Alignment-Lab-AI
commited on
Commit
·
9a65339
1
Parent(s):
2f1b078
Training in progress, epoch 2, checkpoint
Browse files- checkpoint-162/README.md +219 -0
- checkpoint-162/adapter_config.json +28 -0
- checkpoint-162/adapter_model.safetensors +3 -0
- checkpoint-162/global_step162/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-162/global_step162/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-162/global_step162/mp_rank_00_model_states.pt +3 -0
- checkpoint-162/latest +1 -0
- checkpoint-162/rng_state_0.pth +3 -0
- checkpoint-162/rng_state_1.pth +3 -0
- checkpoint-162/trainer_state.json +1063 -0
- checkpoint-162/training_args.bin +3 -0
- checkpoint-162/zero_to_fp32.py +587 -0
checkpoint-162/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: bitsandbytes
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: bfloat16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.0
|
checkpoint-162/adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16,
|
12 |
+
"lora_dropout": 0.05,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 32,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"v_proj",
|
20 |
+
"q_proj",
|
21 |
+
"k_proj",
|
22 |
+
"down_proj",
|
23 |
+
"up_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"o_proj"
|
26 |
+
],
|
27 |
+
"task_type": "CAUSAL_LM"
|
28 |
+
}
|
checkpoint-162/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0c0980d9bb0cc45f8403eacaf927b7f735caa35a3744b4c01edcc562a456af9
|
3 |
+
size 167832688
|
checkpoint-162/global_step162/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26c63973e85487c95edcd68d9230c96ed05c2fb0981d954826794a7c48b9e92c
|
3 |
+
size 503344023
|
checkpoint-162/global_step162/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3f63d887830afebb2803000364ba07dbb02f8aba1864b2553b7c25920677d3
|
3 |
+
size 503344151
|
checkpoint-162/global_step162/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:220743990377680758123b9b63c46f96b761a6a8af5610b7dac832d66f8d4cf3
|
3 |
+
size 8197288999
|
checkpoint-162/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step162
|
checkpoint-162/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2d897738d12eb40a539b2be496aba2897fb5e8fb0b21a74a3b7ec8a4cbae6e0
|
3 |
+
size 15607
|
checkpoint-162/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c32cb489eb83cc4efe902da792ac03510d194b3e6f8c79f1aa80cf534dc0942
|
3 |
+
size 15607
|
checkpoint-162/trainer_state.json
ADDED
@@ -0,0 +1,1063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0253164556962027,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 162,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 0.0,
|
14 |
+
"loss": 0.6625,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"eval_loss": 0.9669284820556641,
|
20 |
+
"eval_runtime": 22.2599,
|
21 |
+
"eval_samples_per_second": 11.231,
|
22 |
+
"eval_steps_per_second": 2.83,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03,
|
27 |
+
"learning_rate": 6.666666e-07,
|
28 |
+
"loss": 0.7012,
|
29 |
+
"step": 2
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.04,
|
33 |
+
"learning_rate": 1.3333332e-06,
|
34 |
+
"loss": 0.6954,
|
35 |
+
"step": 3
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 0.05,
|
39 |
+
"learning_rate": 1.9999997999999996e-06,
|
40 |
+
"loss": 0.6383,
|
41 |
+
"step": 4
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.06,
|
45 |
+
"learning_rate": 2.6666664e-06,
|
46 |
+
"loss": 0.6993,
|
47 |
+
"step": 5
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.08,
|
51 |
+
"learning_rate": 3.3333329999999998e-06,
|
52 |
+
"loss": 0.6388,
|
53 |
+
"step": 6
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.09,
|
57 |
+
"learning_rate": 3.999999599999999e-06,
|
58 |
+
"loss": 0.6847,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.1,
|
63 |
+
"learning_rate": 4.6666662e-06,
|
64 |
+
"loss": 0.6973,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.11,
|
69 |
+
"learning_rate": 5.3333328e-06,
|
70 |
+
"loss": 0.703,
|
71 |
+
"step": 9
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.13,
|
75 |
+
"learning_rate": 5.999999399999999e-06,
|
76 |
+
"loss": 0.6826,
|
77 |
+
"step": 10
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 0.14,
|
81 |
+
"learning_rate": 6.6666659999999995e-06,
|
82 |
+
"loss": 0.6939,
|
83 |
+
"step": 11
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.15,
|
87 |
+
"learning_rate": 7.333332599999999e-06,
|
88 |
+
"loss": 0.6879,
|
89 |
+
"step": 12
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.16,
|
93 |
+
"learning_rate": 7.999999199999998e-06,
|
94 |
+
"loss": 0.687,
|
95 |
+
"step": 13
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.18,
|
99 |
+
"learning_rate": 8.6666658e-06,
|
100 |
+
"loss": 0.6471,
|
101 |
+
"step": 14
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.19,
|
105 |
+
"learning_rate": 9.3333324e-06,
|
106 |
+
"loss": 0.6658,
|
107 |
+
"step": 15
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.2,
|
111 |
+
"learning_rate": 9.999998999999998e-06,
|
112 |
+
"loss": 0.6669,
|
113 |
+
"step": 16
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.22,
|
117 |
+
"learning_rate": 1.06666656e-05,
|
118 |
+
"loss": 0.6451,
|
119 |
+
"step": 17
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.23,
|
123 |
+
"learning_rate": 1.13333322e-05,
|
124 |
+
"loss": 0.6558,
|
125 |
+
"step": 18
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.24,
|
129 |
+
"learning_rate": 1.1999998799999998e-05,
|
130 |
+
"loss": 0.6714,
|
131 |
+
"step": 19
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.25,
|
135 |
+
"learning_rate": 1.26666654e-05,
|
136 |
+
"loss": 0.7123,
|
137 |
+
"step": 20
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.25,
|
141 |
+
"eval_loss": 0.9579811096191406,
|
142 |
+
"eval_runtime": 22.7924,
|
143 |
+
"eval_samples_per_second": 10.969,
|
144 |
+
"eval_steps_per_second": 2.764,
|
145 |
+
"step": 20
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.27,
|
149 |
+
"learning_rate": 1.3333331999999999e-05,
|
150 |
+
"loss": 0.6388,
|
151 |
+
"step": 21
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.28,
|
155 |
+
"learning_rate": 1.3999998599999999e-05,
|
156 |
+
"loss": 0.6355,
|
157 |
+
"step": 22
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.29,
|
161 |
+
"learning_rate": 1.4666665199999999e-05,
|
162 |
+
"loss": 0.6237,
|
163 |
+
"step": 23
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.3,
|
167 |
+
"learning_rate": 1.53333318e-05,
|
168 |
+
"loss": 0.6214,
|
169 |
+
"step": 24
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.32,
|
173 |
+
"learning_rate": 1.5999998399999997e-05,
|
174 |
+
"loss": 0.6045,
|
175 |
+
"step": 25
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.33,
|
179 |
+
"learning_rate": 1.6666665e-05,
|
180 |
+
"loss": 0.671,
|
181 |
+
"step": 26
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.34,
|
185 |
+
"learning_rate": 1.73333316e-05,
|
186 |
+
"loss": 0.6042,
|
187 |
+
"step": 27
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.35,
|
191 |
+
"learning_rate": 1.7999998199999998e-05,
|
192 |
+
"loss": 0.6722,
|
193 |
+
"step": 28
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.37,
|
197 |
+
"learning_rate": 1.86666648e-05,
|
198 |
+
"loss": 0.6132,
|
199 |
+
"step": 29
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.38,
|
203 |
+
"learning_rate": 1.9333331399999998e-05,
|
204 |
+
"loss": 0.5651,
|
205 |
+
"step": 30
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.39,
|
209 |
+
"learning_rate": 1.9999997999999996e-05,
|
210 |
+
"loss": 0.6525,
|
211 |
+
"step": 31
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.41,
|
215 |
+
"learning_rate": 2.0666664599999998e-05,
|
216 |
+
"loss": 0.6532,
|
217 |
+
"step": 32
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 0.42,
|
221 |
+
"learning_rate": 2.13333312e-05,
|
222 |
+
"loss": 0.6167,
|
223 |
+
"step": 33
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 0.43,
|
227 |
+
"learning_rate": 2.1999997799999997e-05,
|
228 |
+
"loss": 0.607,
|
229 |
+
"step": 34
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.44,
|
233 |
+
"learning_rate": 2.26666644e-05,
|
234 |
+
"loss": 0.5843,
|
235 |
+
"step": 35
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.46,
|
239 |
+
"learning_rate": 2.3333330999999997e-05,
|
240 |
+
"loss": 0.6093,
|
241 |
+
"step": 36
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.47,
|
245 |
+
"learning_rate": 2.3999997599999995e-05,
|
246 |
+
"loss": 0.5967,
|
247 |
+
"step": 37
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.48,
|
251 |
+
"learning_rate": 2.4666664199999997e-05,
|
252 |
+
"loss": 0.6015,
|
253 |
+
"step": 38
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.49,
|
257 |
+
"learning_rate": 2.53333308e-05,
|
258 |
+
"loss": 0.6263,
|
259 |
+
"step": 39
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 0.51,
|
263 |
+
"learning_rate": 2.59999974e-05,
|
264 |
+
"loss": 0.5923,
|
265 |
+
"step": 40
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.51,
|
269 |
+
"eval_loss": 0.9467829465866089,
|
270 |
+
"eval_runtime": 22.6276,
|
271 |
+
"eval_samples_per_second": 11.048,
|
272 |
+
"eval_steps_per_second": 2.784,
|
273 |
+
"step": 40
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.52,
|
277 |
+
"learning_rate": 2.6666663999999998e-05,
|
278 |
+
"loss": 0.5801,
|
279 |
+
"step": 41
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.53,
|
283 |
+
"learning_rate": 2.7333330599999996e-05,
|
284 |
+
"loss": 0.576,
|
285 |
+
"step": 42
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.54,
|
289 |
+
"learning_rate": 2.7999997199999998e-05,
|
290 |
+
"loss": 0.6317,
|
291 |
+
"step": 43
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.56,
|
295 |
+
"learning_rate": 2.8666663799999996e-05,
|
296 |
+
"loss": 0.5874,
|
297 |
+
"step": 44
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.57,
|
301 |
+
"learning_rate": 2.9333330399999998e-05,
|
302 |
+
"loss": 0.6109,
|
303 |
+
"step": 45
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.58,
|
307 |
+
"learning_rate": 2.9999997e-05,
|
308 |
+
"loss": 0.5274,
|
309 |
+
"step": 46
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.59,
|
313 |
+
"learning_rate": 3.06666636e-05,
|
314 |
+
"loss": 0.5698,
|
315 |
+
"step": 47
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.61,
|
319 |
+
"learning_rate": 3.133333019999999e-05,
|
320 |
+
"loss": 0.544,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.62,
|
325 |
+
"learning_rate": 3.1999996799999994e-05,
|
326 |
+
"loss": 0.5586,
|
327 |
+
"step": 49
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.63,
|
331 |
+
"learning_rate": 3.2666663399999995e-05,
|
332 |
+
"loss": 0.5666,
|
333 |
+
"step": 50
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.65,
|
337 |
+
"learning_rate": 3.333333e-05,
|
338 |
+
"loss": 0.586,
|
339 |
+
"step": 51
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.66,
|
343 |
+
"learning_rate": 3.39999966e-05,
|
344 |
+
"loss": 0.6225,
|
345 |
+
"step": 52
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.67,
|
349 |
+
"learning_rate": 3.46666632e-05,
|
350 |
+
"loss": 0.5588,
|
351 |
+
"step": 53
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.68,
|
355 |
+
"learning_rate": 3.53333298e-05,
|
356 |
+
"loss": 0.5705,
|
357 |
+
"step": 54
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.7,
|
361 |
+
"learning_rate": 3.5999996399999996e-05,
|
362 |
+
"loss": 0.5628,
|
363 |
+
"step": 55
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.71,
|
367 |
+
"learning_rate": 3.6666663e-05,
|
368 |
+
"loss": 0.5868,
|
369 |
+
"step": 56
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.72,
|
373 |
+
"learning_rate": 3.73333296e-05,
|
374 |
+
"loss": 0.5583,
|
375 |
+
"step": 57
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.73,
|
379 |
+
"learning_rate": 3.7999996199999994e-05,
|
380 |
+
"loss": 0.5858,
|
381 |
+
"step": 58
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.75,
|
385 |
+
"learning_rate": 3.8666662799999996e-05,
|
386 |
+
"loss": 0.5756,
|
387 |
+
"step": 59
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.76,
|
391 |
+
"learning_rate": 3.93333294e-05,
|
392 |
+
"loss": 0.5822,
|
393 |
+
"step": 60
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.76,
|
397 |
+
"eval_loss": 0.9389348030090332,
|
398 |
+
"eval_runtime": 22.5892,
|
399 |
+
"eval_samples_per_second": 11.067,
|
400 |
+
"eval_steps_per_second": 2.789,
|
401 |
+
"step": 60
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.77,
|
405 |
+
"learning_rate": 3.999999599999999e-05,
|
406 |
+
"loss": 0.5667,
|
407 |
+
"step": 61
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.78,
|
411 |
+
"learning_rate": 4.0666662599999994e-05,
|
412 |
+
"loss": 0.5616,
|
413 |
+
"step": 62
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.8,
|
417 |
+
"learning_rate": 4.1333329199999995e-05,
|
418 |
+
"loss": 0.5678,
|
419 |
+
"step": 63
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.81,
|
423 |
+
"learning_rate": 4.19999958e-05,
|
424 |
+
"loss": 0.5514,
|
425 |
+
"step": 64
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.82,
|
429 |
+
"learning_rate": 4.26666624e-05,
|
430 |
+
"loss": 0.5732,
|
431 |
+
"step": 65
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.84,
|
435 |
+
"learning_rate": 4.3333329e-05,
|
436 |
+
"loss": 0.5794,
|
437 |
+
"step": 66
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.85,
|
441 |
+
"learning_rate": 4.3999995599999995e-05,
|
442 |
+
"loss": 0.5582,
|
443 |
+
"step": 67
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.86,
|
447 |
+
"learning_rate": 4.4666662199999996e-05,
|
448 |
+
"loss": 0.5575,
|
449 |
+
"step": 68
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.87,
|
453 |
+
"learning_rate": 4.53333288e-05,
|
454 |
+
"loss": 0.5558,
|
455 |
+
"step": 69
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.89,
|
459 |
+
"learning_rate": 4.599999539999999e-05,
|
460 |
+
"loss": 0.5707,
|
461 |
+
"step": 70
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.9,
|
465 |
+
"learning_rate": 4.6666661999999994e-05,
|
466 |
+
"loss": 0.54,
|
467 |
+
"step": 71
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.91,
|
471 |
+
"learning_rate": 4.7333328599999996e-05,
|
472 |
+
"loss": 0.5435,
|
473 |
+
"step": 72
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.92,
|
477 |
+
"learning_rate": 4.799999519999999e-05,
|
478 |
+
"loss": 0.5649,
|
479 |
+
"step": 73
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.94,
|
483 |
+
"learning_rate": 4.866666179999999e-05,
|
484 |
+
"loss": 0.5617,
|
485 |
+
"step": 74
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.95,
|
489 |
+
"learning_rate": 4.9333328399999994e-05,
|
490 |
+
"loss": 0.5651,
|
491 |
+
"step": 75
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.96,
|
495 |
+
"learning_rate": 4.9999994999999995e-05,
|
496 |
+
"loss": 0.5113,
|
497 |
+
"step": 76
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.97,
|
501 |
+
"learning_rate": 5.06666616e-05,
|
502 |
+
"loss": 0.5389,
|
503 |
+
"step": 77
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.99,
|
507 |
+
"learning_rate": 5.13333282e-05,
|
508 |
+
"loss": 0.5162,
|
509 |
+
"step": 78
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 1.0,
|
513 |
+
"learning_rate": 5.19999948e-05,
|
514 |
+
"loss": 0.5397,
|
515 |
+
"step": 79
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 1.01,
|
519 |
+
"learning_rate": 5.2666661399999995e-05,
|
520 |
+
"loss": 0.5794,
|
521 |
+
"step": 80
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 1.01,
|
525 |
+
"eval_loss": 0.9314417839050293,
|
526 |
+
"eval_runtime": 22.7753,
|
527 |
+
"eval_samples_per_second": 10.977,
|
528 |
+
"eval_steps_per_second": 2.766,
|
529 |
+
"step": 80
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 1.03,
|
533 |
+
"learning_rate": 5.3333327999999996e-05,
|
534 |
+
"loss": 0.5263,
|
535 |
+
"step": 81
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 1.01,
|
539 |
+
"learning_rate": 5.39999946e-05,
|
540 |
+
"loss": 0.5141,
|
541 |
+
"step": 82
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.03,
|
545 |
+
"learning_rate": 5.466666119999999e-05,
|
546 |
+
"loss": 0.5573,
|
547 |
+
"step": 83
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 1.04,
|
551 |
+
"learning_rate": 5.5333327799999994e-05,
|
552 |
+
"loss": 0.5629,
|
553 |
+
"step": 84
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 1.05,
|
557 |
+
"learning_rate": 5.5999994399999996e-05,
|
558 |
+
"loss": 0.5043,
|
559 |
+
"step": 85
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 1.06,
|
563 |
+
"learning_rate": 5.666666099999999e-05,
|
564 |
+
"loss": 0.562,
|
565 |
+
"step": 86
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 1.08,
|
569 |
+
"learning_rate": 5.733332759999999e-05,
|
570 |
+
"loss": 0.4978,
|
571 |
+
"step": 87
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.09,
|
575 |
+
"learning_rate": 5.7999994199999994e-05,
|
576 |
+
"loss": 0.5502,
|
577 |
+
"step": 88
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 1.1,
|
581 |
+
"learning_rate": 5.8666660799999995e-05,
|
582 |
+
"loss": 0.5499,
|
583 |
+
"step": 89
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.11,
|
587 |
+
"learning_rate": 5.93333274e-05,
|
588 |
+
"loss": 0.5547,
|
589 |
+
"step": 90
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 1.13,
|
593 |
+
"learning_rate": 5.9999994e-05,
|
594 |
+
"loss": 0.5452,
|
595 |
+
"step": 91
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 1.14,
|
599 |
+
"learning_rate": 6.066666059999999e-05,
|
600 |
+
"loss": 0.5544,
|
601 |
+
"step": 92
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.15,
|
605 |
+
"learning_rate": 6.13333272e-05,
|
606 |
+
"loss": 0.5483,
|
607 |
+
"step": 93
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 1.16,
|
611 |
+
"learning_rate": 6.19999938e-05,
|
612 |
+
"loss": 0.5641,
|
613 |
+
"step": 94
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 1.18,
|
617 |
+
"learning_rate": 6.266666039999998e-05,
|
618 |
+
"loss": 0.5316,
|
619 |
+
"step": 95
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 1.19,
|
623 |
+
"learning_rate": 6.333332699999999e-05,
|
624 |
+
"loss": 0.526,
|
625 |
+
"step": 96
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.2,
|
629 |
+
"learning_rate": 6.399999359999999e-05,
|
630 |
+
"loss": 0.5443,
|
631 |
+
"step": 97
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.22,
|
635 |
+
"learning_rate": 6.46666602e-05,
|
636 |
+
"loss": 0.5111,
|
637 |
+
"step": 98
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 1.23,
|
641 |
+
"learning_rate": 6.533332679999999e-05,
|
642 |
+
"loss": 0.5298,
|
643 |
+
"step": 99
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 1.24,
|
647 |
+
"learning_rate": 6.59999934e-05,
|
648 |
+
"loss": 0.5431,
|
649 |
+
"step": 100
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 1.24,
|
653 |
+
"eval_loss": 0.9199196100234985,
|
654 |
+
"eval_runtime": 22.8496,
|
655 |
+
"eval_samples_per_second": 10.941,
|
656 |
+
"eval_steps_per_second": 2.757,
|
657 |
+
"step": 100
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.25,
|
661 |
+
"learning_rate": 6.666666e-05,
|
662 |
+
"loss": 0.585,
|
663 |
+
"step": 101
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.27,
|
667 |
+
"learning_rate": 6.64406713220339e-05,
|
668 |
+
"loss": 0.5143,
|
669 |
+
"step": 102
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.28,
|
673 |
+
"learning_rate": 6.621468264406779e-05,
|
674 |
+
"loss": 0.5061,
|
675 |
+
"step": 103
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.29,
|
679 |
+
"learning_rate": 6.59886939661017e-05,
|
680 |
+
"loss": 0.5098,
|
681 |
+
"step": 104
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.3,
|
685 |
+
"learning_rate": 6.576270528813559e-05,
|
686 |
+
"loss": 0.5188,
|
687 |
+
"step": 105
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.32,
|
691 |
+
"learning_rate": 6.553671661016948e-05,
|
692 |
+
"loss": 0.5005,
|
693 |
+
"step": 106
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.33,
|
697 |
+
"learning_rate": 6.531072793220339e-05,
|
698 |
+
"loss": 0.5709,
|
699 |
+
"step": 107
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.34,
|
703 |
+
"learning_rate": 6.508473925423728e-05,
|
704 |
+
"loss": 0.4985,
|
705 |
+
"step": 108
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.35,
|
709 |
+
"learning_rate": 6.485875057627117e-05,
|
710 |
+
"loss": 0.5767,
|
711 |
+
"step": 109
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.37,
|
715 |
+
"learning_rate": 6.463276189830508e-05,
|
716 |
+
"loss": 0.517,
|
717 |
+
"step": 110
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.38,
|
721 |
+
"learning_rate": 6.440677322033897e-05,
|
722 |
+
"loss": 0.4759,
|
723 |
+
"step": 111
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.39,
|
727 |
+
"learning_rate": 6.418078454237288e-05,
|
728 |
+
"loss": 0.5536,
|
729 |
+
"step": 112
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.41,
|
733 |
+
"learning_rate": 6.395479586440677e-05,
|
734 |
+
"loss": 0.5657,
|
735 |
+
"step": 113
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.42,
|
739 |
+
"learning_rate": 6.372880718644068e-05,
|
740 |
+
"loss": 0.525,
|
741 |
+
"step": 114
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 1.43,
|
745 |
+
"learning_rate": 6.350281850847457e-05,
|
746 |
+
"loss": 0.5113,
|
747 |
+
"step": 115
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 1.44,
|
751 |
+
"learning_rate": 6.327682983050848e-05,
|
752 |
+
"loss": 0.4869,
|
753 |
+
"step": 116
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 1.46,
|
757 |
+
"learning_rate": 6.305084115254237e-05,
|
758 |
+
"loss": 0.5074,
|
759 |
+
"step": 117
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.47,
|
763 |
+
"learning_rate": 6.282485247457626e-05,
|
764 |
+
"loss": 0.5043,
|
765 |
+
"step": 118
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.48,
|
769 |
+
"learning_rate": 6.259886379661017e-05,
|
770 |
+
"loss": 0.5116,
|
771 |
+
"step": 119
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 1.49,
|
775 |
+
"learning_rate": 6.237287511864406e-05,
|
776 |
+
"loss": 0.5317,
|
777 |
+
"step": 120
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.49,
|
781 |
+
"eval_loss": 0.9122854471206665,
|
782 |
+
"eval_runtime": 22.8969,
|
783 |
+
"eval_samples_per_second": 10.919,
|
784 |
+
"eval_steps_per_second": 2.751,
|
785 |
+
"step": 120
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 1.51,
|
789 |
+
"learning_rate": 6.214688644067795e-05,
|
790 |
+
"loss": 0.5049,
|
791 |
+
"step": 121
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 1.52,
|
795 |
+
"learning_rate": 6.192089776271186e-05,
|
796 |
+
"loss": 0.496,
|
797 |
+
"step": 122
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 1.53,
|
801 |
+
"learning_rate": 6.169490908474575e-05,
|
802 |
+
"loss": 0.4951,
|
803 |
+
"step": 123
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 1.54,
|
807 |
+
"learning_rate": 6.146892040677966e-05,
|
808 |
+
"loss": 0.5489,
|
809 |
+
"step": 124
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 1.56,
|
813 |
+
"learning_rate": 6.124293172881355e-05,
|
814 |
+
"loss": 0.5071,
|
815 |
+
"step": 125
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 1.57,
|
819 |
+
"learning_rate": 6.1016943050847455e-05,
|
820 |
+
"loss": 0.5312,
|
821 |
+
"step": 126
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.58,
|
825 |
+
"learning_rate": 6.079095437288135e-05,
|
826 |
+
"loss": 0.4442,
|
827 |
+
"step": 127
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 1.59,
|
831 |
+
"learning_rate": 6.056496569491525e-05,
|
832 |
+
"loss": 0.4944,
|
833 |
+
"step": 128
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.61,
|
837 |
+
"learning_rate": 6.033897701694915e-05,
|
838 |
+
"loss": 0.4615,
|
839 |
+
"step": 129
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 1.62,
|
843 |
+
"learning_rate": 6.0112988338983045e-05,
|
844 |
+
"loss": 0.4855,
|
845 |
+
"step": 130
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.63,
|
849 |
+
"learning_rate": 5.9886999661016945e-05,
|
850 |
+
"loss": 0.4862,
|
851 |
+
"step": 131
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 1.65,
|
855 |
+
"learning_rate": 5.9661010983050844e-05,
|
856 |
+
"loss": 0.521,
|
857 |
+
"step": 132
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 1.66,
|
861 |
+
"learning_rate": 5.943502230508474e-05,
|
862 |
+
"loss": 0.5537,
|
863 |
+
"step": 133
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.67,
|
867 |
+
"learning_rate": 5.9209033627118636e-05,
|
868 |
+
"loss": 0.4828,
|
869 |
+
"step": 134
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.68,
|
873 |
+
"learning_rate": 5.898304494915254e-05,
|
874 |
+
"loss": 0.4932,
|
875 |
+
"step": 135
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 1.7,
|
879 |
+
"learning_rate": 5.8757056271186434e-05,
|
880 |
+
"loss": 0.4909,
|
881 |
+
"step": 136
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 1.71,
|
885 |
+
"learning_rate": 5.8531067593220333e-05,
|
886 |
+
"loss": 0.5211,
|
887 |
+
"step": 137
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.72,
|
891 |
+
"learning_rate": 5.830507891525423e-05,
|
892 |
+
"loss": 0.4851,
|
893 |
+
"step": 138
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 1.73,
|
897 |
+
"learning_rate": 5.807909023728813e-05,
|
898 |
+
"loss": 0.5172,
|
899 |
+
"step": 139
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 1.75,
|
903 |
+
"learning_rate": 5.7853101559322024e-05,
|
904 |
+
"loss": 0.5038,
|
905 |
+
"step": 140
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.75,
|
909 |
+
"eval_loss": 0.9127333760261536,
|
910 |
+
"eval_runtime": 22.9168,
|
911 |
+
"eval_samples_per_second": 10.909,
|
912 |
+
"eval_steps_per_second": 2.749,
|
913 |
+
"step": 140
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 1.76,
|
917 |
+
"learning_rate": 5.762711288135593e-05,
|
918 |
+
"loss": 0.5116,
|
919 |
+
"step": 141
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.77,
|
923 |
+
"learning_rate": 5.740112420338982e-05,
|
924 |
+
"loss": 0.5009,
|
925 |
+
"step": 142
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.78,
|
929 |
+
"learning_rate": 5.717513552542372e-05,
|
930 |
+
"loss": 0.4835,
|
931 |
+
"step": 143
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.8,
|
935 |
+
"learning_rate": 5.694914684745762e-05,
|
936 |
+
"loss": 0.4917,
|
937 |
+
"step": 144
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 1.81,
|
941 |
+
"learning_rate": 5.672315816949152e-05,
|
942 |
+
"loss": 0.4873,
|
943 |
+
"step": 145
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 1.82,
|
947 |
+
"learning_rate": 5.649716949152541e-05,
|
948 |
+
"loss": 0.5094,
|
949 |
+
"step": 146
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 1.84,
|
953 |
+
"learning_rate": 5.627118081355932e-05,
|
954 |
+
"loss": 0.5193,
|
955 |
+
"step": 147
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 1.85,
|
959 |
+
"learning_rate": 5.604519213559321e-05,
|
960 |
+
"loss": 0.4921,
|
961 |
+
"step": 148
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.86,
|
965 |
+
"learning_rate": 5.581920345762711e-05,
|
966 |
+
"loss": 0.4978,
|
967 |
+
"step": 149
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 1.87,
|
971 |
+
"learning_rate": 5.559321477966101e-05,
|
972 |
+
"loss": 0.4901,
|
973 |
+
"step": 150
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 1.89,
|
977 |
+
"learning_rate": 5.536722610169491e-05,
|
978 |
+
"loss": 0.5042,
|
979 |
+
"step": 151
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 1.9,
|
983 |
+
"learning_rate": 5.51412374237288e-05,
|
984 |
+
"loss": 0.4838,
|
985 |
+
"step": 152
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 1.91,
|
989 |
+
"learning_rate": 5.491524874576271e-05,
|
990 |
+
"loss": 0.485,
|
991 |
+
"step": 153
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 1.92,
|
995 |
+
"learning_rate": 5.46892600677966e-05,
|
996 |
+
"loss": 0.4967,
|
997 |
+
"step": 154
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 1.94,
|
1001 |
+
"learning_rate": 5.44632713898305e-05,
|
1002 |
+
"loss": 0.4943,
|
1003 |
+
"step": 155
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.95,
|
1007 |
+
"learning_rate": 5.4237282711864406e-05,
|
1008 |
+
"loss": 0.4999,
|
1009 |
+
"step": 156
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 1.96,
|
1013 |
+
"learning_rate": 5.40112940338983e-05,
|
1014 |
+
"loss": 0.4456,
|
1015 |
+
"step": 157
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 1.97,
|
1019 |
+
"learning_rate": 5.3785305355932205e-05,
|
1020 |
+
"loss": 0.4787,
|
1021 |
+
"step": 158
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 1.99,
|
1025 |
+
"learning_rate": 5.35593166779661e-05,
|
1026 |
+
"loss": 0.4594,
|
1027 |
+
"step": 159
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 2.0,
|
1031 |
+
"learning_rate": 5.3333327999999996e-05,
|
1032 |
+
"loss": 0.4744,
|
1033 |
+
"step": 160
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 2.0,
|
1037 |
+
"eval_loss": 0.9105737805366516,
|
1038 |
+
"eval_runtime": 22.9129,
|
1039 |
+
"eval_samples_per_second": 10.911,
|
1040 |
+
"eval_steps_per_second": 2.75,
|
1041 |
+
"step": 160
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 2.01,
|
1045 |
+
"learning_rate": 5.3107339322033896e-05,
|
1046 |
+
"loss": 0.5174,
|
1047 |
+
"step": 161
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 2.03,
|
1051 |
+
"learning_rate": 5.2881350644067795e-05,
|
1052 |
+
"loss": 0.46,
|
1053 |
+
"step": 162
|
1054 |
+
}
|
1055 |
+
],
|
1056 |
+
"logging_steps": 1,
|
1057 |
+
"max_steps": 395,
|
1058 |
+
"num_train_epochs": 5,
|
1059 |
+
"save_steps": 500,
|
1060 |
+
"total_flos": 9.165994568020132e+17,
|
1061 |
+
"trial_name": null,
|
1062 |
+
"trial_params": null
|
1063 |
+
}
|
checkpoint-162/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:973a78bb618179d478a634a5871239572b8d72704f5a768f05b104891449f5eb
|
3 |
+
size 6075
|
checkpoint-162/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|