Ansemin101
commited on
Training complete
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
- Accuracy: 0.9863
|
52 |
|
53 |
## Model description
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9330024813895782
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9491753618310333
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9410194377242012
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9862541943839407
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0604
|
48 |
+
- Precision: 0.9330
|
49 |
+
- Recall: 0.9492
|
50 |
+
- F1: 0.9410
|
51 |
- Accuracy: 0.9863
|
52 |
|
53 |
## Model description
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0765 | 1.0 | 1756 | 0.0666 | 0.9061 | 0.9367 | 0.9211 | 0.9818 |
|
83 |
+
| 0.0354 | 2.0 | 3512 | 0.0634 | 0.9262 | 0.9440 | 0.9350 | 0.9845 |
|
84 |
+
| 0.0219 | 3.0 | 5268 | 0.0604 | 0.9330 | 0.9492 | 0.9410 | 0.9863 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
runs/Aug06_09-02-35_f59daa081399/events.out.tfevents.1722934960.f59daa081399.513.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd02a80cf038ac87339374bfc7f0a407965422580f8803411ed7a69239631e1f
|
3 |
+
size 9051
|