with gr.Row():
|
386 |
+
with gr.Column(scale=3):
|
387 |
+
with gr.Row(elem_id="model_selector_row"):
|
388 |
+
model_selector = gr.Dropdown(
|
389 |
+
choices=models,
|
390 |
+
value=models[0] if len(models) > 0 else "",
|
391 |
+
interactive=True,
|
392 |
+
show_label=False,
|
393 |
+
container=False)
|
394 |
+
|
395 |
+
imagebox = gr.Image(type="pil")
|
396 |
+
videobox = gr.Video()
|
397 |
+
image_process_mode = gr.Radio(
|
398 |
+
["Crop", "Resize", "Pad", "Default"],
|
399 |
+
value="Default",
|
400 |
+
label="Preprocess for non-square image", visible=False)
|
401 |
+
|
402 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
403 |
+
gr.Examples(examples=[
|
404 |
+
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
|
405 |
+
[f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
|
406 |
+
[f"{cur_dir}/examples/desert.jpg", "If there are factual errors in the questions, point it out; if not, proceed answering the question. What’s happening in the desert?"],
|
407 |
+
], inputs=[imagebox, textbox], label="Image examples")
|
408 |
+
|
409 |
+
# video example inputs
|
410 |
+
gr.Examples(examples=[
|
411 |
+
[f"{cur_dir}/examples/sample_demo_1.mp4", "Why is this video funny?"],
|
412 |
+
[f"{cur_dir}/examples/sample_demo_3.mp4", "Can you identify any safety hazards in this video?"],
|
413 |
+
[f"{cur_dir}/examples/1034346401.mp4", "What is this young woman doing?"]
|
414 |
+
], inputs=[videobox, textbox], label="Video examples")
|
415 |
+
#[f"{cur_dir}/examples/sample_demo_9.mp4", "Describe the video in detail and please do not generate repetitive content."]
|
416 |
+
|
417 |
+
with gr.Accordion("Parameters", open=False) as parameter_row:
|
418 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
|
419 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
|
420 |
+
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
|
421 |
+
|
422 |
+
with gr.Column(scale=8):
|
423 |
+
chatbot = gr.Chatbot(elem_id="chatbot", label="Videollama2 Chatbot", height=550)
|
424 |
+
with gr.Row():
|
425 |
+
with gr.Column(scale=8):
|
426 |
+
textbox.render()
|
427 |
+
with gr.Column(scale=1, min_width=50):
|
428 |
+
submit_btn = gr.Button(value="Send", variant="primary")
|
429 |
+
with gr.Row(elem_id="buttons") as button_row:
|
430 |
+
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
|
431 |
+
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
|
432 |
+
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
|
433 |
+
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
|
434 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
435 |
+
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
436 |
+
|
437 |
+
if not embed_mode:
|
438 |
+
gr.Markdown(tos_markdown)
|
439 |
+
gr.Markdown(learn_more_markdown)
|
440 |
+
url_params = gr.JSON(visible=False)
|
441 |
+
|
442 |
+
# Register listeners
|
443 |
+
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
|
444 |
+
upvote_btn.click(upvote_last_response,
|
445 |
+
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
|
446 |
+
downvote_btn.click(downvote_last_response,
|
447 |
+
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
|
448 |
+
flag_btn.click(flag_last_response,
|
449 |
+
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
|
450 |
+
regenerate_btn.click(regenerate, [state, image_process_mode],
|
451 |
+
[state, chatbot, textbox, imagebox, videobox] + btn_list).then(
|
452 |
+
http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
|
453 |
+
[state, chatbot] + btn_list)
|
454 |
+
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, videobox] + btn_list)
|
455 |
+
|
456 |
+
textbox.submit(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list
|
457 |
+
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
|
458 |
+
[state, chatbot] + btn_list)
|
459 |
+
submit_btn.click(add_text, [state, textbox, imagebox, videobox, image_process_mode], [state, chatbot, textbox, imagebox, videobox] + btn_list
|
460 |
+
).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens],
|
461 |
+
[state, chatbot] + btn_list)
|
462 |
+
|
463 |
+
if args.model_list_mode == "once":
|
464 |
+
demo.load(load_demo, [url_params], [state, model_selector],
|
465 |
+
_js=get_window_url_params)
|
466 |
+
elif args.model_list_mode == "reload":
|
467 |
+
demo.load(load_demo_refresh_model_list, None, [state, model_selector])
|
468 |
+
else:
|
469 |
+
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
|
470 |
+
|
471 |
+
return demo
|
472 |
+
|
473 |
+
|
474 |
+
if __name__ == "__main__":
|
475 |
+
parser = argparse.ArgumentParser()
|
476 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
477 |
+
parser.add_argument("--port", type=int)
|
478 |
+
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
|
479 |
+
parser.add_argument("--concurrency-count", type=int, default=10)
|
480 |
+
parser.add_argument("--model-list-mode", type=str, default="once",
|
481 |
+
choices=["once", "reload"])
|
482 |
+
parser.add_argument("--share", action="store_true")
|
483 |
+
parser.add_argument("--moderate", action="store_true")
|
484 |
+
parser.add_argument("--embed", action="store_true")
|
485 |
+
args = parser.parse_args()
|
486 |
+
logger.info(f"args: {args}")
|
487 |
+
|
488 |
+
models = get_model_list()
|
489 |
+
|
490 |
+
logger.info(args)
|
491 |
+
demo = build_demo(args.embed)
|
492 |
+
demo.queue(
|
493 |
+
concurrency_count=args.concurrency_count,
|
494 |
+
api_open=False
|
495 |
+
).launch(
|
496 |
+
server_name=args.host,
|
497 |
+
server_port=args.port,
|
498 |
+
share=args.share
|
499 |
+
)
|
videollama2/serve/gradio_web_server_adhoc.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
import sys
|
10 |
+
sys.path.append('./')
|
11 |
+
from videollama2 import model_init, mm_infer
|
12 |
+
from videollama2.utils import disable_torch_init
|
13 |
+
|
14 |
+
|
15 |
+
title_markdown = ("""
|
16 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
17 |
+
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
18 |
+
<img src="https://s2.loli.net/2024/06/03/D3NeXHWy5az9tmT.png" alt="VideoLLaMA 2 🔥🚀🔥" style="max-width: 120px; height: auto;">
|
19 |
+
</a>
|
20 |
+
<div>
|
21 |
+
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
|
22 |
+
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
|
23 |
+
</div>
|
24 |
+
</div>
|
25 |
+
|
26 |
+
|
27 |
+
<div align="center">
|
28 |
+
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
|
29 |
+
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2"><img src='https://img.shields.io/badge/Github-VideoLLaMA2-9C276A'></a>
|
30 |
+
<a href="https://arxiv.org/pdf/2406.07476.pdf"><img src="https://img.shields.io/badge/Arxiv-2406.07476-AD1C18"></a>
|
31 |
+
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA2.svg?style=social"></a>
|
32 |
+
</div>
|
33 |
+
</div>
|
34 |
+
""")
|
35 |
+
|
36 |
+
|
37 |
+
block_css = """
|
38 |
+
#buttons button {
|
39 |
+
min-width: min(120px,100%);
|
40 |
+
color: #9C276A
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
|
45 |
+
tos_markdown = ("""
|
46 |
+
### Terms of use
|
47 |
+
By using this service, users are required to agree to the following terms:
|
48 |
+
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
|
49 |
+
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
|
50 |
+
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
|
51 |
+
""")
|
52 |
+
|
53 |
+
|
54 |
+
learn_more_markdown = ("""
|
55 |
+
### License
|
56 |
+
This project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use ONLY, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
|
57 |
+
""")
|
58 |
+
|
59 |
+
|
60 |
+
plum_color = gr.themes.colors.Color(
|
61 |
+
name='plum',
|
62 |
+
c50='#F8E4EF',
|
63 |
+
c100='#E9D0DE',
|
64 |
+
c200='#DABCCD',
|
65 |
+
c300='#CBA8BC',
|
66 |
+
c400='#BC94AB',
|
67 |
+
c500='#AD809A',
|
68 |
+
c600='#9E6C89',
|
69 |
+
c700='#8F5878',
|
70 |
+
c800='#804467',
|
71 |
+
c900='#713056',
|
72 |
+
c950='#662647',
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
class Chat:
|
77 |
+
|
78 |
+
def __init__(self, model_path, load_8bit=False, load_4bit=False):
|
79 |
+
disable_torch_init()
|
80 |
+
|
81 |
+
self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
|
82 |
+
|
83 |
+
@spaces.GPU(duration=120)
|
84 |
+
@torch.inference_mode()
|
85 |
+
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
|
86 |
+
# TODO: support multiple turns of conversation.
|
87 |
+
assert len(data) == 1
|
88 |
+
|
89 |
+
tensor, modal = data[0]
|
90 |
+
response = mm_infer(tensor, message, self.model, self.tokenizer, modal=modal.strip('<>'),
|
91 |
+
do_sample=True if temperature > 0.0 else False,
|
92 |
+
temperature=temperature,
|
93 |
+
top_p=top_p,
|
94 |
+
max_new_tokens=max_output_tokens)
|
95 |
+
|
96 |
+
return response
|
97 |
+
|
98 |
+
|
99 |
+
@spaces.GPU(duration=120)
|
100 |
+
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
|
101 |
+
data = []
|
102 |
+
|
103 |
+
processor = handler.processor
|
104 |
+
try:
|
105 |
+
if image is not None:
|
106 |
+
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
|
107 |
+
elif video is not None:
|
108 |
+
data.append((processor['video'](video).to(handler.model.device, dtype=dtype), '<video>'))
|
109 |
+
elif image is None and video is None:
|
110 |
+
data.append((None, '<text>'))
|
111 |
+
else:
|
112 |
+
raise NotImplementedError("Not support image and video at the same time")
|
113 |
+
except Exception as e:
|
114 |
+
traceback.print_exc()
|
115 |
+
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
|
116 |
+
|
117 |
+
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
|
118 |
+
|
119 |
+
show_images = ""
|
120 |
+
if image is not None:
|
121 |
+
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
|
122 |
+
if video is not None:
|
123 |
+
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
|
124 |
+
|
125 |
+
one_turn_chat = [textbox_in, None]
|
126 |
+
|
127 |
+
# 1. first run case
|
128 |
+
if len(chatbot) == 0:
|
129 |
+
one_turn_chat[0] += "\n" + show_images
|
130 |
+
# 2. not first run case
|
131 |
+
else:
|
132 |
+
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
|
133 |
+
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
|
134 |
+
if len(previous_image) > 0:
|
135 |
+
previous_image = previous_image[0]
|
136 |
+
# 2.1 new image append or pure text input will start a new conversation
|
137 |
+
if image is not None and os.path.basename(previous_image) != os.path.basename(image):
|
138 |
+
message.clear()
|
139 |
+
one_turn_chat[0] += "\n" + show_images
|
140 |
+
elif len(previous_video) > 0:
|
141 |
+
previous_video = previous_video[0]
|
142 |
+
# 2.2 new video append or pure text input will start a new conversation
|
143 |
+
if video is not None and os.path.basename(previous_video) != os.path.basename(video):
|
144 |
+
message.clear()
|
145 |
+
one_turn_chat[0] += "\n" + show_images
|
146 |
+
|
147 |
+
message.append({'role': 'user', 'content': textbox_in})
|
148 |
+
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
|
149 |
+
message.append({'role': 'assistant', 'content': text_en_out})
|
150 |
+
|
151 |
+
one_turn_chat[1] = text_en_out
|
152 |
+
chatbot.append(one_turn_chat)
|
153 |
+
|
154 |
+
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot
|
155 |
+
|
156 |
+
|
157 |
+
def regenerate(message, chatbot):
|
158 |
+
message.pop(-1), message.pop(-1)
|
159 |
+
chatbot.pop(-1)
|
160 |
+
return message, chatbot
|
161 |
+
|
162 |
+
|
163 |
+
def clear_history(message, chatbot):
|
164 |
+
message.clear(), chatbot.clear()
|
165 |
+
return (gr.update(value=None, interactive=True),
|
166 |
+
gr.update(value=None, interactive=True),
|
167 |
+
message, chatbot,
|
168 |
+
gr.update(value=None, interactive=True))
|
169 |
+
|
170 |
+
|
171 |
+
# BUG of Zero Environment
|
172 |
+
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
|
173 |
+
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
|
174 |
+
# 3. The function can't return tensor or other cuda objects.
|
175 |
+
|
176 |
+
model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
|
177 |
+
|
178 |
+
handler = Chat(model_path, load_8bit=False, load_4bit=True)
|
179 |
+
|
180 |
+
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
181 |
+
|
182 |
+
theme = gr.themes.Default(primary_hue=plum_color)
|
183 |
+
# theme.update_color("primary", plum_color.c500)
|
184 |
+
theme.set(slider_color="#9C276A")
|
185 |
+
theme.set(block_title_text_color="#9C276A")
|
186 |
+
theme.set(block_label_text_color="#9C276A")
|
187 |
+
theme.set(button_primary_text_color="#9C276A")
|
188 |
+
# theme.set(button_secondary_text_color="*neutral_800")
|
189 |
+
|
190 |
+
|
191 |
+
with gr.Blocks(title='VideoLLaMA 2 🔥🚀🔥', theme=theme, css=block_css) as demo:
|
192 |
+
gr.Markdown(title_markdown)
|
193 |
+
message = gr.State([])
|
194 |
+
|
195 |
+
with gr.Row():
|
196 |
+
with gr.Column(scale=3):
|
197 |
+
image = gr.Image(label="Input Image", type="filepath")
|
198 |
+
video = gr.Video(label="Input Video")
|
199 |
+
|
200 |
+
with gr.Accordion("Parameters", open=True) as parameter_row:
|
201 |
+
# num_beams = gr.Slider(
|
202 |
+
# minimum=1,
|
203 |
+
# maximum=10,
|
204 |
+
# value=1,
|
205 |
+
# step=1,
|
206 |
+
# interactive=True,
|
207 |
+
# label="beam search numbers",
|
208 |
+
# )
|
209 |
+
|
210 |
+
temperature = gr.Slider(
|
211 |
+
minimum=0.1,
|
212 |
+
maximum=1.0,
|
213 |
+
value=0.2,
|
214 |
+
step=0.1,
|
215 |
+
interactive=True,
|
216 |
+
label="Temperature",
|
217 |
+
)
|
218 |
+
|
219 |
+
top_p = gr.Slider(
|
220 |
+
minimum=0.0,
|
221 |
+
maximum=1.0,
|
222 |
+
value=0.7,
|
223 |
+
step=0.1,
|
224 |
+
interactive=True,
|
225 |
+
label="Top P",
|
226 |
+
)
|
227 |
+
|
228 |
+
max_output_tokens = gr.Slider(
|
229 |
+
minimum=64,
|
230 |
+
maximum=1024,
|
231 |
+
value=512,
|
232 |
+
step=64,
|
233 |
+
interactive=True,
|
234 |
+
label="Max output tokens",
|
235 |
+
)
|
236 |
+
|
237 |
+
with gr.Column(scale=7):
|
238 |
+
chatbot = gr.Chatbot(label="VideoLLaMA 2", bubble_full_width=True, height=750)
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column(scale=8):
|
241 |
+
textbox.render()
|
242 |
+
with gr.Column(scale=1, min_width=50):
|
243 |
+
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
|
244 |
+
with gr.Row(elem_id="buttons") as button_row:
|
245 |
+
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
|
246 |
+
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
|
247 |
+
# flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
|
248 |
+
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
|
249 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
250 |
+
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
251 |
+
|
252 |
+
with gr.Row():
|
253 |
+
with gr.Column():
|
254 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
255 |
+
gr.Examples(
|
256 |
+
examples=[
|
257 |
+
[
|
258 |
+
f"{cur_dir}/examples/extreme_ironing.jpg",
|
259 |
+
"What happens in this image?",
|
260 |
+
],
|
261 |
+
[
|
262 |
+
f"{cur_dir}/examples/waterview.jpg",
|
263 |
+
"What are the things I should be cautious about when I visit here?",
|
264 |
+
],
|
265 |
+
[
|
266 |
+
f"{cur_dir}/examples/desert.jpg",
|
267 |
+
"If there are factual errors in the questions, point it out; if not, proceed answering the question. What’s happening in the desert?",
|
268 |
+
],
|
269 |
+
],
|
270 |
+
inputs=[image, textbox],
|
271 |
+
)
|
272 |
+
with gr.Column():
|
273 |
+
gr.Examples(
|
274 |
+
examples=[
|
275 |
+
[
|
276 |
+
f"{cur_dir}/../../assets/cat_and_chicken.mp4",
|
277 |
+
"What happens in this video?",
|
278 |
+
],
|
279 |
+
[
|
280 |
+
f"{cur_dir}/../../assets/sora.mp4",
|
281 |
+
"Please describe this video.",
|
282 |
+
],
|
283 |
+
[
|
284 |
+
f"{cur_dir}/examples/sample_demo_1.mp4",
|
285 |
+
"What does the baby do?",
|
286 |
+
],
|
287 |
+
],
|
288 |
+
inputs=[video, textbox],
|
289 |
+
)
|
290 |
+
|
291 |
+
gr.Markdown(tos_markdown)
|
292 |
+
gr.Markdown(learn_more_markdown)
|
293 |
+
|
294 |
+
submit_btn.click(
|
295 |
+
generate,
|
296 |
+
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
|
297 |
+
[image, video, message, chatbot])
|
298 |
+
|
299 |
+
regenerate_btn.click(
|
300 |
+
regenerate,
|
301 |
+
[message, chatbot],
|
302 |
+
[message, chatbot]).then(
|
303 |
+
generate,
|
304 |
+
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
|
305 |
+
[image, video, message, chatbot])
|
306 |
+
|
307 |
+
clear_btn.click(
|
308 |
+
clear_history,
|
309 |
+
[message, chatbot],
|
310 |
+
[image, video, message, chatbot, textbox])
|
311 |
+
|
312 |
+
demo.launch()
|
videollama2/serve/model_worker.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A model worker executes the model.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
import uuid
|
8 |
+
import asyncio
|
9 |
+
import requests
|
10 |
+
import argparse
|
11 |
+
import threading
|
12 |
+
from threading import Thread
|
13 |
+
from functools import partial
|
14 |
+
from typing import Iterator, List, Optional, Tuple
|
15 |
+
|
16 |
+
import uvicorn
|
17 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
18 |
+
from fastapi.responses import StreamingResponse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import decord
|
22 |
+
import numpy as np
|
23 |
+
from PIL import Image
|
24 |
+
from decord import VideoReader, cpu
|
25 |
+
from transformers import TextIteratorStreamer
|
26 |
+
|
27 |
+
from videollama2.constants import WORKER_HEART_BEAT_INTERVAL
|
28 |
+
from videollama2.utils import (build_logger, server_error_msg, pretty_print_semaphore)
|
29 |
+
from videollama2.model.builder import load_pretrained_model
|
30 |
+
from videollama2.mm_utils import process_images, process_videos, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria, tokenizer_MMODAL_token
|
31 |
+
from videollama2.mm_utils import chunk_list, frame_expansion
|
32 |
+
from videollama2.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_TOKEN, NUM_FRAMES, MMODAL_TOKEN_INDEX
|
33 |
+
|
34 |
+
|
35 |
+
GB = 1 << 30
|
36 |
+
|
37 |
+
worker_id = str(uuid.uuid4())[:6]
|
38 |
+
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
39 |
+
global_counter = 0
|
40 |
+
|
41 |
+
model_semaphore = None
|
42 |
+
|
43 |
+
|
44 |
+
# variable_content = os.getenv('MY_VARIABLE', '')
|
45 |
+
# KEYWORDS_LIST = set(variable_content.split('\n'))
|
46 |
+
KEYWORDS_LIST = []
|
47 |
+
path = 'assets/keywords.txt'
|
48 |
+
if os.path.exists(path):
|
49 |
+
with open(path, 'r', encoding='utf-8') as file:
|
50 |
+
for line in file:
|
51 |
+
|
52 |
+
KEYWORDS_LIST.append(line.strip())
|
53 |
+
else:
|
54 |
+
KEYWORDS_LIST = []
|
55 |
+
|
56 |
+
|
57 |
+
KEYWORD_BLOCK_MESSAGE2 = "The output contains political, erotic and other unsafe content that violates local laws. Please re-enter your question."
|
58 |
+
KEYWORD_BLOCK_MESSAGE1 = "Your input question contains political, erotic and other unsafe content that violates local laws. Please re-enter your question."
|
59 |
+
STREAM_CHECK_MULTIPLE = 20
|
60 |
+
|
61 |
+
|
62 |
+
def heart_beat_worker(controller):
|
63 |
+
|
64 |
+
while True:
|
65 |
+
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
66 |
+
controller.send_heart_beat()
|
67 |
+
|
68 |
+
|
69 |
+
def safety_check(text, history=None, ) -> Optional[str]:
|
70 |
+
|
71 |
+
if len(KEYWORDS_LIST) > 0 and any(x in text.lower() for x in KEYWORDS_LIST):
|
72 |
+
print('############')
|
73 |
+
return KEYWORD_BLOCK_MESSAGE2
|
74 |
+
|
75 |
+
return None
|
76 |
+
|
77 |
+
|
78 |
+
def input_safety_check(text) -> Optional[str]:
|
79 |
+
if len(KEYWORDS_LIST) > 0 and any(x in text.lower() for x in KEYWORDS_LIST):
|
80 |
+
print('######## Input keyword alarm triggered:', text)
|
81 |
+
return KEYWORD_BLOCK_MESSAGE1
|
82 |
+
return None
|
83 |
+
|
84 |
+
|
85 |
+
class ModelWorker:
|
86 |
+
|
87 |
+
def __init__(self, controller_addr, worker_addr,
|
88 |
+
worker_id, no_register,
|
89 |
+
model_path, model_base, model_name,
|
90 |
+
load_8bit, load_4bit, device):
|
91 |
+
self.controller_addr = controller_addr
|
92 |
+
self.worker_addr = worker_addr
|
93 |
+
self.worker_id = worker_id
|
94 |
+
self.model_path = model_path
|
95 |
+
if model_path.endswith("/"):
|
96 |
+
model_path = model_path[:-1]
|
97 |
+
if model_name is None:
|
98 |
+
model_paths = model_path.split("/")
|
99 |
+
if model_paths[-1].startswith('checkpoint-'):
|
100 |
+
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
101 |
+
else:
|
102 |
+
self.model_name = model_paths[-1]
|
103 |
+
else:
|
104 |
+
self.model_name = model_name
|
105 |
+
|
106 |
+
self.device = device
|
107 |
+
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
|
108 |
+
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
|
109 |
+
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
|
110 |
+
self.is_multimodal = 'videollama2' in self.model_name.lower() or 'vlb' in self.model_name.lower()
|
111 |
+
|
112 |
+
if not no_register:
|
113 |
+
self.register_to_controller()
|
114 |
+
self.heart_beat_thread = threading.Thread(
|
115 |
+
target=heart_beat_worker, args=(self,))
|
116 |
+
self.heart_beat_thread.start()
|
117 |
+
|
118 |
+
def register_to_controller(self):
|
119 |
+
logger.info("Register to controller")
|
120 |
+
|
121 |
+
url = self.controller_addr + "/register_worker"
|
122 |
+
data = {
|
123 |
+
"worker_name": self.worker_addr,
|
124 |
+
"check_heart_beat": True,
|
125 |
+
"worker_status": self.get_status()
|
126 |
+
}
|
127 |
+
r = requests.post(url, json=data)
|
128 |
+
assert r.status_code == 200
|
129 |
+
|
130 |
+
def send_heart_beat(self):
|
131 |
+
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
|
132 |
+
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
|
133 |
+
f"global_counter: {global_counter}")
|
134 |
+
|
135 |
+
url = self.controller_addr + "/receive_heart_beat"
|
136 |
+
|
137 |
+
while True:
|
138 |
+
try:
|
139 |
+
ret = requests.post(url, json={
|
140 |
+
"worker_name": self.worker_addr,
|
141 |
+
"queue_length": self.get_queue_length()}, timeout=5)
|
142 |
+
exist = ret.json()["exist"]
|
143 |
+
break
|
144 |
+
except requests.exceptions.RequestException as e:
|
145 |
+
logger.error(f"heart beat error: {e}")
|
146 |
+
time.sleep(5)
|
147 |
+
|
148 |
+
if not exist:
|
149 |
+
self.register_to_controller()
|
150 |
+
|
151 |
+
def get_queue_length(self):
|
152 |
+
if model_semaphore is None:
|
153 |
+
return 0
|
154 |
+
else:
|
155 |
+
return args.limit_model_concurrency - model_semaphore._value + (len(
|
156 |
+
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
157 |
+
|
158 |
+
def get_status(self):
|
159 |
+
return {
|
160 |
+
"model_names": [self.model_name],
|
161 |
+
"speed": 1,
|
162 |
+
"queue_length": self.get_queue_length(),
|
163 |
+
}
|
164 |
+
|
165 |
+
@torch.inference_mode()
|
166 |
+
def generate_stream(self, params):
|
167 |
+
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
|
168 |
+
|
169 |
+
prompt = params["prompt"]
|
170 |
+
ori_prompt = prompt
|
171 |
+
images_or_videos = params.get("images", None)
|
172 |
+
#print("Input images:", images_or_videos)
|
173 |
+
num_image_tokens = 0
|
174 |
+
modal_list = []
|
175 |
+
if images_or_videos is not None and len(images_or_videos) and self.is_multimodal:
|
176 |
+
if len(images_or_videos) > 0:
|
177 |
+
if len(images_or_videos) != prompt.count(DEFAULT_IMAGE_TOKEN) and len(images_or_videos) != (prompt.count(DEFAULT_VIDEO_TOKEN)):
|
178 |
+
raise ValueError("Number of images/videos does not match number of <image>/<video> tokens in prompt")
|
179 |
+
|
180 |
+
try:
|
181 |
+
print("Load image...")
|
182 |
+
images_or_videos = [load_image_from_base64(image) for image in images_or_videos]
|
183 |
+
images_or_videos = process_images(images_or_videos, image_processor, model.config)
|
184 |
+
|
185 |
+
modal_list = ["image"]
|
186 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
187 |
+
modal_token_index = MMODAL_TOKEN_INDEX["IMAGE"]
|
188 |
+
except:
|
189 |
+
print("Load video instead...")
|
190 |
+
decord_vr = VideoReader(uri=images_or_videos[0], ctx=cpu(0))
|
191 |
+
duration = len(decord_vr)
|
192 |
+
if not "use_taug" in self.model_path:
|
193 |
+
frame_id_list = np.linspace(0, duration-1, 8, dtype=int)
|
194 |
+
video_frames = decord_vr.get_batch(frame_id_list).asnumpy()
|
195 |
+
images_or_videos = process_videos(video_frames, image_processor, model.config)
|
196 |
+
else:
|
197 |
+
print("Temporal augmentation activated!!!")
|
198 |
+
frame_id_list = np.linspace(0, duration-1, 8 * 2 * 2, dtype=int)
|
199 |
+
video_data = decord_vr.get_batch(frame_id_list)
|
200 |
+
video_frames = [Image.fromarray(f) for f in video_data.asnumpy()]
|
201 |
+
chunked_video_frames = chunk_list(video_frames, 2*2)
|
202 |
+
expanded_video_frames = [frame_expansion(frame_list, 2) for frame_list in chunked_video_frames]
|
203 |
+
images_or_videos = process_videos(expanded_video_frames, image_processor, model.config)
|
204 |
+
|
205 |
+
# frame_id_list = np.linspace(0, duration-1, NUM_FRAMES, dtype=int)
|
206 |
+
# images_or_videos = decord_vr.get_batch(frame_id_list).asnumpy()
|
207 |
+
# images_or_videos = process_videos(images_or_videos, image_processor, model.config)
|
208 |
+
#print("images_or_videos.shape:", images_or_videos.shape)
|
209 |
+
modal_list = ["video"]
|
210 |
+
replace_token = DEFAULT_VIDEO_TOKEN
|
211 |
+
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"]
|
212 |
+
|
213 |
+
if type(images_or_videos) is list:
|
214 |
+
images_or_videos = [image.to(self.model.device, dtype=torch.float16) for image in images_or_videos]
|
215 |
+
else:
|
216 |
+
images_or_videos = images_or_videos.to(self.model.device, dtype=torch.float16)
|
217 |
+
if modal_list[0] == "video":
|
218 |
+
print("Video:", images_or_videos.shape)
|
219 |
+
images_or_videos = [images_or_videos]
|
220 |
+
else:
|
221 |
+
print("Image:", images_or_videos.shape)
|
222 |
+
|
223 |
+
|
224 |
+
#image_sizes = [image.size for image in images_or_videos]
|
225 |
+
|
226 |
+
|
227 |
+
# if len(images_or_videos) % NUM_FRAMES == 0:
|
228 |
+
# images_or_videos = process_images(images_or_videos, image_processor, model.config)
|
229 |
+
# #images_or_videos = [image.to(self.model.device, dtype=torch.float16) for image in images_or_videos]
|
230 |
+
# #modal_list = ["image"] * len(images_or_videos)
|
231 |
+
# images_or_videos = images_or_videos.to(self.model.device, dtype=torch.float16)
|
232 |
+
# modal_list = ["video"]
|
233 |
+
# replace_token = DEFAULT_VIDEO_TOKEN
|
234 |
+
# else:
|
235 |
+
|
236 |
+
if getattr(self.model.config, 'mm_use_im_start_end', False):
|
237 |
+
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
238 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
239 |
+
|
240 |
+
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
|
241 |
+
else:
|
242 |
+
images = None
|
243 |
+
modal_list = []
|
244 |
+
image_args = {"images_or_videos": images_or_videos, "modal_list": modal_list}
|
245 |
+
else:
|
246 |
+
images = None
|
247 |
+
image_args = {}
|
248 |
+
print("image_args:", image_args)
|
249 |
+
temperature = float(params.get("temperature", 1.0))
|
250 |
+
top_p = float(params.get("top_p", 1.0))
|
251 |
+
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
252 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
253 |
+
stop_str = params.get("stop", None)
|
254 |
+
do_sample = True if temperature > 0.001 else False
|
255 |
+
|
256 |
+
#input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
257 |
+
# tokenizer for our video-llama beta
|
258 |
+
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').unsqueeze(0).to(self.device)
|
259 |
+
#print("Current prompt:", prompt)
|
260 |
+
#print("input_ids.shape:", input_ids.shape)
|
261 |
+
keywords = [stop_str]
|
262 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
263 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
264 |
+
|
265 |
+
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
|
266 |
+
|
267 |
+
if max_new_tokens < 1:
|
268 |
+
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
|
269 |
+
return
|
270 |
+
|
271 |
+
thread = Thread(target=model.generate, kwargs=dict(
|
272 |
+
inputs=input_ids,
|
273 |
+
do_sample=do_sample,
|
274 |
+
temperature=temperature,
|
275 |
+
top_p=top_p,
|
276 |
+
max_new_tokens=max_new_tokens,
|
277 |
+
streamer=streamer,
|
278 |
+
stopping_criteria=[stopping_criteria],
|
279 |
+
use_cache=True,
|
280 |
+
**image_args
|
281 |
+
))
|
282 |
+
thread.start()
|
283 |
+
|
284 |
+
generated_text = ori_prompt
|
285 |
+
token_count = 0
|
286 |
+
for new_text in streamer:
|
287 |
+
generated_text += new_text
|
288 |
+
token_count += len(tokenizer.encode(new_text))
|
289 |
+
if token_count >= STREAM_CHECK_MULTIPLE:
|
290 |
+
safety_message = safety_check(generated_text)
|
291 |
+
if safety_message:
|
292 |
+
print('####### Keyword alarm triggered:', generated_text)
|
293 |
+
yield json.dumps({"text": safety_message , "error_code": 1}).encode() + b"\0"
|
294 |
+
return
|
295 |
+
token_count = 0 #
|
296 |
+
|
297 |
+
|
298 |
+
if generated_text.endswith(stop_str):
|
299 |
+
generated_text = generated_text[:-len(stop_str)]
|
300 |
+
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
|
301 |
+
|
302 |
+
def generate_stream_gate(self, params):
|
303 |
+
try:
|
304 |
+
input_text = params.get("prompt", "")
|
305 |
+
safety_message = input_safety_check(input_text)
|
306 |
+
if safety_message:
|
307 |
+
yield json.dumps({"text": safety_message, "error_code": 1}).encode() + b"\0"
|
308 |
+
return
|
309 |
+
|
310 |
+
for x in self.generate_stream(params):
|
311 |
+
yield x
|
312 |
+
except ValueError as e:
|
313 |
+
print("Caught ValueError:", e)
|
314 |
+
ret = {
|
315 |
+
"text": server_error_msg,
|
316 |
+
"error_code": 1,
|
317 |
+
}
|
318 |
+
yield json.dumps(ret).encode() + b"\0"
|
319 |
+
except torch.cuda.CudaError as e:
|
320 |
+
print("Caught torch.cuda.CudaError:", e)
|
321 |
+
ret = {
|
322 |
+
"text": server_error_msg,
|
323 |
+
"error_code": 1,
|
324 |
+
}
|
325 |
+
yield json.dumps(ret).encode() + b"\0"
|
326 |
+
except Exception as e:
|
327 |
+
print("Caught Unknown Error", e)
|
328 |
+
ret = {
|
329 |
+
"text": server_error_msg,
|
330 |
+
"error_code": 1,
|
331 |
+
}
|
332 |
+
yield json.dumps(ret).encode() + b"\0"
|
333 |
+
|
334 |
+
|
335 |
+
app = FastAPI()
|
336 |
+
|
337 |
+
|
338 |
+
def release_model_semaphore(fn=None):
|
339 |
+
model_semaphore.release()
|
340 |
+
if fn is not None:
|
341 |
+
fn()
|
342 |
+
|
343 |
+
|
344 |
+
@app.post("/worker_generate_stream")
|
345 |
+
async def generate_stream(request: Request):
|
346 |
+
global model_semaphore, global_counter
|
347 |
+
global_counter += 1
|
348 |
+
params = await request.json()
|
349 |
+
|
350 |
+
if model_semaphore is None:
|
351 |
+
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
352 |
+
await model_semaphore.acquire()
|
353 |
+
worker.send_heart_beat()
|
354 |
+
generator = worker.generate_stream_gate(params)
|
355 |
+
background_tasks = BackgroundTasks()
|
356 |
+
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
357 |
+
return StreamingResponse(generator, background=background_tasks)
|
358 |
+
|
359 |
+
|
360 |
+
@app.post("/worker_get_status")
|
361 |
+
async def get_status(request: Request):
|
362 |
+
return worker.get_status()
|
363 |
+
|
364 |
+
|
365 |
+
if __name__ == "__main__":
|
366 |
+
parser = argparse.ArgumentParser()
|
367 |
+
parser.add_argument("--host", type=str, default="localhost")
|
368 |
+
parser.add_argument("--port", type=int, default=21002)
|
369 |
+
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
|
370 |
+
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
|
371 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
372 |
+
parser.add_argument("--model-base", type=str, default=None)
|
373 |
+
parser.add_argument("--model-name", type=str)
|
374 |
+
parser.add_argument("--device", type=str, default="cuda")
|
375 |
+
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
376 |
+
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
377 |
+
parser.add_argument("--stream-interval", type=int, default=1)
|
378 |
+
parser.add_argument("--no-register", action="store_true")
|
379 |
+
parser.add_argument("--load-8bit", action="store_true")
|
380 |
+
parser.add_argument("--load-4bit", action="store_true")
|
381 |
+
args = parser.parse_args()
|
382 |
+
logger.info(f"args: {args}")
|
383 |
+
|
384 |
+
if args.multi_modal:
|
385 |
+
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
|
386 |
+
|
387 |
+
worker = ModelWorker(args.controller_address,
|
388 |
+
args.worker_address,
|
389 |
+
worker_id,
|
390 |
+
args.no_register,
|
391 |
+
args.model_path,
|
392 |
+
args.model_base,
|
393 |
+
args.model_name,
|
394 |
+
args.load_8bit,
|
395 |
+
args.load_4bit,
|
396 |
+
args.device)
|
397 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
videollama2/serve/register_worker.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Manually register workers.
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002
|
6 |
+
"""
|
7 |
+
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
import requests
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument("--controller-address", type=str)
|
15 |
+
parser.add_argument("--worker-name", type=str)
|
16 |
+
parser.add_argument("--check-heart-beat", action="store_true")
|
17 |
+
args = parser.parse_args()
|
18 |
+
|
19 |
+
url = args.controller_address + "/register_worker"
|
20 |
+
data = {
|
21 |
+
"worker_name": args.worker_name,
|
22 |
+
"check_heart_beat": args.check_heart_beat,
|
23 |
+
"worker_status": None,
|
24 |
+
}
|
25 |
+
r = requests.post(url, json=data)
|
26 |
+
assert r.status_code == 200
|
videollama2/serve/sglang_worker.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A model worker executes the model.
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import asyncio
|
6 |
+
from concurrent.futures import ThreadPoolExecutor
|
7 |
+
import json
|
8 |
+
import time
|
9 |
+
import threading
|
10 |
+
import uuid
|
11 |
+
|
12 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
13 |
+
from fastapi.responses import StreamingResponse
|
14 |
+
import requests
|
15 |
+
import re
|
16 |
+
import uvicorn
|
17 |
+
from functools import partial
|
18 |
+
|
19 |
+
from llava.constants import WORKER_HEART_BEAT_INTERVAL
|
20 |
+
from llava.utils import (build_logger, server_error_msg,
|
21 |
+
pretty_print_semaphore)
|
22 |
+
from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, expand2square
|
23 |
+
from llava.constants import DEFAULT_IMAGE_TOKEN
|
24 |
+
|
25 |
+
import sglang as sgl
|
26 |
+
from sglang.backend.runtime_endpoint import RuntimeEndpoint
|
27 |
+
|
28 |
+
|
29 |
+
GB = 1 << 30
|
30 |
+
|
31 |
+
worker_id = str(uuid.uuid4())[:6]
|
32 |
+
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
|
33 |
+
global_counter = 0
|
34 |
+
|
35 |
+
model_semaphore = None
|
36 |
+
|
37 |
+
|
38 |
+
def heart_beat_worker(controller):
|
39 |
+
while True:
|
40 |
+
time.sleep(WORKER_HEART_BEAT_INTERVAL)
|
41 |
+
controller.send_heart_beat()
|
42 |
+
|
43 |
+
|
44 |
+
@sgl.function
|
45 |
+
def pipeline(s, prompt, max_tokens):
|
46 |
+
for p in prompt:
|
47 |
+
if type(p) is str:
|
48 |
+
s += p
|
49 |
+
else:
|
50 |
+
s += sgl.image(p)
|
51 |
+
s += sgl.gen("response", max_tokens=max_tokens)
|
52 |
+
|
53 |
+
|
54 |
+
class ModelWorker:
|
55 |
+
def __init__(self, controller_addr, worker_addr, sgl_endpoint,
|
56 |
+
worker_id, no_register, model_name):
|
57 |
+
self.controller_addr = controller_addr
|
58 |
+
self.worker_addr = worker_addr
|
59 |
+
self.worker_id = worker_id
|
60 |
+
|
61 |
+
# Select backend
|
62 |
+
backend = RuntimeEndpoint(sgl_endpoint)
|
63 |
+
sgl.set_default_backend(backend)
|
64 |
+
model_path = backend.model_info["model_path"]
|
65 |
+
|
66 |
+
if model_path.endswith("/"):
|
67 |
+
model_path = model_path[:-1]
|
68 |
+
if model_name is None:
|
69 |
+
model_paths = model_path.split("/")
|
70 |
+
if model_paths[-1].startswith('checkpoint-'):
|
71 |
+
self.model_name = model_paths[-2] + "_" + model_paths[-1]
|
72 |
+
else:
|
73 |
+
self.model_name = model_paths[-1]
|
74 |
+
else:
|
75 |
+
self.model_name = model_name
|
76 |
+
|
77 |
+
logger.info(f"Loading the SGLANG model {self.model_name} on worker {worker_id} ...")
|
78 |
+
|
79 |
+
if not no_register:
|
80 |
+
self.register_to_controller()
|
81 |
+
self.heart_beat_thread = threading.Thread(
|
82 |
+
target=heart_beat_worker, args=(self,), daemon=True)
|
83 |
+
self.heart_beat_thread.start()
|
84 |
+
|
85 |
+
def register_to_controller(self):
|
86 |
+
logger.info("Register to controller")
|
87 |
+
|
88 |
+
url = self.controller_addr + "/register_worker"
|
89 |
+
data = {
|
90 |
+
"worker_name": self.worker_addr,
|
91 |
+
"check_heart_beat": True,
|
92 |
+
"worker_status": self.get_status()
|
93 |
+
}
|
94 |
+
r = requests.post(url, json=data)
|
95 |
+
assert r.status_code == 200
|
96 |
+
|
97 |
+
def send_heart_beat(self):
|
98 |
+
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
|
99 |
+
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
|
100 |
+
f"global_counter: {global_counter}")
|
101 |
+
|
102 |
+
url = self.controller_addr + "/receive_heart_beat"
|
103 |
+
|
104 |
+
while True:
|
105 |
+
try:
|
106 |
+
ret = requests.post(url, json={
|
107 |
+
"worker_name": self.worker_addr,
|
108 |
+
"queue_length": self.get_queue_length()}, timeout=5)
|
109 |
+
exist = ret.json()["exist"]
|
110 |
+
break
|
111 |
+
except requests.exceptions.RequestException as e:
|
112 |
+
logger.error(f"heart beat error: {e}")
|
113 |
+
time.sleep(5)
|
114 |
+
|
115 |
+
if not exist:
|
116 |
+
self.register_to_controller()
|
117 |
+
|
118 |
+
def get_queue_length(self):
|
119 |
+
if model_semaphore is None:
|
120 |
+
return 0
|
121 |
+
else:
|
122 |
+
return args.limit_model_concurrency - model_semaphore._value + (len(
|
123 |
+
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
|
124 |
+
|
125 |
+
def get_status(self):
|
126 |
+
return {
|
127 |
+
"model_names": [self.model_name],
|
128 |
+
"speed": 1,
|
129 |
+
"queue_length": self.get_queue_length(),
|
130 |
+
}
|
131 |
+
|
132 |
+
async def generate_stream(self, params):
|
133 |
+
ori_prompt = prompt = params["prompt"]
|
134 |
+
images = params.get("images", None)
|
135 |
+
if images is not None and len(images) > 0:
|
136 |
+
if len(images) > 0:
|
137 |
+
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
138 |
+
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
139 |
+
|
140 |
+
images = [load_image_from_base64(image) for image in images]
|
141 |
+
|
142 |
+
# FIXME: for image-start/end token
|
143 |
+
# replace_token = DEFAULT_IMAGE_TOKEN
|
144 |
+
# if getattr(self.model.config, 'mm_use_im_start_end', False):
|
145 |
+
# replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
146 |
+
# prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
147 |
+
prompt = prompt.replace(' ' + DEFAULT_IMAGE_TOKEN + '\n', DEFAULT_IMAGE_TOKEN)
|
148 |
+
prompt_split = prompt.split(DEFAULT_IMAGE_TOKEN)
|
149 |
+
prompt = []
|
150 |
+
for i in range(len(prompt_split)):
|
151 |
+
prompt.append(prompt_split[i])
|
152 |
+
if i < len(images):
|
153 |
+
prompt.append(images[i])
|
154 |
+
else:
|
155 |
+
prompt = [prompt]
|
156 |
+
|
157 |
+
temperature = float(params.get("temperature", 1.0))
|
158 |
+
top_p = float(params.get("top_p", 1.0))
|
159 |
+
# max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
160 |
+
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
|
161 |
+
stop_str = params.get("stop", None)
|
162 |
+
stop_str = [stop_str] if stop_str is not None else None
|
163 |
+
|
164 |
+
print({'prompt': prompt, 'max_new_tokens': max_new_tokens, 'temperature': temperature, 'top_p': top_p})
|
165 |
+
state = pipeline.run(prompt, max_new_tokens, temperature=temperature, top_p=top_p, stream=True)
|
166 |
+
|
167 |
+
generated_text = ori_prompt
|
168 |
+
async for text_outputs in state.text_async_iter(var_name="response"):
|
169 |
+
generated_text += text_outputs
|
170 |
+
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
|
171 |
+
|
172 |
+
async def generate_stream_gate(self, params):
|
173 |
+
try:
|
174 |
+
async for x in self.generate_stream(params):
|
175 |
+
yield x
|
176 |
+
except ValueError as e:
|
177 |
+
print("Caught ValueError:", e)
|
178 |
+
ret = {
|
179 |
+
"text": server_error_msg,
|
180 |
+
"error_code": 1,
|
181 |
+
}
|
182 |
+
yield json.dumps(ret).encode() + b"\0"
|
183 |
+
except Exception as e:
|
184 |
+
print("Caught Unknown Error", e)
|
185 |
+
ret = {
|
186 |
+
"text": server_error_msg,
|
187 |
+
"error_code": 1,
|
188 |
+
}
|
189 |
+
yield json.dumps(ret).encode() + b"\0"
|
190 |
+
|
191 |
+
|
192 |
+
app = FastAPI()
|
193 |
+
|
194 |
+
|
195 |
+
def release_model_semaphore(fn=None):
|
196 |
+
model_semaphore.release()
|
197 |
+
if fn is not None:
|
198 |
+
fn()
|
199 |
+
|
200 |
+
|
201 |
+
@app.post("/worker_generate_stream")
|
202 |
+
async def generate_stream(request: Request):
|
203 |
+
global model_semaphore, global_counter
|
204 |
+
global_counter += 1
|
205 |
+
params = await request.json()
|
206 |
+
|
207 |
+
if model_semaphore is None:
|
208 |
+
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
|
209 |
+
await model_semaphore.acquire()
|
210 |
+
worker.send_heart_beat()
|
211 |
+
generator = worker.generate_stream_gate(params)
|
212 |
+
background_tasks = BackgroundTasks()
|
213 |
+
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
|
214 |
+
return StreamingResponse(generator, background=background_tasks)
|
215 |
+
|
216 |
+
|
217 |
+
@app.post("/worker_get_status")
|
218 |
+
async def get_status(request: Request):
|
219 |
+
return worker.get_status()
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
parser = argparse.ArgumentParser()
|
224 |
+
parser.add_argument("--host", type=str, default="localhost")
|
225 |
+
parser.add_argument("--port", type=int, default=21002)
|
226 |
+
parser.add_argument("--worker-address", type=str,
|
227 |
+
default="http://localhost:21002")
|
228 |
+
parser.add_argument("--controller-address", type=str,
|
229 |
+
default="http://localhost:21001")
|
230 |
+
parser.add_argument("--model-name", type=str)
|
231 |
+
parser.add_argument("--sgl-endpoint", type=str)
|
232 |
+
parser.add_argument("--limit-model-concurrency", type=int, default=5)
|
233 |
+
parser.add_argument("--stream-interval", type=int, default=1)
|
234 |
+
parser.add_argument("--no-register", action="store_true")
|
235 |
+
args = parser.parse_args()
|
236 |
+
logger.info(f"args: {args}")
|
237 |
+
|
238 |
+
worker = ModelWorker(args.controller_address,
|
239 |
+
args.worker_address,
|
240 |
+
args.sgl_endpoint,
|
241 |
+
worker_id,
|
242 |
+
args.no_register,
|
243 |
+
args.model_name)
|
244 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|
videollama2/serve/test_message.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
|
4 |
+
import requests
|
5 |
+
|
6 |
+
from llava.conversation import default_conversation
|
7 |
+
|
8 |
+
|
9 |
+
def main():
|
10 |
+
if args.worker_address:
|
11 |
+
worker_addr = args.worker_address
|
12 |
+
else:
|
13 |
+
controller_addr = args.controller_address
|
14 |
+
ret = requests.post(controller_addr + "/refresh_all_workers")
|
15 |
+
ret = requests.post(controller_addr + "/list_models")
|
16 |
+
models = ret.json()["models"]
|
17 |
+
models.sort()
|
18 |
+
print(f"Models: {models}")
|
19 |
+
|
20 |
+
ret = requests.post(controller_addr + "/get_worker_address",
|
21 |
+
json={"model": args.model_name})
|
22 |
+
worker_addr = ret.json()["address"]
|
23 |
+
print(f"worker_addr: {worker_addr}")
|
24 |
+
|
25 |
+
if worker_addr == "":
|
26 |
+
return
|
27 |
+
|
28 |
+
conv = default_conversation.copy()
|
29 |
+
conv.append_message(conv.roles[0], args.message)
|
30 |
+
prompt = conv.get_prompt()
|
31 |
+
|
32 |
+
headers = {"User-Agent": "LLaVA Client"}
|
33 |
+
pload = {
|
34 |
+
"model": args.model_name,
|
35 |
+
"prompt": prompt,
|
36 |
+
"max_new_tokens": args.max_new_tokens,
|
37 |
+
"temperature": 0.7,
|
38 |
+
"stop": conv.sep,
|
39 |
+
}
|
40 |
+
response = requests.post(worker_addr + "/worker_generate_stream", headers=headers,
|
41 |
+
json=pload, stream=True)
|
42 |
+
|
43 |
+
print(prompt.replace(conv.sep, "\n"), end="")
|
44 |
+
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
|
45 |
+
if chunk:
|
46 |
+
data = json.loads(chunk.decode("utf-8"))
|
47 |
+
output = data["text"].split(conv.sep)[-1]
|
48 |
+
print(output, end="\r")
|
49 |
+
print("")
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
parser = argparse.ArgumentParser()
|
54 |
+
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
|
55 |
+
parser.add_argument("--worker-address", type=str)
|
56 |
+
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
57 |
+
parser.add_argument("--max-new-tokens", type=int, default=32)
|
58 |
+
parser.add_argument("--message", type=str, default=
|
59 |
+
"Tell me a story with more than 1000 words.")
|
60 |
+
args = parser.parse_args()
|
61 |
+
|
62 |
+
main()
|
videollama2/train.py
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
2 |
+
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
|
3 |
+
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
4 |
+
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
import re
|
19 |
+
import os
|
20 |
+
import copy
|
21 |
+
import json
|
22 |
+
import random
|
23 |
+
import pathlib
|
24 |
+
import traceback
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, Optional, Sequence, List
|
27 |
+
|
28 |
+
# torch-related packages
|
29 |
+
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
|
30 |
+
import torch
|
31 |
+
from torch.utils.data import Dataset
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
35 |
+
|
36 |
+
import sys
|
37 |
+
sys.path.append('./')
|
38 |
+
from videollama2.model import *
|
39 |
+
from videollama2.constants import NUM_FRAMES, IGNORE_INDEX, MODAL_INDEX_MAP
|
40 |
+
from videollama2.mm_utils import tokenizer_multimodal_token, process_video, process_image
|
41 |
+
from videollama2.videollama2_trainer import (VideoLLaMA2Trainer,
|
42 |
+
get_peft_state_maybe_zero_3, get_peft_state_non_lora_maybe_zero_3,
|
43 |
+
find_all_linear_names, safe_save_model_for_hf_trainer
|
44 |
+
)
|
45 |
+
|
46 |
+
# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486
|
47 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
48 |
+
|
49 |
+
local_rank = None
|
50 |
+
|
51 |
+
|
52 |
+
def rank0_print(*args):
|
53 |
+
if local_rank == 0:
|
54 |
+
print(*args)
|
55 |
+
|
56 |
+
|
57 |
+
def set_seed(seed=42):
|
58 |
+
"""
|
59 |
+
Set the random seed for reproducible results.
|
60 |
+
|
61 |
+
:param seed: An integer value to be used as the random seed.
|
62 |
+
"""
|
63 |
+
torch.manual_seed(seed)
|
64 |
+
torch.cuda.manual_seed(seed)
|
65 |
+
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
|
66 |
+
torch.backends.cudnn.deterministic = True
|
67 |
+
torch.backends.cudnn.benchmark = False
|
68 |
+
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class ModelArguments:
|
72 |
+
# LLM Arguments
|
73 |
+
model_type: Optional[str] = field(default="videollama2", metadata={"help": "Model type selected in the list: " + ", ".join(VLLMs.keys())})
|
74 |
+
model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
|
75 |
+
version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
|
76 |
+
freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
|
77 |
+
# Connector Arguments
|
78 |
+
mm_projector_type: Optional[str] = field(default='linear')
|
79 |
+
tune_mm_mlp_adapter: bool = field(default=False)
|
80 |
+
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
81 |
+
# Vision tower Arguments
|
82 |
+
vision_tower: Optional[str] = field(default=None)
|
83 |
+
mm_vision_select_layer: Optional[int] = field(default=-1)
|
84 |
+
mm_vision_select_feature: Optional[str] = field(default="patch")
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass
|
88 |
+
class DataArguments:
|
89 |
+
# Path Arguments
|
90 |
+
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
|
91 |
+
# image_folder: Optional[str] = field(default=None)
|
92 |
+
# video_folder: Optional[str] = field(default=None)
|
93 |
+
data_folder: Optional[str] = field(default=None)
|
94 |
+
# Loading Arguments
|
95 |
+
is_multimodal: bool = False
|
96 |
+
lazy_preprocess: bool = False
|
97 |
+
num_frames: Optional[int] = field(default=None)
|
98 |
+
# Preprocess Arguments
|
99 |
+
image_aspect_ratio: str = 'square'
|
100 |
+
|
101 |
+
|
102 |
+
@dataclass
|
103 |
+
class TrainingArguments(transformers.TrainingArguments):
|
104 |
+
optim: str = field(default="adamw_torch")
|
105 |
+
mm_projector_lr: Optional[float] = None
|
106 |
+
freeze_mm_mlp_adapter: bool = field(default=False)
|
107 |
+
remove_unused_columns: bool = field(default=False)
|
108 |
+
cache_dir: Optional[str] = field(default=None)
|
109 |
+
# Training Data Arguments
|
110 |
+
group_by_modality_length: bool = field(default=False)
|
111 |
+
model_max_length: int = field(
|
112 |
+
default=512,
|
113 |
+
metadata={
|
114 |
+
"help":
|
115 |
+
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
116 |
+
},
|
117 |
+
)
|
118 |
+
# Lora or Quant Arguments
|
119 |
+
double_quant: bool = field(
|
120 |
+
default=True,
|
121 |
+
metadata={"help": "Compress the quantization statistics through double quantization."}
|
122 |
+
)
|
123 |
+
quant_type: str = field(
|
124 |
+
default="nf4",
|
125 |
+
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
126 |
+
)
|
127 |
+
bits: int = field(
|
128 |
+
default=16,
|
129 |
+
metadata={"help": "How many bits to use."}
|
130 |
+
)
|
131 |
+
lora_enable: bool = False
|
132 |
+
lora_r: int = 64
|
133 |
+
lora_alpha: int = 16
|
134 |
+
lora_dropout: float = 0.05
|
135 |
+
lora_weight_path: str = ""
|
136 |
+
lora_bias: str = "none"
|
137 |
+
|
138 |
+
|
139 |
+
def preprocess_plain(
|
140 |
+
sources: Sequence[str],
|
141 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
142 |
+
modal_token: str = None,
|
143 |
+
) -> Dict:
|
144 |
+
roles = {"human": "user", "gpt": "assistant"}
|
145 |
+
conversations = []
|
146 |
+
input_ids = []
|
147 |
+
targets = []
|
148 |
+
for source in sources:
|
149 |
+
# 1. apply chat template for input conversation
|
150 |
+
assert len(source) == 2
|
151 |
+
assert modal_token in source[0]['value']
|
152 |
+
message = [
|
153 |
+
{'role': 'user', 'content': modal_token},
|
154 |
+
{'role': 'assistant', 'content': source[1]['value']}
|
155 |
+
]
|
156 |
+
conversation = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=False)
|
157 |
+
# 2. tokenize conversations
|
158 |
+
input_ids.append(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))
|
159 |
+
# 3. make targets
|
160 |
+
targets.append(copy.deepcopy(input_ids[-1]))
|
161 |
+
instruction = tokenizer.apply_chat_template(message[:1], tokenize=False, add_generation_prompt=True)
|
162 |
+
instruction_len = len(tokenizer_multimodal_token(instruction, tokenizer, modal_token, return_tensors='pt'))
|
163 |
+
targets[-1][:instruction_len] = IGNORE_INDEX
|
164 |
+
|
165 |
+
# print("instruction: ----------------")
|
166 |
+
# print(instruction)
|
167 |
+
# print("conversation: ----------------")
|
168 |
+
# print(conversation)
|
169 |
+
# print("training targets: ----------------")
|
170 |
+
# print(tokenizer.decode(targets[-1][instruction_len:]))
|
171 |
+
# print(input_ids[-1])
|
172 |
+
# print(targets[-1])
|
173 |
+
|
174 |
+
return dict(input_ids=input_ids, labels=targets)
|
175 |
+
|
176 |
+
|
177 |
+
def preprocess(
|
178 |
+
sources: Sequence[str],
|
179 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
180 |
+
modal_token: str = None,
|
181 |
+
) -> Dict:
|
182 |
+
roles = {"human": "user", "gpt": "assistant"}
|
183 |
+
|
184 |
+
# Apply prompt templates
|
185 |
+
conversations = []
|
186 |
+
input_ids = []
|
187 |
+
targets = []
|
188 |
+
for i, source in enumerate(sources):
|
189 |
+
if roles[source[0]["from"]] != "user":
|
190 |
+
# Skip the first one if it is not from human
|
191 |
+
source = source[1:]
|
192 |
+
|
193 |
+
message = [{'role': roles[sentence['from']], 'content': sentence['value']} for sentence in source]
|
194 |
+
conversation = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=False)
|
195 |
+
input_ids.append(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))
|
196 |
+
targets.append(copy.deepcopy(input_ids[-1]))
|
197 |
+
|
198 |
+
assert len(source) % 2 == 0, f"Invalid conversation length {len(source)}."
|
199 |
+
|
200 |
+
cur = 0
|
201 |
+
message = []
|
202 |
+
for idx, sentence in enumerate(source):
|
203 |
+
if idx % 2 == 1:
|
204 |
+
tmp_message = [
|
205 |
+
{'role': roles[source[idx-1]['from']], 'content': source[idx-1]['value']},
|
206 |
+
{'role': roles[sentence['from']], 'content': sentence['value']}
|
207 |
+
]
|
208 |
+
|
209 |
+
instruction = tokenizer.apply_chat_template(message + tmp_message[:1], tokenize=False, add_generation_prompt=True)
|
210 |
+
conversation = tokenizer.apply_chat_template(message + tmp_message, tokenize=False, add_generation_prompt=False)
|
211 |
+
|
212 |
+
instruction_len = len(tokenizer_multimodal_token(instruction, tokenizer, modal_token, return_tensors='pt'))
|
213 |
+
conversation_len = len(tokenizer_multimodal_token(conversation, tokenizer, modal_token, return_tensors='pt'))
|
214 |
+
|
215 |
+
targets[-1][cur:instruction_len] = IGNORE_INDEX
|
216 |
+
|
217 |
+
cur = conversation_len
|
218 |
+
message += tmp_message
|
219 |
+
|
220 |
+
return dict(input_ids=input_ids, labels=targets)
|
221 |
+
|
222 |
+
|
223 |
+
def preprocess_multimodal(
|
224 |
+
sources: Sequence[str],
|
225 |
+
data_args: DataArguments,
|
226 |
+
modal_token: str = None,
|
227 |
+
) -> Dict:
|
228 |
+
is_multimodal = data_args.is_multimodal
|
229 |
+
if not is_multimodal:
|
230 |
+
return sources
|
231 |
+
|
232 |
+
assert modal_token in MODAL_INDEX_MAP, f"Unsupported modal token {modal_token}."
|
233 |
+
|
234 |
+
for source in sources:
|
235 |
+
for sentence in source:
|
236 |
+
if modal_token in sentence['value']:
|
237 |
+
sentence['value'] = sentence['value'].replace(modal_token, '').strip()
|
238 |
+
sentence['value'] = modal_token + '\n' + sentence['value']
|
239 |
+
sentence['value'] = sentence['value'].strip()
|
240 |
+
replace_token = modal_token
|
241 |
+
# TODO: fix this for multimedia, e.g., <video>, <audio>, etc.
|
242 |
+
sentence["value"] = sentence["value"].replace(modal_token, replace_token)
|
243 |
+
|
244 |
+
return sources
|
245 |
+
|
246 |
+
|
247 |
+
class LazySupervisedDataset(Dataset):
|
248 |
+
"""Dataset for supervised fine-tuning."""
|
249 |
+
|
250 |
+
def __init__(self, data_path: str,
|
251 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
252 |
+
data_args: DataArguments):
|
253 |
+
super(LazySupervisedDataset, self).__init__()
|
254 |
+
list_data_dict = json.load(open(data_path, "r"))
|
255 |
+
|
256 |
+
rank0_print("Formatting inputs...Skip in lazy mode")
|
257 |
+
self.tokenizer = tokenizer
|
258 |
+
self.list_data_dict = list_data_dict
|
259 |
+
self.data_args = data_args
|
260 |
+
|
261 |
+
def __len__(self):
|
262 |
+
return len(self.list_data_dict)
|
263 |
+
|
264 |
+
@property
|
265 |
+
def lengths(self):
|
266 |
+
length_list = []
|
267 |
+
for sample in self.list_data_dict:
|
268 |
+
img_tokens = 576 if 'image' in sample else 0
|
269 |
+
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
|
270 |
+
return length_list
|
271 |
+
|
272 |
+
@property
|
273 |
+
def modality_lengths(self):
|
274 |
+
length_list = []
|
275 |
+
for sample in self.list_data_dict:
|
276 |
+
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
|
277 |
+
cur_len = cur_len if 'image' in sample else -cur_len
|
278 |
+
length_list.append(cur_len)
|
279 |
+
return length_list
|
280 |
+
|
281 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
282 |
+
sources = self.list_data_dict[i]
|
283 |
+
if isinstance(i, int):
|
284 |
+
sources = [sources]
|
285 |
+
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
286 |
+
|
287 |
+
image_processor = self.data_args.image_processor
|
288 |
+
video_processor = self.data_args.video_processor
|
289 |
+
|
290 |
+
num_frames = NUM_FRAMES if self.data_args.num_frames is None else self.data_args.num_frames
|
291 |
+
|
292 |
+
if 'image' in sources[0]:
|
293 |
+
image_file = self.list_data_dict[i]['image']
|
294 |
+
image_folder = self.data_args.data_folder
|
295 |
+
image_file = os.path.join(image_folder, image_file)
|
296 |
+
|
297 |
+
try:
|
298 |
+
image = process_image(image_file, image_processor, aspect_ratio=self.data_args.image_aspect_ratio)
|
299 |
+
except:
|
300 |
+
traceback.print_exc()
|
301 |
+
backup_idx = random.randint(0, len(self.list_data_dict) - 1)
|
302 |
+
print(f"Encounted error when reading image {image_file}, use {backup_idx}-th example instead!!!")
|
303 |
+
return self.__getitem__(backup_idx)
|
304 |
+
|
305 |
+
# place <image> tag to question head.
|
306 |
+
modal_token = "<image>"
|
307 |
+
sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args, modal_token)
|
308 |
+
elif 'video' in sources[0]:
|
309 |
+
video_file = self.list_data_dict[i]['video']
|
310 |
+
video_folder = self.data_args.data_folder
|
311 |
+
video_file = os.path.join(video_folder, video_file)
|
312 |
+
|
313 |
+
try:
|
314 |
+
video = process_video(video_file, video_processor, aspect_ratio=self.data_args.image_aspect_ratio, num_frames=num_frames)
|
315 |
+
except Exception as e:
|
316 |
+
traceback.print_exc()
|
317 |
+
backup_idx = random.randint(0, len(self.list_data_dict) - 1)
|
318 |
+
print(f"Encounted error when reading video {video_file}, use {backup_idx}-th example instead!!!")
|
319 |
+
return self.__getitem__(backup_idx)
|
320 |
+
|
321 |
+
# place <video> tag to question head.
|
322 |
+
modal_token = "<video>"
|
323 |
+
sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args, modal_token)
|
324 |
+
else:
|
325 |
+
modal_token = None
|
326 |
+
sources = copy.deepcopy([e["conversations"] for e in sources])
|
327 |
+
|
328 |
+
if self.data_args.is_pretraining:
|
329 |
+
data_dict = preprocess_plain(sources, self.tokenizer, modal_token=modal_token)
|
330 |
+
else:
|
331 |
+
data_dict = preprocess(sources, self.tokenizer, modal_token=modal_token)
|
332 |
+
|
333 |
+
if isinstance(i, int):
|
334 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
|
335 |
+
|
336 |
+
# image exist in the data
|
337 |
+
if 'image' in self.list_data_dict[i]:
|
338 |
+
data_dict['image'] = image
|
339 |
+
elif 'video' in self.list_data_dict[i]:
|
340 |
+
data_dict['video'] = video
|
341 |
+
elif self.data_args.is_multimodal:
|
342 |
+
# image does not exist in the data, but the model is multimodal
|
343 |
+
data_dict['image'] = torch.zeros(3, self.data_args.image_size, self.data_args.image_size)
|
344 |
+
return data_dict
|
345 |
+
|
346 |
+
|
347 |
+
@dataclass
|
348 |
+
class DataCollatorForSupervisedDataset(object):
|
349 |
+
"""Collate examples for supervised fine-tuning."""
|
350 |
+
|
351 |
+
tokenizer: transformers.PreTrainedTokenizer
|
352 |
+
|
353 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
354 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
355 |
+
for key in ("input_ids", "labels"))
|
356 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
357 |
+
input_ids,
|
358 |
+
batch_first=True,
|
359 |
+
padding_value=self.tokenizer.pad_token_id)
|
360 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
361 |
+
batch_first=True,
|
362 |
+
padding_value=IGNORE_INDEX)
|
363 |
+
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
364 |
+
labels = labels[:, :self.tokenizer.model_max_length]
|
365 |
+
batch = dict(
|
366 |
+
input_ids=input_ids,
|
367 |
+
labels=labels,
|
368 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
369 |
+
)
|
370 |
+
|
371 |
+
# work for 'images' argument in `prepare_inputs_labels_for_multimodal` of LlavaMetaForCausalLM in llava_arch.py
|
372 |
+
batch['images'] = []
|
373 |
+
for instance in instances:
|
374 |
+
for modal_token in MODAL_INDEX_MAP.keys():
|
375 |
+
modal_token = modal_token.lower()
|
376 |
+
# MODAL_TOKEN shape like: <image>, <video>, ...
|
377 |
+
modal_name = re.findall(f'[<](.*)[>]', modal_token)
|
378 |
+
assert len(modal_name) == 1
|
379 |
+
modal_name = modal_name[0]
|
380 |
+
if modal_name in instance:
|
381 |
+
batch['images'].append((instance[modal_name], modal_name))
|
382 |
+
|
383 |
+
return batch
|
384 |
+
|
385 |
+
|
386 |
+
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
387 |
+
data_args) -> Dict:
|
388 |
+
"""Make dataset and collator for supervised fine-tuning."""
|
389 |
+
train_dataset = LazySupervisedDataset(
|
390 |
+
tokenizer=tokenizer,
|
391 |
+
data_path=data_args.data_path,
|
392 |
+
data_args=data_args
|
393 |
+
)
|
394 |
+
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
395 |
+
return dict(train_dataset=train_dataset,
|
396 |
+
eval_dataset=None,
|
397 |
+
data_collator=data_collator)
|
398 |
+
|
399 |
+
|
400 |
+
def train(attn_implementation=None):
|
401 |
+
global local_rank
|
402 |
+
set_seed(42)
|
403 |
+
|
404 |
+
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
405 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
406 |
+
|
407 |
+
local_rank = training_args.local_rank
|
408 |
+
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
409 |
+
|
410 |
+
bnb_model_from_pretrained_args = {}
|
411 |
+
if training_args.bits in [4, 8]:
|
412 |
+
from transformers import BitsAndBytesConfig
|
413 |
+
bnb_model_from_pretrained_args.update(dict(
|
414 |
+
# device_map={"": training_args.device},
|
415 |
+
# BUG: High version transformers report error:
|
416 |
+
# ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
|
417 |
+
# load_in_4bit=training_args.bits == 4,
|
418 |
+
# load_in_8bit=training_args.bits == 8,
|
419 |
+
quantization_config=BitsAndBytesConfig(
|
420 |
+
load_in_4bit=training_args.bits == 4,
|
421 |
+
load_in_8bit=training_args.bits == 8,
|
422 |
+
llm_int8_skip_modules=["mm_projector"],
|
423 |
+
llm_int8_threshold=6.0,
|
424 |
+
llm_int8_has_fp16_weight=False,
|
425 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
426 |
+
bnb_4bit_use_double_quant=training_args.double_quant,
|
427 |
+
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
|
428 |
+
bnb_4bit_quant_storage=compute_dtype,
|
429 |
+
)
|
430 |
+
))
|
431 |
+
|
432 |
+
config = VLLMConfigs[model_args.model_type].from_pretrained(model_args.model_path, trust_remote_code=True)
|
433 |
+
if 'gemma2' in model_args.model_type:
|
434 |
+
config._attn_implementation = 'eager'
|
435 |
+
else:
|
436 |
+
config._attn_implementation = attn_implementation
|
437 |
+
|
438 |
+
if model_args.vision_tower is not None:
|
439 |
+
model = VLLMs[model_args.model_type].from_pretrained(
|
440 |
+
model_args.model_path,
|
441 |
+
config=config,
|
442 |
+
cache_dir=training_args.cache_dir,
|
443 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
444 |
+
do_sample=True,
|
445 |
+
**bnb_model_from_pretrained_args
|
446 |
+
)
|
447 |
+
if 'mixtral' in model_args.model_type:
|
448 |
+
import deepspeed
|
449 |
+
deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
|
450 |
+
else:
|
451 |
+
model = transformers.LlamaForCausalLM.from_pretrained(
|
452 |
+
model_args.model_path,
|
453 |
+
config=config,
|
454 |
+
cache_dir=training_args.cache_dir,
|
455 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
456 |
+
do_sample=True,
|
457 |
+
**bnb_model_from_pretrained_args
|
458 |
+
)
|
459 |
+
model.config.use_cache = False
|
460 |
+
|
461 |
+
if model_args.freeze_backbone:
|
462 |
+
model.model.requires_grad_(False)
|
463 |
+
|
464 |
+
if training_args.bits in [4, 8]:
|
465 |
+
from peft import prepare_model_for_kbit_training
|
466 |
+
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
467 |
+
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
468 |
+
|
469 |
+
if training_args.gradient_checkpointing:
|
470 |
+
if hasattr(model, "enable_input_require_grads"):
|
471 |
+
model.enable_input_require_grads()
|
472 |
+
else:
|
473 |
+
def make_inputs_require_grad(module, input, output):
|
474 |
+
output.requires_grad_(True)
|
475 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
476 |
+
|
477 |
+
if training_args.lora_enable:
|
478 |
+
from peft import LoraConfig, get_peft_model
|
479 |
+
lora_config = LoraConfig(
|
480 |
+
r=training_args.lora_r,
|
481 |
+
lora_alpha=training_args.lora_alpha,
|
482 |
+
target_modules=find_all_linear_names(model),
|
483 |
+
lora_dropout=training_args.lora_dropout,
|
484 |
+
bias=training_args.lora_bias,
|
485 |
+
task_type="CAUSAL_LM",
|
486 |
+
)
|
487 |
+
if training_args.bits == 16:
|
488 |
+
if training_args.bf16:
|
489 |
+
model.to(torch.bfloat16)
|
490 |
+
if training_args.fp16:
|
491 |
+
model.to(torch.float16)
|
492 |
+
rank0_print("Adding LoRA adapters...")
|
493 |
+
model = get_peft_model(model, lora_config)
|
494 |
+
|
495 |
+
|
496 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
497 |
+
model_args.model_path,
|
498 |
+
cache_dir=training_args.cache_dir,
|
499 |
+
model_max_length=training_args.model_max_length,
|
500 |
+
padding_side="right",
|
501 |
+
use_fast=True,
|
502 |
+
)
|
503 |
+
|
504 |
+
if tokenizer.pad_token is None:
|
505 |
+
tokenizer.pad_token = tokenizer.unk_token
|
506 |
+
|
507 |
+
if model_args.vision_tower is not None:
|
508 |
+
# initialize vision encoder + multi-modal projector
|
509 |
+
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)
|
510 |
+
|
511 |
+
vision_tower = model.get_vision_tower()
|
512 |
+
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
|
513 |
+
|
514 |
+
data_args.image_size = vision_tower.image_size
|
515 |
+
|
516 |
+
data_args.image_processor = vision_tower.image_processor
|
517 |
+
data_args.video_processor = vision_tower.video_processor if hasattr(vision_tower, "video_processor") else vision_tower.image_processor
|
518 |
+
|
519 |
+
data_args.is_multimodal = True
|
520 |
+
|
521 |
+
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
522 |
+
model.config.tokenizer_padding_side = tokenizer.padding_side
|
523 |
+
model.config.tokenizer_model_max_length = tokenizer.model_max_length
|
524 |
+
|
525 |
+
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
526 |
+
if model_args.tune_mm_mlp_adapter:
|
527 |
+
model.requires_grad_(False)
|
528 |
+
for p in model.get_model().mm_projector.parameters():
|
529 |
+
p.requires_grad = True
|
530 |
+
|
531 |
+
if model_args.tune_mm_mlp_adapter:
|
532 |
+
data_args.is_pretraining = True
|
533 |
+
else:
|
534 |
+
data_args.is_pretraining = False
|
535 |
+
|
536 |
+
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
537 |
+
if training_args.freeze_mm_mlp_adapter:
|
538 |
+
for p in model.get_model().mm_projector.parameters():
|
539 |
+
p.requires_grad = False
|
540 |
+
|
541 |
+
if training_args.bits in [4, 8]:
|
542 |
+
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
|
543 |
+
|
544 |
+
model.config.mm_projector_lr = training_args.mm_projector_lr
|
545 |
+
model.config.num_frames = NUM_FRAMES if data_args.num_frames is None else data_args.num_frames
|
546 |
+
|
547 |
+
if training_args.bits in [4, 8]:
|
548 |
+
from peft.tuners.lora import LoraLayer
|
549 |
+
for name, module in model.named_modules():
|
550 |
+
if isinstance(module, LoraLayer):
|
551 |
+
if training_args.bf16:
|
552 |
+
module = module.to(torch.bfloat16)
|
553 |
+
if 'norm' in name:
|
554 |
+
module = module.to(torch.float32)
|
555 |
+
if 'lm_head' in name or 'embed_tokens' in name:
|
556 |
+
if hasattr(module, 'weight'):
|
557 |
+
if training_args.bf16 and module.weight.dtype == torch.float32:
|
558 |
+
module = module.to(torch.bfloat16)
|
559 |
+
|
560 |
+
print("Current model:", model)
|
561 |
+
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
|
562 |
+
# select a Trainer
|
563 |
+
trainer = VideoLLaMA2Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
|
564 |
+
|
565 |
+
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
566 |
+
trainer.train(resume_from_checkpoint=True)
|
567 |
+
else:
|
568 |
+
trainer.train()
|
569 |
+
trainer.save_state()
|
570 |
+
|
571 |
+
model.config.use_cache = True
|
572 |
+
|
573 |
+
if training_args.lora_enable:
|
574 |
+
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
|
575 |
+
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
|
576 |
+
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
577 |
+
model.config.save_pretrained(training_args.output_dir)
|
578 |
+
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
579 |
+
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
580 |
+
else:
|
581 |
+
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
|
582 |
+
|
583 |
+
|
584 |
+
if __name__ == "__main__":
|
585 |
+
train()
|