File size: 5,354 Bytes
5f567e4 b206227 5466830 b206227 5466830 5f567e4 b206227 241d20a b206227 5040b8b 0123ce0 c27dc3b ed108b7 b206227 2f08434 b206227 5466830 12f2197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language:
- en
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
base_model: microsoft/phi-2
pipeline_tag: text-generation
model-index:
- name: spin-phi2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.22
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
---
# outputs
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) using [SPIN](https://github.com/uclaml/SPIN) on [ultrachat_200k dataset](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k).
# What's new
I think SPIN not only can use on a SFT model, but also it can use on a pretrained model.
Therefore, I use SPIN on a pretrained model microsoft/phi-2. And I get a higher score better than origin pretrained model. You can check the [open llm leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
But the ultrachat_200k dataset is a alignment dataset for sft model. I think there should use a alignment dataset for pretrained model.
**I Think the best paradigm for training a conversational Large Language Model (LLM):
pretrain -> dpo(spin) -> sft -> dpo(spin)**
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_amu__spin-phi2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.68|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot) |75.57|
|MMLU (5-Shot) |57.93|
|TruthfulQA (0-shot) |46.22|
|Winogrande (5-shot) |73.48|
|GSM8k (5-shot) |53.30|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_amu__spin-phi2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.68|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot) |75.57|
|MMLU (5-Shot) |57.93|
|TruthfulQA (0-shot) |46.22|
|Winogrande (5-shot) |73.48|
|GSM8k (5-shot) |53.30|
|