AmelieSchreiber commited on
Commit
a85ac51
·
1 Parent(s): c5d92aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -24,4 +24,61 @@ Test metrics:
24
  'eval_f1': 0.08376472210171558,
25
  'eval_auc': 0.8539155251667717,
26
  'eval_mcc': 0.17519724897930178}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ```
 
24
  'eval_f1': 0.08376472210171558,
25
  'eval_auc': 0.8539155251667717,
26
  'eval_mcc': 0.17519724897930178}
27
+ ```
28
+
29
+ ## Using the Model
30
+
31
+ To use this model, firts run:
32
+
33
+ ```
34
+ !pip install transformers -q
35
+ !pip install peft -q
36
+ ```
37
+
38
+ Then run the following on your protein sequence to predict post translational modification sites:
39
+
40
+ ```python
41
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
42
+ from peft import PeftModel
43
+ import torch
44
+
45
+ # Path to the saved LoRA model
46
+ model_path = "AmelieSchreiber/esm2_t6_8M_ptm_lora_500K"
47
+ # ESM2 base model
48
+ base_model_path = "facebook/esm2_t6_8M_UR50D"
49
+
50
+ # Load the model
51
+ base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
52
+ loaded_model = PeftModel.from_pretrained(base_model, model_path)
53
+
54
+ # Ensure the model is in evaluation mode
55
+ loaded_model.eval()
56
+
57
+ # Load the tokenizer
58
+ loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
59
+
60
+ # Protein sequence for inference
61
+ protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
62
+
63
+ # Tokenize the sequence
64
+ inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
65
+
66
+ # Run the model
67
+ with torch.no_grad():
68
+ logits = loaded_model(**inputs).logits
69
+
70
+ # Get predictions
71
+ tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
72
+ predictions = torch.argmax(logits, dim=2)
73
+
74
+ # Define labels
75
+ id2label = {
76
+ 0: "No ptm site",
77
+ 1: "ptm site"
78
+ }
79
+
80
+ # Print the predicted labels for each token
81
+ for token, prediction in zip(tokens, predictions[0].numpy()):
82
+ if token not in ['<pad>', '<cls>', '<eos>']:
83
+ print((token, id2label[prediction]))
84
  ```