File size: 1,788 Bytes
8e422c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import jax.numpy as jnp
import jax
import torch
from dataclasses import dataclass
import sympy
import sympy as sp
from sympy import Matrix, Symbol
import math
from sde_redefined_param import SDEDimension
@dataclass
class SDEPolynomialConfig:
    name = "Custom"

    initial_variable_value = 0
    max_variable_value = 1# math.inf
    min_sample_value = 1e-6

    variable = Symbol('t', nonnegative=True, real=True, domain=sympy.Interval(initial_variable_value, max_variable_value, left_open=False, right_open=False))
    drift_dimension = SDEDimension.SCALAR 
    diffusion_dimension = SDEDimension.SCALAR
    diffusion_matrix_dimension = SDEDimension.SCALAR 

    drift_degree = 20
    diffusion_degree = 20

    drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])

    diffusion_parameters = Matrix([sympy.symbols(f"l:{diffusion_degree}", real=True, nonzero=True)])


    @property
    def drift(self): 
        transformed_variable = self.variable
        return -sympy.Abs(sum(sympy.HadamardProduct(Matrix([[transformed_variable**i for i in range(1,self.drift_degree+1)]]), self.drift_parameters).doit()))
        

    @property
    def diffusion(self):
        return self.variable**(sum(sympy.HadamardProduct(Matrix([[self.variable**i for i in range(0,self.diffusion_degree)]]),self.diffusion_parameters.applyfunc(lambda x: x**2)).doit()))

    # TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
    diffusion_matrix = 1 


    module = 'jax'

    drift_integral_form=True
    diffusion_integral_form=True
    diffusion_integral_decomposition = 'cholesky' # ldl



    target = "epsilon" # x0
    non_symbolic_parameters = {'drift': torch.ones(drift_degree), 'diffusion': torch.ones(diffusion_degree)}