Amirmnsh commited on
Commit
afc3c5f
·
1 Parent(s): fd46555

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.63 +/- 17.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f375e9fbb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f375e9fbbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f375e9fbc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f375e9fbd00>", "_build": "<function ActorCriticPolicy._build at 0x7f375e9fbd90>", "forward": "<function ActorCriticPolicy.forward at 0x7f375e9fbe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f375e9fbeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f375e9fbf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f375e9e4040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f375e9e40d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f375e9e4160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f375e9e41f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f375e9f2c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684006566670352408, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPPhb2FY4G5Ms6Lu4QN3DUx53m6JemmOgAAgD8AAIA/M9PoPB8d9bnkbJo7FlskN2JcrTuyibW6AACAPwAAgD8AuGo8SKmMug6dm7tzisy23n0bO7pstDoAAIA/AACAPzOOPj32iH26nqdOOSl9PTQkehG79ZRxuAAAgD8AAIA/AO99PYU7x7ldAWC5809fNdK+NTtyeII4AACAPwAAgD8zwwW89jRNuuswHrqPYEC2Wux7OnjuOjkAAIA/AACAP7NoYT1IYYa6fqN/OyfTTDhYABm7Z0ogugAAgD8AAIA/GnJ7PVKo4LmuYwi6HhOrtWPmFrt2/x45AACAPwAAgD/Sxpe+E25EP3ZJIT4jwJC+nEODvfDp0r0AAAAAAAAAAPNNUL677As/5S/bPS6za759Mly9NV7gPAAAAAAAAAAAQMQhPkOgdbxgBCA7+ixuuVJJ5b1dk1y6AACAPwAAgD8AB4e9DtqtPTzTHb1spHq+OMgPvePYyj0AAAAAAAAAAJpcTL3syae5/qE3PLPTJjbogCY6AhwkNQAAgD8AAIA/TSN5vUjLtboKXOy6pKTTtdVF+rhy6gY6AACAPwAAgD8zz7o9XCN/ullSSTsXwd82t2/SOajjZroAAIA/AACAP1rUGD5S/ue7BbwqO+m6Dbk6OHK9Wm5gugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOZ+XJHRTmMAWyUTegDjAF0lEdAmfnQpe/pMnV9lChoBkdAZhqrvsqrimgHTegDaAhHQJn7/o/zJ6p1fZQoaAZHQGUbRw6ySmtoB03oA2gIR0CaAuKsuFpPdX2UKGgGR0BdA6HXVbzLaAdN6ANoCEdAmgR2ixmkFnV9lChoBkdAYmflPJq7AmgHTegDaAhHQJoISDe0ojR1fZQoaAZHQGNVSCWeHzpoB03oA2gIR0CaCTsLv1DjdX2UKGgGR0Bj8h/mT1TSaAdN6ANoCEdAmgrBYV6/qXV9lChoBkdAYpRLOiWVvGgHTegDaAhHQJoZB+XqqwR1fZQoaAZHQGWTX/giu+1oB03oA2gIR0CaG7KraM72dX2UKGgGR0BiRSOcUdq+aAdN6ANoCEdAmiIInF5v+HV9lChoBkdATRfKQq7ROWgHTRkBaAhHQJoif1tfoid1fZQoaAZHQGFHnuqm0mdoB03oA2gIR0CaJkrMC9ytdX2UKGgGR0Bjc1KXfIjoaAdN6ANoCEdAmiZpL7Gec3V9lChoBkdAYYSNrCWNWGgHTegDaAhHQJooHVUdaMd1fZQoaAZHQGRYdBrvb49oB03oA2gIR0CaK9FWGRFJdX2UKGgGR0BiJV+I/JNkaAdN6ANoCEdAmi+IS+QEIXV9lChoBkdAY3+7aIvalGgHTegDaAhHQJo1mG+K0lZ1fZQoaAZHQGqMG21D0DloB03QAmgIR0CaO1buMMqjdX2UKGgGR0BezyCFsYVJaAdN6ANoCEdAmjvS2Yv38HV9lChoBkdAYLt2FFlTWGgHTegDaAhHQJpSKwJPZZl1fZQoaAZHQGfhUCJXQt1oB03oA2gIR0CaWmtf5ULldX2UKGgGR0Blb1N8E3bVaAdN6ANoCEdAmlvYPbwjMXV9lChoBkdAZK5M6BAfMmgHTegDaAhHQJpfQ/4ZdfN1fZQoaAZHQGQ8EvboKUpoB03oA2gIR0CaaahBJI1+dX2UKGgGR0BjrzuMMqjKaAdN6ANoCEdAmmuWpEQXh3V9lChoBkdAYNCSjgydnWgHTegDaAhHQJpwdQFcIJJ1fZQoaAZHQGJXXZPEbYNoB03oA2gIR0CacOyoGY8ddX2UKGgGR0BhCNQIldC3aAdN6ANoCEdAmnTHl8w6AHV9lChoBkdAY/ow8nuy/2gHTegDaAhHQJp05T1kDp11fZQoaAZHQGR8FzMibDxoB03oA2gIR0CadpKcd5prdX2UKGgGR0BheVRDTjNqaAdN6ANoCEdAmno9Dtw71nV9lChoBkdAZGudc0Ltu2gHTegDaAhHQJp+MUvf0mN1fZQoaAZHQGXqGTLW7OFoB03oA2gIR0CahZvc8DB/dX2UKGgGR0BjBZRl6JIlaAdN6ANoCEdAmo13/Lkjo3V9lChoBkdAYSSCwKSgXmgHTegDaAhHQJqOLGtITXd1fZQoaAZHQGGU+LNwBHVoB03oA2gIR0CakQDfWMCLdX2UKGgGR0BmzTG96C17aAdN6ANoCEdAmqhZflZHNHV9lChoBkdAX+x1FH8TBmgHTegDaAhHQJqpzBuXNTt1fZQoaAZHQGO/VBMSK3xoB03oA2gIR0CarUa9sabXdX2UKGgGR0BreYarFOwgaAdNoQJoCEdAmrF3MQmNR3V9lChoBkdAXioqRU3n6mgHTegDaAhHQJq3FgMMI/t1fZQoaAZHQGFLTAnDziFoB03oA2gIR0CauNhM8HObdX2UKGgGR0BmH7OHFglXaAdN6ANoCEdAmr3Se/YapHV9lChoBkdAZaLYnv2GqWgHTegDaAhHQJq+aumrKeV1fZQoaAZHQGdLb4SHuZ1oB03oA2gIR0Caw35B1LamdX2UKGgGR0Bl/j8aXKKYaAdN6ANoCEdAmsOk+TvAoHV9lChoBkdAW9vAh0QsgGgHTegDaAhHQJrL7L6k6911fZQoaAZHQGG1Sf16E8JoB03oA2gIR0Ca0R7uUliSdX2UKGgGR0BmIPRLK3d9aAdN6ANoCEdAmthDTWoWHnV9lChoBkdAXqnoePq9oWgHTegDaAhHQJrercrRSgp1fZQoaAZHQGIRoybhFVloB03oA2gIR0Ca3y6WPcSHdX2UKGgGR0BhEDT6SDAaaAdN6ANoCEdAmuEz8tPHk3V9lChoBkdAYhq+L3sXzmgHTegDaAhHQJr4swh4dIZ1fZQoaAZHQGP/Q6ySmqJoB03oA2gIR0Ca+urTH80ldX2UKGgGR0Bhxd0NjLB9aAdN6ANoCEdAmwBt2LYPG3V9lChoBkdAYmM09hZyMmgHTegDaAhHQJsHE7MgU111fZQoaAZHQGFnEfs/pt9oB03oA2gIR0CbDerdFfAsdX2UKGgGR0Bjcp5VwPy1aAdN6ANoCEdAmw/hXCCSR3V9lChoBkdAXU8ByS3b22gHTegDaAhHQJsVIiSq2jR1fZQoaAZHQGFTDHwPRRdoB03oA2gIR0CbFZ/jKgZkdX2UKGgGR0Bkn04FRpDeaAdN6ANoCEdAmxlzn7pFC3V9lChoBkdAYzDMrVe8f2gHTegDaAhHQJsZk2l2vB91fZQoaAZHQGHo1Oj7AL1oB03oA2gIR0CbHzjBVMmGdX2UKGgGR0Bg9upOvdM1aAdN6ANoCEdAmyMWMfigkHV9lChoBkdAY1WsHSnccmgHTegDaAhHQJso43S8an91fZQoaAZHQGhoOkcjqwBoB03oA2gIR0CbLdRgJC0GdX2UKGgGR0Bl4CS/0ulHaAdN6ANoCEdAmy47RrrPdHV9lChoBkdAYAPIbOu7pWgHTegDaAhHQJsv7P6be/J1fZQoaAZHQGFvj81n/T9oB03oA2gIR0CbSvotL+PzdX2UKGgGR0Bl9kHIIWxhaAdN6ANoCEdAm0w+5vtMPHV9lChoBkdAZhlNBWxQi2gHTegDaAhHQJtPTOObRWt1fZQoaAZHQF8Icxj8UEhoB03oA2gIR0CbUy4G2TgVdX2UKGgGR0BG5699MK1HaAdNDwFoCEdAm1MuSfUWmHV9lChoBkdAXkclnh86WGgHTegDaAhHQJtYOKoAGSp1fZQoaAZHQF1De3QUpNNoB03oA2gIR0CbWdi4axX5dX2UKGgGR0BjBhrLyMDPaAdN6ANoCEdAm14Puogmq3V9lChoBkdAZPhwAEMb32gHTegDaAhHQJteeb8WKuV1fZQoaAZHQGHPmQr+YMRoB03oA2gIR0CbYinoPkJbdX2UKGgGR0BiLTDqGDcuaAdN6ANoCEdAm2JGOlwcYXV9lChoBkdAYexrleWv82gHTegDaAhHQJtn9HjIaLp1fZQoaAZHQGOyH7YTTORoB03oA2gIR0CbbRWac7QtdX2UKGgGR0BmuEJBw++uaAdN6ANoCEdAm3bnDWK/EnV9lChoBkdAZ3aiwjdHlWgHTegDaAhHQJt+pJGvwE11fZQoaAZHQGXXtHH3lCFoB03oA2gIR0Cbfxy8zyjIdX2UKGgGR0BjDL1K5CnhaAdN6ANoCEdAm5fAZXMhYHV9lChoBkdAZX1/BnBciWgHTegDaAhHQJuZXOlfqot1fZQoaAZHQGL+h6jWTX9oB03oA2gIR0CbnN1BMSK4dX2UKGgGR0BixmHUMG5daAdN6ANoCEdAm6EAR9PUKHV9lChoBkdAYaiEhaC+UWgHTegDaAhHQJuhAdyT6i11fZQoaAZHQGJgHf2saKloB03oA2gIR0CbppMQVbiZdX2UKGgGR0BisFBBzFMqaAdN6ANoCEdAm6jIsd1dPnV9lChoBkdAX7EnPVurImgHTegDaAhHQJuu8sOG0u11fZQoaAZHQGJ5n7YTTORoB03oA2gIR0Cbr4gpBomHdX2UKGgGR0BkwZdKNAC5aAdN6ANoCEdAm7SARTS9d3V9lChoBkdAY6bXiBGx2WgHTegDaAhHQJu0qvV3EAJ1fZQoaAZHQGC5MhHLA59oB03oA2gIR0CbunQqI7/5dX2UKGgGR0BlSS0x/NJOaAdN6ANoCEdAm75A4sEq2HV9lChoBkdAYmlQ3xWkrWgHTegDaAhHQJvEb5tWMjx1fZQoaAZHQGXhBDPWxyJoB03oA2gIR0CbyZeenQ6ZdX2UKGgGR0BjUO6VdHDraAdN6ANoCEdAm8oBYigTRXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-Lunarlander-V2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4f38846633fbaedaf9a0a451cda35b7a5c44afa450d3ff066859a4af4fa97bd
3
+ size 146759
ppo-Lunarlander-V2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-Lunarlander-V2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f375e9fbb50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f375e9fbbe0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f375e9fbc70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f375e9fbd00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f375e9fbd90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f375e9fbe20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f375e9fbeb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f375e9fbf40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f375e9e4040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f375e9e40d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f375e9e4160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f375e9e41f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f375e9f2c00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1684006566670352408,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPPhb2FY4G5Ms6Lu4QN3DUx53m6JemmOgAAgD8AAIA/M9PoPB8d9bnkbJo7FlskN2JcrTuyibW6AACAPwAAgD8AuGo8SKmMug6dm7tzisy23n0bO7pstDoAAIA/AACAPzOOPj32iH26nqdOOSl9PTQkehG79ZRxuAAAgD8AAIA/AO99PYU7x7ldAWC5809fNdK+NTtyeII4AACAPwAAgD8zwwW89jRNuuswHrqPYEC2Wux7OnjuOjkAAIA/AACAP7NoYT1IYYa6fqN/OyfTTDhYABm7Z0ogugAAgD8AAIA/GnJ7PVKo4LmuYwi6HhOrtWPmFrt2/x45AACAPwAAgD/Sxpe+E25EP3ZJIT4jwJC+nEODvfDp0r0AAAAAAAAAAPNNUL677As/5S/bPS6za759Mly9NV7gPAAAAAAAAAAAQMQhPkOgdbxgBCA7+ixuuVJJ5b1dk1y6AACAPwAAgD8AB4e9DtqtPTzTHb1spHq+OMgPvePYyj0AAAAAAAAAAJpcTL3syae5/qE3PLPTJjbogCY6AhwkNQAAgD8AAIA/TSN5vUjLtboKXOy6pKTTtdVF+rhy6gY6AACAPwAAgD8zz7o9XCN/ullSSTsXwd82t2/SOajjZroAAIA/AACAP1rUGD5S/ue7BbwqO+m6Dbk6OHK9Wm5gugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOZ+XJHRTmMAWyUTegDjAF0lEdAmfnQpe/pMnV9lChoBkdAZhqrvsqrimgHTegDaAhHQJn7/o/zJ6p1fZQoaAZHQGUbRw6ySmtoB03oA2gIR0CaAuKsuFpPdX2UKGgGR0BdA6HXVbzLaAdN6ANoCEdAmgR2ixmkFnV9lChoBkdAYmflPJq7AmgHTegDaAhHQJoISDe0ojR1fZQoaAZHQGNVSCWeHzpoB03oA2gIR0CaCTsLv1DjdX2UKGgGR0Bj8h/mT1TSaAdN6ANoCEdAmgrBYV6/qXV9lChoBkdAYpRLOiWVvGgHTegDaAhHQJoZB+XqqwR1fZQoaAZHQGWTX/giu+1oB03oA2gIR0CaG7KraM72dX2UKGgGR0BiRSOcUdq+aAdN6ANoCEdAmiIInF5v+HV9lChoBkdATRfKQq7ROWgHTRkBaAhHQJoif1tfoid1fZQoaAZHQGFHnuqm0mdoB03oA2gIR0CaJkrMC9ytdX2UKGgGR0Bjc1KXfIjoaAdN6ANoCEdAmiZpL7Gec3V9lChoBkdAYYSNrCWNWGgHTegDaAhHQJooHVUdaMd1fZQoaAZHQGRYdBrvb49oB03oA2gIR0CaK9FWGRFJdX2UKGgGR0BiJV+I/JNkaAdN6ANoCEdAmi+IS+QEIXV9lChoBkdAY3+7aIvalGgHTegDaAhHQJo1mG+K0lZ1fZQoaAZHQGqMG21D0DloB03QAmgIR0CaO1buMMqjdX2UKGgGR0BezyCFsYVJaAdN6ANoCEdAmjvS2Yv38HV9lChoBkdAYLt2FFlTWGgHTegDaAhHQJpSKwJPZZl1fZQoaAZHQGfhUCJXQt1oB03oA2gIR0CaWmtf5ULldX2UKGgGR0Blb1N8E3bVaAdN6ANoCEdAmlvYPbwjMXV9lChoBkdAZK5M6BAfMmgHTegDaAhHQJpfQ/4ZdfN1fZQoaAZHQGQ8EvboKUpoB03oA2gIR0CaaahBJI1+dX2UKGgGR0BjrzuMMqjKaAdN6ANoCEdAmmuWpEQXh3V9lChoBkdAYNCSjgydnWgHTegDaAhHQJpwdQFcIJJ1fZQoaAZHQGJXXZPEbYNoB03oA2gIR0CacOyoGY8ddX2UKGgGR0BhCNQIldC3aAdN6ANoCEdAmnTHl8w6AHV9lChoBkdAY/ow8nuy/2gHTegDaAhHQJp05T1kDp11fZQoaAZHQGR8FzMibDxoB03oA2gIR0CadpKcd5prdX2UKGgGR0BheVRDTjNqaAdN6ANoCEdAmno9Dtw71nV9lChoBkdAZGudc0Ltu2gHTegDaAhHQJp+MUvf0mN1fZQoaAZHQGXqGTLW7OFoB03oA2gIR0CahZvc8DB/dX2UKGgGR0BjBZRl6JIlaAdN6ANoCEdAmo13/Lkjo3V9lChoBkdAYSSCwKSgXmgHTegDaAhHQJqOLGtITXd1fZQoaAZHQGGU+LNwBHVoB03oA2gIR0CakQDfWMCLdX2UKGgGR0BmzTG96C17aAdN6ANoCEdAmqhZflZHNHV9lChoBkdAX+x1FH8TBmgHTegDaAhHQJqpzBuXNTt1fZQoaAZHQGO/VBMSK3xoB03oA2gIR0CarUa9sabXdX2UKGgGR0BreYarFOwgaAdNoQJoCEdAmrF3MQmNR3V9lChoBkdAXioqRU3n6mgHTegDaAhHQJq3FgMMI/t1fZQoaAZHQGFLTAnDziFoB03oA2gIR0CauNhM8HObdX2UKGgGR0BmH7OHFglXaAdN6ANoCEdAmr3Se/YapHV9lChoBkdAZaLYnv2GqWgHTegDaAhHQJq+aumrKeV1fZQoaAZHQGdLb4SHuZ1oB03oA2gIR0Caw35B1LamdX2UKGgGR0Bl/j8aXKKYaAdN6ANoCEdAmsOk+TvAoHV9lChoBkdAW9vAh0QsgGgHTegDaAhHQJrL7L6k6911fZQoaAZHQGG1Sf16E8JoB03oA2gIR0Ca0R7uUliSdX2UKGgGR0BmIPRLK3d9aAdN6ANoCEdAmthDTWoWHnV9lChoBkdAXqnoePq9oWgHTegDaAhHQJrercrRSgp1fZQoaAZHQGIRoybhFVloB03oA2gIR0Ca3y6WPcSHdX2UKGgGR0BhEDT6SDAaaAdN6ANoCEdAmuEz8tPHk3V9lChoBkdAYhq+L3sXzmgHTegDaAhHQJr4swh4dIZ1fZQoaAZHQGP/Q6ySmqJoB03oA2gIR0Ca+urTH80ldX2UKGgGR0Bhxd0NjLB9aAdN6ANoCEdAmwBt2LYPG3V9lChoBkdAYmM09hZyMmgHTegDaAhHQJsHE7MgU111fZQoaAZHQGFnEfs/pt9oB03oA2gIR0CbDerdFfAsdX2UKGgGR0Bjcp5VwPy1aAdN6ANoCEdAmw/hXCCSR3V9lChoBkdAXU8ByS3b22gHTegDaAhHQJsVIiSq2jR1fZQoaAZHQGFTDHwPRRdoB03oA2gIR0CbFZ/jKgZkdX2UKGgGR0Bkn04FRpDeaAdN6ANoCEdAmxlzn7pFC3V9lChoBkdAYzDMrVe8f2gHTegDaAhHQJsZk2l2vB91fZQoaAZHQGHo1Oj7AL1oB03oA2gIR0CbHzjBVMmGdX2UKGgGR0Bg9upOvdM1aAdN6ANoCEdAmyMWMfigkHV9lChoBkdAY1WsHSnccmgHTegDaAhHQJso43S8an91fZQoaAZHQGhoOkcjqwBoB03oA2gIR0CbLdRgJC0GdX2UKGgGR0Bl4CS/0ulHaAdN6ANoCEdAmy47RrrPdHV9lChoBkdAYAPIbOu7pWgHTegDaAhHQJsv7P6be/J1fZQoaAZHQGFvj81n/T9oB03oA2gIR0CbSvotL+PzdX2UKGgGR0Bl9kHIIWxhaAdN6ANoCEdAm0w+5vtMPHV9lChoBkdAZhlNBWxQi2gHTegDaAhHQJtPTOObRWt1fZQoaAZHQF8Icxj8UEhoB03oA2gIR0CbUy4G2TgVdX2UKGgGR0BG5699MK1HaAdNDwFoCEdAm1MuSfUWmHV9lChoBkdAXkclnh86WGgHTegDaAhHQJtYOKoAGSp1fZQoaAZHQF1De3QUpNNoB03oA2gIR0CbWdi4axX5dX2UKGgGR0BjBhrLyMDPaAdN6ANoCEdAm14Puogmq3V9lChoBkdAZPhwAEMb32gHTegDaAhHQJteeb8WKuV1fZQoaAZHQGHPmQr+YMRoB03oA2gIR0CbYinoPkJbdX2UKGgGR0BiLTDqGDcuaAdN6ANoCEdAm2JGOlwcYXV9lChoBkdAYexrleWv82gHTegDaAhHQJtn9HjIaLp1fZQoaAZHQGOyH7YTTORoB03oA2gIR0CbbRWac7QtdX2UKGgGR0BmuEJBw++uaAdN6ANoCEdAm3bnDWK/EnV9lChoBkdAZ3aiwjdHlWgHTegDaAhHQJt+pJGvwE11fZQoaAZHQGXXtHH3lCFoB03oA2gIR0Cbfxy8zyjIdX2UKGgGR0BjDL1K5CnhaAdN6ANoCEdAm5fAZXMhYHV9lChoBkdAZX1/BnBciWgHTegDaAhHQJuZXOlfqot1fZQoaAZHQGL+h6jWTX9oB03oA2gIR0CbnN1BMSK4dX2UKGgGR0BixmHUMG5daAdN6ANoCEdAm6EAR9PUKHV9lChoBkdAYaiEhaC+UWgHTegDaAhHQJuhAdyT6i11fZQoaAZHQGJgHf2saKloB03oA2gIR0CbppMQVbiZdX2UKGgGR0BisFBBzFMqaAdN6ANoCEdAm6jIsd1dPnV9lChoBkdAX7EnPVurImgHTegDaAhHQJuu8sOG0u11fZQoaAZHQGJ5n7YTTORoB03oA2gIR0Cbr4gpBomHdX2UKGgGR0BkwZdKNAC5aAdN6ANoCEdAm7SARTS9d3V9lChoBkdAY6bXiBGx2WgHTegDaAhHQJu0qvV3EAJ1fZQoaAZHQGC5MhHLA59oB03oA2gIR0CbunQqI7/5dX2UKGgGR0BlSS0x/NJOaAdN6ANoCEdAm75A4sEq2HV9lChoBkdAYmlQ3xWkrWgHTegDaAhHQJvEb5tWMjx1fZQoaAZHQGXhBDPWxyJoB03oA2gIR0CbyZeenQ6ZdX2UKGgGR0BjUO6VdHDraAdN6ANoCEdAm8oBYigTRXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-Lunarlander-V2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bde0309212cb2d7a24717289ed694820030847a30de5b9a9e83dae452e8a63b
3
+ size 87929
ppo-Lunarlander-V2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae30cff6a0ffacd7759777c6db9be0328078578b35ccadd19af47439bb06a22f
3
+ size 43329
ppo-Lunarlander-V2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Lunarlander-V2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (164 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.6344944517951, "std_reward": 17.144113035542706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-13T20:11:32.057777"}