Ansemin101 commited on
Commit
030a067
·
verified ·
1 Parent(s): e6030ea

Training complete

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.937303035329242
29
  - name: Recall
30
  type: recall
31
- value: 0.9510265903736116
32
  - name: F1
33
  type: f1
34
- value: 0.9441149444490853
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9862836286572084
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0609
48
- - Precision: 0.9373
49
- - Recall: 0.9510
50
- - F1: 0.9441
51
  - Accuracy: 0.9863
52
 
53
  ## Model description
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0787 | 1.0 | 1756 | 0.0677 | 0.8985 | 0.9327 | 0.9153 | 0.9813 |
83
- | 0.035 | 2.0 | 3512 | 0.0714 | 0.9306 | 0.9455 | 0.9380 | 0.9845 |
84
- | 0.0225 | 3.0 | 5268 | 0.0609 | 0.9373 | 0.9510 | 0.9441 | 0.9863 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9330024813895782
29
  - name: Recall
30
  type: recall
31
+ value: 0.9491753618310333
32
  - name: F1
33
  type: f1
34
+ value: 0.9410194377242012
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9862541943839407
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0604
48
+ - Precision: 0.9330
49
+ - Recall: 0.9492
50
+ - F1: 0.9410
51
  - Accuracy: 0.9863
52
 
53
  ## Model description
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0765 | 1.0 | 1756 | 0.0666 | 0.9061 | 0.9367 | 0.9211 | 0.9818 |
83
+ | 0.0354 | 2.0 | 3512 | 0.0634 | 0.9262 | 0.9440 | 0.9350 | 0.9845 |
84
+ | 0.0219 | 3.0 | 5268 | 0.0604 | 0.9330 | 0.9492 | 0.9410 | 0.9863 |
85
 
86
 
87
  ### Framework versions
runs/Aug06_09-02-35_f59daa081399/events.out.tfevents.1722934960.f59daa081399.513.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3f350110233c70e575120454a5460619974837d6bbccfdbeee5367eefe805e1
3
- size 8225
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd02a80cf038ac87339374bfc7f0a407965422580f8803411ed7a69239631e1f
3
+ size 9051