AnasAber commited on
Commit
326f9dc
·
verified ·
1 Parent(s): eca2fef

Updated the name of the model after changing it

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -23,7 +23,7 @@ pipeline_tag: text2text-generation
23
 
24
  ## Model Details
25
 
26
- - **Model Name**: seamless-enhanced-darija-eng_v1.2
27
  - **Base Model**: facebook/seamless-m4t-v2-large
28
  - **Model Type**: Fine-tuned translation model
29
  - **Languages**: Moroccan Arabic (Darija) ↔ English
@@ -62,7 +62,7 @@ Each entry in the dataset contains:
62
  ## Intended Use
63
 
64
  This model is intended to be used directly for translating text from Moroccan Arabic (Darija) to English.
65
- It can be further fine tuned, and deployed in various applications requiring translation services.
66
  This version is more capable than the original model in Darija to English translation.
67
 
68
  ### Direct Use
@@ -115,7 +115,7 @@ To use this model:
115
  ```python
116
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
117
 
118
- model_name = "AnasAber/seamless-enhanced-darija-eng_v1.2"
119
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
120
  tokenizer = AutoTokenizer.from_pretrained(model_name)
121
  ```
 
23
 
24
  ## Model Details
25
 
26
+ - **Model Name**: seamless-darija-eng
27
  - **Base Model**: facebook/seamless-m4t-v2-large
28
  - **Model Type**: Fine-tuned translation model
29
  - **Languages**: Moroccan Arabic (Darija) ↔ English
 
62
  ## Intended Use
63
 
64
  This model is intended to be used directly for translating text from Moroccan Arabic (Darija) to English.
65
+ It can be further fine-tuned, and deployed in various applications requiring translation services.
66
  This version is more capable than the original model in Darija to English translation.
67
 
68
  ### Direct Use
 
115
  ```python
116
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
117
 
118
+ model_name = "AnasAber/seamless-darija-eng"
119
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
120
  tokenizer = AutoTokenizer.from_pretrained(model_name)
121
  ```