File size: 6,381 Bytes
a54c5b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Words</th>\n",
       "      <th>Frequency</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>有</td>\n",
       "      <td>51227728</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>我</td>\n",
       "      <td>43798085</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>一</td>\n",
       "      <td>43159170</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>的</td>\n",
       "      <td>40916482</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>你</td>\n",
       "      <td>30897176</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133207</th>\n",
       "      <td>黎明網</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133208</th>\n",
       "      <td>黎錦華</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133209</th>\n",
       "      <td>墨包</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133210</th>\n",
       "      <td>點晒穴</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133211</th>\n",
       "      <td>齋頂</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>133212 rows × 2 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       Words  Frequency\n",
       "0          有   51227728\n",
       "1          我   43798085\n",
       "2          一   43159170\n",
       "3          的   40916482\n",
       "4          你   30897176\n",
       "...      ...        ...\n",
       "133207   黎明網         12\n",
       "133208   黎錦華         12\n",
       "133209    墨包         12\n",
       "133210   點晒穴         12\n",
       "133211    齋頂         12\n",
       "\n",
       "[133212 rows x 2 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "# Load Excel file and convert to dictionary\n",
    "df = pd.read_excel('CyberCan.xlsx')\n",
    "\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"CyberCan.dict\", \"w+\") as output_file:\n",
    "    for index, row in df.iterrows():\n",
    "        word = str(row['Words']).strip()\n",
    "        if not \" \" in word:\n",
    "            output_file.write(word + \" \" + str(row['Frequency']) + \"\\n\")\n",
    "    output_file.flush()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total words: 132895\n"
     ]
    }
   ],
   "source": [
    "puncts = [\"\", \"\", \"\", \"\", \"\", \"\", \"\"]\n",
    "cybercan_words = set()\n",
    "\n",
    "for word in list(df['Words'].values) + puncts:\n",
    "    cybercan_words.add(word)\n",
    "\n",
    "print(\"Total words: {}\".format(len(cybercan_words)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "import jieba\n",
    "jieba.set_dictionary(\"CyberCan.dict\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total filtered lines: 140590\n"
     ]
    }
   ],
   "source": [
    "import re\n",
    "\n",
    "alnum = re.compile(\"[a-zA-Z0-9]\")\n",
    "filtered_lines = []\n",
    "\n",
    "with open(\"train/lihkg.can\", \"r\") as input_file:\n",
    "    for line in input_file.read().splitlines():\n",
    "        line = line.replace(\" \", \"\")\n",
    "        if len(line) < 10:\n",
    "            continue\n",
    "        if len(line) >= 64:\n",
    "            continue\n",
    "        if alnum.search(line):\n",
    "            continue\n",
    "        tokens = list(jieba.cut(line))\n",
    "        found_rare_word = False\n",
    "        for token in tokens:\n",
    "            if not token in cybercan_words:\n",
    "                found_rare_word = True\n",
    "                # print(\"Found rare word: {}\".format(token))\n",
    "                break\n",
    "        if found_rare_word:\n",
    "            continue\n",
    "        filtered_lines.append(line)\n",
    "\n",
    "print(\"Total filtered lines: {}\".format(len(filtered_lines)))\n",
    "\n",
    "with open(\"train/lihkg.filtered.can\", \"w+\") as output_file:\n",
    "    for line in filtered_lines:\n",
    "        output_file.write(line + \"\\n\")\n",
    "    output_file.flush()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}