File size: 2,465 Bytes
d4098dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: microsoft/Phi-3-small-8k-instruct
tags:
- generated_from_trainer
model-index:
- name: phi3-spin-Llama2-data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi3-spin-Llama2-data
This model is a fine-tuned version of [microsoft/Phi-3-small-8k-instruct](https://huggingface.co/microsoft/Phi-3-small-8k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0005
- Rewards/real: 0.7586
- Rewards/generated: -92.4366
- Rewards/accuracies: 1.0
- Rewards/margins: 93.1952
- Logps/generated: -1271.4552
- Logps/real: -248.8362
- Logits/generated: -inf
- Logits/real: -inf
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 0.0901 | 0.29 | 500 | 0.0191 | -0.2438 | -52.9080 | 0.9922 | 52.6642 | -876.1692 | -258.8595 | -inf | -inf |
| 0.0024 | 0.58 | 1000 | 0.0014 | 1.6797 | -78.7354 | 1.0 | 80.4151 | -1134.4436 | -239.6249 | -inf | -inf |
| 0.0926 | 0.87 | 1500 | 0.0005 | 0.7586 | -92.4366 | 1.0 | 93.1952 | -1271.4552 | -248.8362 | -inf | -inf |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
|