Commit
·
01fa445
1
Parent(s):
31b68b1
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 293.61 +/- 12.78
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b96cdc74700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b96cdc74790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b96cdc74820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b96cdc748b0>", "_build": "<function ActorCriticPolicy._build at 0x7b96cdc74940>", "forward": "<function ActorCriticPolicy.forward at 0x7b96cdc749d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b96cdc74a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b96cdc74af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b96cdc74b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b96cdc74c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b96cdc74ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b96cdc74d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b96cdc62900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690529462169917222, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBSLb62m6U+UmgCPqCDJr/c9qi+DYixPQAAAAAAAAAA8xKZPfg8kD5uC4W+Mp0Sv8bOjr2Dp0++AAAAAAAAAADG0ja+x0ixP85+7r6oHQO/vmM8vgKyFb4AAAAAAAAAAA3Mpz1NHpM+rqvEvpZAH7/uneW9+t+ivgAAAAAAAAAATVE4PSeINj4fBRS+UuD4vp2dXTw4ieO9AAAAAAAAAABmWjK9AaivPxuoO750Gby+cTBDPcNsBjwAAAAAAAAAAACuHz3HUHc/Y39aPQmKNr/AgaA95aB5PQAAAAAAAAAAZjZNO64BlLoobtI7egbDuCwYLjr3rLi3AACAPwAAgD8AojM9qTkYvJ5VKr06RB09qy0HPWHQQz0AAIA/AACAP2YYubwrNaE9RnBlPXZoz76Z8RG+MD7PuwAAAAAAAAAAOu0BPq09Sz/ZZkC9R3whv3NYrj5qGEu+AAAAAAAAAAAzigQ9FKqHujeQjDZ+2jUxLsgCu1mQpbUAAIA/AACAP5qoNL24QeO7wh+zPXCjEj3o8BQ9FzieuwAAgD8AAIA/zVDVO9LaGz6J5QC8LZTZvpmYjr0r6vG9AAAAAAAAAAANIde9aUYKPgvt9D7zEJe+rUEkPsajaT4AAAAAAAAAAMCRjL0/SlE/JAEevpY7WL+73JG9/fnMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQTTSLIgeSMAWyUS/OMAXSUR0C6yrIBaLXMdX2UKGgGR0BzpMWxhUiqaAdLvGgIR0C6yrJpi7TVdX2UKGgGR0BxeTyjHn2aaAdLzWgIR0C6ysjr3TNMdX2UKGgGR0ByvePtD2J0aAdLxWgIR0C6ys2nGbTddX2UKGgGR0BwWzTtsvZiaAdLtmgIR0C6yt1b7j1gdX2UKGgGR0BzgeYJE6T4aAdLxmgIR0C6yuiUHIIXdX2UKGgGR0Bx2AXKr7wbaAdLtmgIR0C6ywvZqVQidX2UKGgGR0Bx/QxJul41aAdL2WgIR0C6yyeTFERbdX2UKGgGR0Bxf/BCUornaAdLx2gIR0C6yy+zQeFMdX2UKGgGR0By2BTgl4TsaAdLxmgIR0C6yzQAQxvfdX2UKGgGR0Bw5O4RVZLaaAdLrmgIR0C6y1UjX4CZdX2UKGgGR0BzHgzi0fHQaAdLu2gIR0C6z1Zgb6xgdX2UKGgGR0Bzj4xBVuJlaAdL0mgIR0C6z14l+mWMdX2UKGgGR0Bx4TSgGr0baAdLpGgIR0C6z2PBN21VdX2UKGgGR0BzYEJKJ2t/aAdLqGgIR0C6z2ogaFVUdX2UKGgGR0BxsAwmE5AAaAdL1GgIR0C6z30K/mDEdX2UKGgGR0BxdZ0gbIcSaAdLv2gIR0C6z4MvmHQAdX2UKGgGR0ByCKVTrE9/aAdLw2gIR0C6z4TH4oJBdX2UKGgGR0By1KCqZML4aAdLymgIR0C6z6dZ3cHodX2UKGgGR0Bxp4OMERraaAdLumgIR0C6z6l2vB8AdX2UKGgGR0ByXWr1dxACaAdLuWgIR0C6z7PRVp9JdX2UKGgGR0BymFLK3d9EaAdL6WgIR0C6z88I3R5UdX2UKGgGR0ByToaESM99aAdLnWgIR0C6z9FQdjoZdX2UKGgGR0Bx3QaXKKYRaAdLrGgIR0C6z+my1NQCdX2UKGgGR0BzaRum78NyaAdL2GgIR0C6z/z9S/CZdX2UKGgGR0BvYcqnWJ7+aAdLwGgIR0C60Abux8lYdX2UKGgGR0Bxqyb+cYqHaAdLtmgIR0C60BvOQhfTdX2UKGgGR0Bxy1wo9cKPaAdLsmgIR0C60CbtAs06dX2UKGgGR0BzGg8V58jSaAdLpmgIR0C60CWecx0udX2UKGgGR0ByObI4lyBDaAdLuWgIR0C60CfSlWOqdX2UKGgGR0BuwxUvPC2uaAdLqWgIR0C60DwbIcR2dX2UKGgGR0ByF4IUrTYvaAdL0WgIR0C60E9MoMKDdX2UKGgGR0By4qCZnctYaAdLzmgIR0C60G504iosdX2UKGgGR0Bz5habF0gbaAdL3mgIR0C60H/USZjQdX2UKGgGR0ByZ+PZIxxlaAdLn2gIR0C60IY5Lh73dX2UKGgGR0BzfW4I8hcJaAdLxmgIR0C60IrDAJswdX2UKGgGR0BxdokC3gDSaAdLx2gIR0C60I3TiKixdX2UKGgGR0BzjChSLqD9aAdLvWgIR0C60I1Id2gWdX2UKGgGR0Bx+c/u9eyBaAdLx2gIR0C60LQXEZR9dX2UKGgGR0BzkBdRiw0PaAdLyWgIR0C60M/fTCtSdX2UKGgGR0Bycmj7ALy+aAdLuWgIR0C60NkM5OrRdX2UKGgGR0BuhupMpPRBaAdLzmgIR0C60ObeQ+2WdX2UKGgGR0BwGw2/BWPtaAdLqmgIR0C60OmUOd5IdX2UKGgGR0BweO4x1xKhaAdLu2gIR0C60P446wMZdX2UKGgGR0BxmDDaXa8IaAdLxWgIR0C60P51Ng0CdX2UKGgGR0BxBVFI/Z/TaAdLw2gIR0C60QmETQE7dX2UKGgGR0BywFuwX668aAdLsWgIR0C60ScNhE0BdX2UKGgGR0BytwstkFwDaAdLx2gIR0C60S6ZYxL1dX2UKGgGR0Bx5Bfv4M4MaAdLuWgIR0C60VyC8OCodX2UKGgGR0Bw3xtCRfWuaAdLrmgIR0C60Wm5UcXFdX2UKGgGR0BwvizJIUaiaAdLtmgIR0C60W5OJtSAdX2UKGgGR0Bw1EXsPatcaAdLr2gIR0C60XGX1J18dX2UKGgGR0Bx0zfsNUfgaAdLwWgIR0C60ZEKiO/+dX2UKGgGR0By308bJfY0aAdLxWgIR0C60Zaya/h3dX2UKGgGR0BxvxrpJPIoaAdLqGgIR0C60ey9mHxjdX2UKGgGR0BzItQLux8laAdL1WgIR0C60fF49ovjdX2UKGgGR0ByZTyVfNRnaAdLwmgIR0C60fiauwHJdX2UKGgGR0Bw27MINVinaAdLvmgIR0C60gJJ04ipdX2UKGgGR0Bx7W+pOvdNaAdLwmgIR0C60h+iBXjmdX2UKGgGR0ByWpIczZYgaAdLnmgIR0C60jGexwAEdX2UKGgGR0BwkWcy31BdaAdLx2gIR0C60kHuy/sWdX2UKGgGR0Byshid8RcvaAdLr2gIR0C60kX0XgtOdX2UKGgGR0BydsFINEw4aAdLzmgIR0C60k7ALy+YdX2UKGgGR0Bx//rUsnRcaAdLyWgIR0C60lEvkBCEdX2UKGgGR0Bxv5CE6DGtaAdLwmgIR0C60psC5mROdX2UKGgGR0B0Rpn+Q2deaAdLvGgIR0C60p7NGEwndX2UKGgGR0B0e3qkdmxuaAdLvGgIR0C60qNoN/e+dX2UKGgGR0B0GGP6sQumaAdL0WgIR0C60sm9pRGddX2UKGgGR0BxxanaWX1KaAdLw2gIR0C60tsPz4DcdX2UKGgGR0BzicQUYbbUaAdL2GgIR0C60vj5CWu6dX2UKGgGR0BxB9UIcBEKaAdLrGgIR0C60w+3+dbxdX2UKGgGR0Bwm8gwGnn/aAdLs2gIR0C60yrsv7FbdX2UKGgGR0Bw4XjtG/etaAdLwGgIR0C60zAYUFjedX2UKGgGR0BvweXiR4hVaAdLzWgIR0C601SntOVPdX2UKGgGR0BwIZlVcUudaAdLrWgIR0C601cKb8WLdX2UKGgGR0BwtwSYgJTmaAdLumgIR0C601pf6XSjdX2UKGgGR0Bx7pF/hESeaAdLsWgIR0C60293OfNBdX2UKGgGR0BwvPHdXT3JaAdLs2gIR0C603bxusLfdX2UKGgGR0Byn4KhL5ARaAdLtGgIR0C604GrbQC0dX2UKGgGR0BxoUZXMhX9aAdLxGgIR0C6052/FirldX2UKGgGR0BxnnHZK3/haAdLsWgIR0C608LRSgoPdX2UKGgGR0BxKfBN21UmaAdLs2gIR0C608hI4EOidX2UKGgGR0B0AbDWK/EgaAdLumgIR0C608nyiEg4dX2UKGgGR0BxWb6SDAaeaAdLu2gIR0C60+mR3eN2dX2UKGgGR0Bzmtn5BTn8aAdLs2gIR0C60+wJokAxdX2UKGgGR0B0MG+Eh7mdaAdLv2gIR0C61A/H5rP/dX2UKGgGR0ByHNZuAI6baAdLrmgIR0C61CE8A7xNdX2UKGgGR0Bx/NZ0Syt3aAdLxWgIR0C61CaKpDNRdX2UKGgGR0BzxaiN83MqaAdLx2gIR0C61Dn1nM+vdX2UKGgGR0Bw9TCaZx7zaAdLt2gIR0C61EFj/dZadX2UKGgGR0BxJtQhwEQoaAdLvmgIR0C61Er+kxh2dX2UKGgGR0BxOzC4z7/GaAdLrGgIR0C61EsXvYvndX2UKGgGR0Bx6WP3i704aAdLvmgIR0C61E0CFK02dX2UKGgGR0By2+iRGMGYaAdLr2gIR0C61FRtHhCMdX2UKGgGR0BySj1xsEaEaAdL0GgIR0C61GyMLncMdX2UKGgGR0BxRmerdWQwaAdLvGgIR0C61HSo86mwdX2UKGgGR0Bwt2SA6MisaAdLsWgIR0C61IpzcRDkdX2UKGgGR0Bw1O9nK4hEaAdLq2gIR0C61Ip/9YOldX2UKGgGR0BF4KaoddVvaAdLkWgIR0C61I59iMHbdX2UKGgGR0Bxo18kUsWgaAdLumgIR0C61Jjr7fpEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8ac4241f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8ac424280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8ac424310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8ac4243a0>", "_build": "<function ActorCriticPolicy._build at 0x7fb8ac424430>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8ac4244c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb8ac424550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8ac4245e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8ac424670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8ac424700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8ac424790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8ac424820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb8ac41da40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500224, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690727290955169097, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAADOP4D22rTE/G9AhPgxdNr857pA+QpnkPQAAAAAAAAAAzSu9vLiGubmeqlwznxaYL3uNSDtf98ezAACAPwAAgD8Gnzm+GYpKPzHQJ75TIzO/i4fWvrUIET0AAAAAAAAAAG1YKT5QR3I/NG6XPlzZJL8gUsA+pgKCPgAAAAAAAAAAZunPPYtKgD9+P5M+UFlRv33OdD6ODB4+AAAAAAAAAACaaco9UKi+P5VQxT6yExK+YtHgPaqogT4AAAAAAAAAAGY0lDxbZrs91W1hvcMr776z4JS8yVqKvQAAAAAAAAAAmuTyPK7BlLrDg9q6GtlxNcU9KbqDvdi0AACAPwAAgD/NbGO7XDNCuq1W57xyA0cxv1NKOw2D4LMAAIA/AACAP2ZblzxII4W69pBUNTMNii4fixY6FdlutAAAgD8AAIA/ZuRMPadGuT/2bGA+hadBvmcl3zz19MU9AAAAAAAAAAAzcz++9AoMP7Vg7D0Tvze/iMSdvtaryz0AAAAAAAAAAJpZDD098x0/vq/hO9FWU7/14KQ9ze9QPAAAAAAAAAAA4MgGPpzmbj8H2Jk+x7k0v/CNnT4nbJk+AAAAAAAAAABm3jU9HeYyPhwswr2PVBO/FpogPt0NnL0AAAAAAAAAAK30CT5IFgw/CWUGvtY8Qb96cl8+XssMvgAAAAAAAAAABroHPs2UmT68yRq/cqH3vjNjJ75UYKy+AAAAAAAAAAAAYl08KRgyup5PxbotLAG2SORSOj6y6DkAAIA/AACAP5pzgrw4xtu7KZLEPfXZfjpzSye9n+k/vgAAgD8AAIA/WrFSvp279j7yQtI9N20bvyKSl76adys+AAAAAAAAAABg21y+0tMMP9k2Rj7zDCi/Ooe0vnQhSz4AAAAAAAAAAAoIij4HyxA/0OtUvuKMCr+miL4+wIl1vgAAAAAAAAAAs9jQPRergz9L4qc+3OQ9vwmzSz5tQmo+AAAAAAAAAABmxt46IkK3P5b0jjo+KcW+OCtLvJrYLzwAAAAAAAAAAGYVab1OA5k/jteFvsOBO79459C97lMxvgAAAAAAAAAAAEagPNoEXz82TP48Fulyvx5g8TwgH048AAAAAAAAAABm5ly8e9KmusAjCDyThZA8L0N+Oso1e70AAIA/AACAP4DuIT2+DoY/TDKlPQDRbL/OP2E9kvHBPQAAAAAAAAAAAOSeu+HKjLrie1W7SXM+MdN0Hbu7GOyzAACAPwAAgD9mUu283GsXvDD8Mz7ufLO9dDxCvfiB9j0AAIA/AAAAAJptHbxvc2M+XzeIPZ6vHr/6UEC9cpHePAAAAAAAAAAAzUzZu2zHnz+1SkS9sIowv9Kf9jsCli88AAAAAAAAAADNtxy+44URP2s/bTyK+TS/GuiyvgHCpz0AAAAAAAAAAM06Lr3WjKU/wsXDvj9PJL+8HMG8/vRWvgAAAAAAAAAAmo5DPpQWiT8kgzg+py4tv+LlxD6d8Ng9AAAAAAAAAADzYIa+SK5hP/5mpr7smTe/HAApv3C4hr0AAAAAAAAAAM3UuLyF48q5jBxCNwC6S7D61UC7chRitgAAgD8AAIA/ZnqrO8MpaboTau29tG0ks8atqjqNPyUzAACAPwAAgD9mIqM8kpe1P6kzKT93sLU9akKQvHVGpr0AAAAAAAAAAAAuBLxITYu6ii0pMxRrM68l/AU7vr/LswAAgD8AAIA/M3x2vbLmXz+K3dS9Rhtmv1uBEL4Ump68AAAAAAAAAACaPpe837OjP0JRSL7/HEK/eYi/vEXXor0AAAAAAAAAADpzaT7WX/E+my1VvtZ5HL+ImbU+/VhwvgAAAAAAAAAAGkCbPTiVhz2aoPm9pnoCvwZF3T1GOBe+AAAAAAAAAACaQ+68caljuwN5ej006Qo9Ho8AvLESxbkAAIA/AACAPzNKsjwD0im8JgRfvq9PLT2Wejw9M4MovQAAgD8AAIA/ZlaZvBQU0rp6uuo9khlZPelO5DubVKC8AACAPwAAgD8aHlG9CKOlvDbqyD3kO269y2KRupAolrwAAIA/AACAPzOz0jlbR7U/sqwmPVUfcj5QmfC5QQQXvAAAAAAAAAAAmlkBu8SfkT5Inra8QTMhv9YywzwSE4G9AAAAAAAAAACalTA92vaDP/Za8j3ZJ3K/856qPbG/AD4AAAAAAAAAAAAAAbv2vGS6na16PWlJK7ZXRuO6mgEitQAAgD8AAIA/2jCLPYpWCT6y7n++U3Lhvsco0rxXRhW+AAAAAAAAAADNO+i8XGcLuno+F7hCMC2zHwMyO+t+NTcAAIA/AACAP82wSTxS69O77y8aOxeblzwUKT+9DvF+PQAAgD8AAIA/ZhLzO0jBlbrGDsw8Nssos9+pArtNoW+zAACAPwAAgD9zvDI+lf3+PuUDBL5RiBq/Y7mRPhiSBb4AAAAAAAAAADNVrjyZx7I/nWqsPgPCL75dLDg7T++iPQAAAAAAAAAA2toXPviihT77QqK+G9cUv8Xasj2Dwku+AAAAAAAAAABmhiE6e9qVultwxbdmHJiyFsPmtf3O4zYAAIA/AACAP4Dupz2HrW4+A+KhvseLF7/Sqjw9FguIvgAAAAAAAAAAmq1EPOE49Logx+u9ZZ26PEZBlLs7XHY8AACAPwAAgD+aSZM6QbODvNlKED0hcM48BkX1PWI1o70AAIA/AACAPzOzXbwWEyo9tk6bPdH5pb4NyjK8IvRavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.541248, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwHT3IuGuMAWyUS62MAXSUR0C6zL5COWB0dX2UKGgGR0BzHwsf7rLRaAdLw2gIR0C6zMg2Ifr9dX2UKGgGR0ByFR8XvYvnaAdLnmgIR0C6zMYW1twadX2UKGgGR0BzeIiwB5ooaAdLz2gIR0C6zMoI8hcJdX2UKGgGR0BybxlVcUudaAdLnmgIR0C6zNC3kPtldX2UKGgGR0BxLSUr08NhaAdLgmgIR0C6zOUiY9gXdX2UKGgGR0Bw0z+m3vx6aAdLpmgIR0C6zPhYzSCwdX2UKGgGR0BwpjIcR15jaAdLsWgIR0C6zRKSkj5cdX2UKGgGR0Bx3yO/+Kj0aAdLk2gIR0C6zRU/KQq7dX2UKGgGR0BwrYKlYU35aAdLoGgIR0C6zSGnsLOSdX2UKGgGR0BwVjN3W4EwaAdLo2gIR0C6zTf0yxiYdX2UKGgGR0BzrC2v0RODaAdLxWgIR0C6zUXUDuBudX2UKGgGR0Bxsq1iONo8aAdLqmgIR0C6zUcJdB0IdX2UKGgGR0Byn3q+rU9ZaAdLv2gIR0C6zUzr7fpEdX2UKGgGR0BwTG2fChvjaAdLuGgIR0C6zVGITGo8dX2UKGgGR0BxUjIOpbUxaAdLrGgIR0C6zWQMDwH8dX2UKGgGR0Bxr6LQ5WBCaAdLlmgIR0C6zW6LwWnCdX2UKGgGR0ByFFvitJWeaAdLsGgIR0C6zYI+Sr5qdX2UKGgGR0ByRrdVNpM6aAdLsWgIR0C6zYCQ5myxdX2UKGgGR0BJMelCTlkpaAdLXmgIR0C6zX92HLzPdX2UKGgGR0Bxvh/+bVjJaAdLt2gIR0C6zYrm+0w8dX2UKGgGR0BzWzcwg1WKaAdLo2gIR0C6zZKZML4OdX2UKGgGR0By5Tg3tKI0aAdLumgIR0C6zY+mzjWDdX2UKGgGR0BxI5IsiB5HaAdLt2gIR0C6zZjg62fDdX2UKGgGR0Bx0o0IkZ75aAdLtmgIR0C6zaGxdIGydX2UKGgGR0BzD/Jmukk9aAdLnGgIR0C6za/a6BiDdX2UKGgGR0BvxNJ6IFeOaAdLnWgIR0C6zbJ40Mw2dX2UKGgGR0BykOClJpWWaAdLomgIR0C6zbbl7tzCdX2UKGgGR0Byt2Hh0hePaAdL2GgIR0C6zbeIqLCOdX2UKGgGR0ByimgGr0aqaAdLvmgIR0C6zdNVzZHvdX2UKGgGR0BzFtsKsuFpaAdLuGgIR0C6zeGxlg+hdX2UKGgGR0ByohNet0V8aAdLqGgIR0C6ze7zshPkdX2UKGgGR0BzJRE+gUUPaAdLxGgIR0C6ze1CswL3dX2UKGgGR0Bx88C9ytFKaAdLw2gIR0C6zgoUN8VpdX2UKGgGR0BwgLdKujh2aAdLmGgIR0C6zh0QoTf0dX2UKGgGR0Byw9EqlP8AaAdLkGgIR0C6zh7Ub1h9dX2UKGgGR0Bxa6OmzjWDaAdLqGgIR0C6zih2jfvXdX2UKGgGR0By4TIgeRxMaAdLwWgIR0C6zjdFjNILdX2UKGgGR0BzLZYISlFdaAdLzmgIR0C6zkVe0G/vdX2UKGgGR0BzAZb9qDbraAdLoWgIR0C6zkp8BuGcdX2UKGgGR0BzwE4cWCVbaAdLxWgIR0C6zlLobGWEdX2UKGgGR0ByZ1UOuq3maAdLvmgIR0C6zliMo+fRdX2UKGgGR0ByMZBWxQizaAdLq2gIR0C6zmvR/mT1dX2UKGgGR0ByNx5X2dupaAdLtGgIR0C6znQggX/HdX2UKGgGR0B0D8RDkU9IaAdLomgIR0C6zoMijcmCdX2UKGgGR0BzbUYDTz/ZaAdLx2gIR0C6zoF4cFQmdX2UKGgGR0Bwt5AmiQDFaAdLpWgIR0C6zoh8YyfudX2UKGgGR0Bzr8WhysCDaAdLtmgIR0C6zobUPQOXdX2UKGgGR0BxtkVeruIAaAdLiGgIR0C6zoymEXchdX2UKGgGR0BzeEJswco6aAdLy2gIR0C6zqIo/iYLdX2UKGgGR0BzYaPS2H+IaAdLumgIR0C6zq4g3cYZdX2UKGgGR0BustpM6BAfaAdLk2gIR0C6zsPsNUfgdX2UKGgGR0Bw537fpD/maAdLp2gIR0C6zsFm8M/hdX2UKGgGR0B0Da/Yao/BaAdLzWgIR0C6ztuuieundX2UKGgGR0ByivzErGzbaAdLsmgIR0C6ztp8neBQdX2UKGgGR0BzJz8/D+BIaAdLlGgIR0C6ztj9XLeRdX2UKGgGR0B0JYwL3K0VaAdLq2gIR0C6zuE4R28qdX2UKGgGR0Bx+2SxJNCaaAdLsmgIR0C6zuC2DxsmdX2UKGgGR0Bw+r7+DOC5aAdLrGgIR0C6zvVzU7SzdX2UKGgGR0B0PLE4vN/waAdLxmgIR0C6zw0M5OrRdX2UKGgGR0By7ktFrl/6aAdLw2gIR0C6zwhdt2s8dX2UKGgGR0Bzb6sXBP9DaAdLpWgIR0C6zxBeHBUJdX2UKGgGR0BzO8nndO6/aAdLwGgIR0C6zyvMjeKsdX2UKGgGR0ByMZiExqO+aAdLvWgIR0C6z0QkxASndX2UKGgGR0Bx4+zMRpUQaAdLiWgIR0C6z1Ki0v4/dX2UKGgGR0BxfcAEMb3oaAdLtmgIR0C6z18uzyBkdX2UKGgGR0BxnYYMvyskaAdLumgIR0C6z16lchTwdX2UKGgGR0BxUa3qiXY2aAdLvGgIR0C6z2u7L+xXdX2UKGgGR0Bwok9cKPXDaAdLmGgIR0C6z2n2ugYhdX2UKGgGR0Bxd/TtsvZiaAdLn2gIR0C6z3Pfj0cwdX2UKGgGR0ByJru3MINWaAdLqmgIR0C6z3P9Hc1wdX2UKGgGR0BzB0gTyrggaAdLvWgIR0C6z3JOnEVGdX2UKGgGR0ByrgNZvDP4aAdLtGgIR0C6z37aRISUdX2UKGgGR0BwNNkI5YHPaAdLqWgIR0C6z39g8bJfdX2UKGgGR0Bzpe4MF2V3aAdLy2gIR0C6z5Odf9gndX2UKGgGR0BxoFhuwX67aAdLtGgIR0C6z5nYQJ5WdX2UKGgGR0BwvO1ndweeaAdLqmgIR0C6z6rBfrrxdX2UKGgGR0BybCMm4RVZaAdLq2gIR0C6z7Q+2VmjdX2UKGgGR0BwGLjn3cpLaAdLlGgIR0C6z8Mtbs4UdX2UKGgGR0BzR5UgjhUBaAdLzGgIR0C6z77t3OfNdX2UKGgGR0ByF8Fr2xptaAdLpmgIR0C6z9OhoM8YdX2UKGgGR0BxtIKE384xaAdLkmgIR0C6z99WIXTFdX2UKGgGR0Bw6MjxCpm3aAdLnGgIR0C6z+Ziy6czdX2UKGgGR0Bx3t/b0voNaAdLkmgIR0C6z+7cfvF4dX2UKGgGR0ByjLWFvhqCaAdLvGgIR0C6z/R0yP+5dX2UKGgGR0Bw3j3ta6jGaAdLsGgIR0C60Ar3PAwgdX2UKGgGR0BziboTwlSkaAdLsWgIR0C60AwYDTz/dX2UKGgGR0BzIAxN7BwdaAdLl2gIR0C60AyjgydndX2UKGgGR0B0Oc/LTx5LaAdLvmgIR0C60Bpl4C6pdX2UKGgGR0BxvLollbu/aAdLjWgIR0C60Bi3ocJddX2UKGgGR0ByvEi4axX5aAdLtGgIR0C60Ch15jYqdX2UKGgGR0BzmD3JxNqQaAdLvGgIR0C60C6zeGfxdX2UKGgGR0BzjkYYR/ViaAdLwGgIR0C60DRqTKT0dX2UKGgGR0BxrHirDIikaAdLwWgIR0C60DYwyqMndX2UKGgGR0BxZVNrTH81aAdLuWgIR0C60ElxXGOudX2UKGgGR0BxYAdhiLEUaAdLmGgIR0C60FeclPaddX2UKGgGR0By0rSPU8V6aAdLlWgIR0C60FokZ75VdX2UKGgGR0Byhvq7iADraAdLv2gIR0C60GLs8gZCdX2UKGgGR0BzYDRZ2ZAqaAdLy2gIR0C60HYomXw9dX2UKGgGR0BxHo+dK/VRaAdLkGgIR0C60IBr30wrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 640, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a3f7f1b0dd94b081cc2b66f56e8e865f6203a6379e0a0467cbeee8b46ad87f3
|
3 |
+
size 148719
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8ac4241f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8ac424280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8ac424310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8ac4243a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb8ac424430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb8ac4244c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb8ac424550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8ac4245e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb8ac424670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8ac424700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8ac424790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8ac424820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb8ac41da40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 500224,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690727290955169097,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAADOP4D22rTE/G9AhPgxdNr857pA+QpnkPQAAAAAAAAAAzSu9vLiGubmeqlwznxaYL3uNSDtf98ezAACAPwAAgD8Gnzm+GYpKPzHQJ75TIzO/i4fWvrUIET0AAAAAAAAAAG1YKT5QR3I/NG6XPlzZJL8gUsA+pgKCPgAAAAAAAAAAZunPPYtKgD9+P5M+UFlRv33OdD6ODB4+AAAAAAAAAACaaco9UKi+P5VQxT6yExK+YtHgPaqogT4AAAAAAAAAAGY0lDxbZrs91W1hvcMr776z4JS8yVqKvQAAAAAAAAAAmuTyPK7BlLrDg9q6GtlxNcU9KbqDvdi0AACAPwAAgD/NbGO7XDNCuq1W57xyA0cxv1NKOw2D4LMAAIA/AACAP2ZblzxII4W69pBUNTMNii4fixY6FdlutAAAgD8AAIA/ZuRMPadGuT/2bGA+hadBvmcl3zz19MU9AAAAAAAAAAAzcz++9AoMP7Vg7D0Tvze/iMSdvtaryz0AAAAAAAAAAJpZDD098x0/vq/hO9FWU7/14KQ9ze9QPAAAAAAAAAAA4MgGPpzmbj8H2Jk+x7k0v/CNnT4nbJk+AAAAAAAAAABm3jU9HeYyPhwswr2PVBO/FpogPt0NnL0AAAAAAAAAAK30CT5IFgw/CWUGvtY8Qb96cl8+XssMvgAAAAAAAAAABroHPs2UmT68yRq/cqH3vjNjJ75UYKy+AAAAAAAAAAAAYl08KRgyup5PxbotLAG2SORSOj6y6DkAAIA/AACAP5pzgrw4xtu7KZLEPfXZfjpzSye9n+k/vgAAgD8AAIA/WrFSvp279j7yQtI9N20bvyKSl76adys+AAAAAAAAAABg21y+0tMMP9k2Rj7zDCi/Ooe0vnQhSz4AAAAAAAAAAAoIij4HyxA/0OtUvuKMCr+miL4+wIl1vgAAAAAAAAAAs9jQPRergz9L4qc+3OQ9vwmzSz5tQmo+AAAAAAAAAABmxt46IkK3P5b0jjo+KcW+OCtLvJrYLzwAAAAAAAAAAGYVab1OA5k/jteFvsOBO79459C97lMxvgAAAAAAAAAAAEagPNoEXz82TP48Fulyvx5g8TwgH048AAAAAAAAAABm5ly8e9KmusAjCDyThZA8L0N+Oso1e70AAIA/AACAP4DuIT2+DoY/TDKlPQDRbL/OP2E9kvHBPQAAAAAAAAAAAOSeu+HKjLrie1W7SXM+MdN0Hbu7GOyzAACAPwAAgD9mUu283GsXvDD8Mz7ufLO9dDxCvfiB9j0AAIA/AAAAAJptHbxvc2M+XzeIPZ6vHr/6UEC9cpHePAAAAAAAAAAAzUzZu2zHnz+1SkS9sIowv9Kf9jsCli88AAAAAAAAAADNtxy+44URP2s/bTyK+TS/GuiyvgHCpz0AAAAAAAAAAM06Lr3WjKU/wsXDvj9PJL+8HMG8/vRWvgAAAAAAAAAAmo5DPpQWiT8kgzg+py4tv+LlxD6d8Ng9AAAAAAAAAADzYIa+SK5hP/5mpr7smTe/HAApv3C4hr0AAAAAAAAAAM3UuLyF48q5jBxCNwC6S7D61UC7chRitgAAgD8AAIA/ZnqrO8MpaboTau29tG0ks8atqjqNPyUzAACAPwAAgD9mIqM8kpe1P6kzKT93sLU9akKQvHVGpr0AAAAAAAAAAAAuBLxITYu6ii0pMxRrM68l/AU7vr/LswAAgD8AAIA/M3x2vbLmXz+K3dS9Rhtmv1uBEL4Ump68AAAAAAAAAACaPpe837OjP0JRSL7/HEK/eYi/vEXXor0AAAAAAAAAADpzaT7WX/E+my1VvtZ5HL+ImbU+/VhwvgAAAAAAAAAAGkCbPTiVhz2aoPm9pnoCvwZF3T1GOBe+AAAAAAAAAACaQ+68caljuwN5ej006Qo9Ho8AvLESxbkAAIA/AACAPzNKsjwD0im8JgRfvq9PLT2Wejw9M4MovQAAgD8AAIA/ZlaZvBQU0rp6uuo9khlZPelO5DubVKC8AACAPwAAgD8aHlG9CKOlvDbqyD3kO269y2KRupAolrwAAIA/AACAPzOz0jlbR7U/sqwmPVUfcj5QmfC5QQQXvAAAAAAAAAAAmlkBu8SfkT5Inra8QTMhv9YywzwSE4G9AAAAAAAAAACalTA92vaDP/Za8j3ZJ3K/856qPbG/AD4AAAAAAAAAAAAAAbv2vGS6na16PWlJK7ZXRuO6mgEitQAAgD8AAIA/2jCLPYpWCT6y7n++U3Lhvsco0rxXRhW+AAAAAAAAAADNO+i8XGcLuno+F7hCMC2zHwMyO+t+NTcAAIA/AACAP82wSTxS69O77y8aOxeblzwUKT+9DvF+PQAAgD8AAIA/ZhLzO0jBlbrGDsw8Nssos9+pArtNoW+zAACAPwAAgD9zvDI+lf3+PuUDBL5RiBq/Y7mRPhiSBb4AAAAAAAAAADNVrjyZx7I/nWqsPgPCL75dLDg7T++iPQAAAAAAAAAA2toXPviihT77QqK+G9cUv8Xasj2Dwku+AAAAAAAAAABmhiE6e9qVultwxbdmHJiyFsPmtf3O4zYAAIA/AACAP4Dupz2HrW4+A+KhvseLF7/Sqjw9FguIvgAAAAAAAAAAmq1EPOE49Logx+u9ZZ26PEZBlLs7XHY8AACAPwAAgD+aSZM6QbODvNlKED0hcM48BkX1PWI1o70AAIA/AACAPzOzXbwWEyo9tk6bPdH5pb4NyjK8IvRavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.541248,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwHT3IuGuMAWyUS62MAXSUR0C6zL5COWB0dX2UKGgGR0BzHwsf7rLRaAdLw2gIR0C6zMg2Ifr9dX2UKGgGR0ByFR8XvYvnaAdLnmgIR0C6zMYW1twadX2UKGgGR0BzeIiwB5ooaAdLz2gIR0C6zMoI8hcJdX2UKGgGR0BybxlVcUudaAdLnmgIR0C6zNC3kPtldX2UKGgGR0BxLSUr08NhaAdLgmgIR0C6zOUiY9gXdX2UKGgGR0Bw0z+m3vx6aAdLpmgIR0C6zPhYzSCwdX2UKGgGR0BwpjIcR15jaAdLsWgIR0C6zRKSkj5cdX2UKGgGR0Bx3yO/+Kj0aAdLk2gIR0C6zRU/KQq7dX2UKGgGR0BwrYKlYU35aAdLoGgIR0C6zSGnsLOSdX2UKGgGR0BwVjN3W4EwaAdLo2gIR0C6zTf0yxiYdX2UKGgGR0BzrC2v0RODaAdLxWgIR0C6zUXUDuBudX2UKGgGR0Bxsq1iONo8aAdLqmgIR0C6zUcJdB0IdX2UKGgGR0Byn3q+rU9ZaAdLv2gIR0C6zUzr7fpEdX2UKGgGR0BwTG2fChvjaAdLuGgIR0C6zVGITGo8dX2UKGgGR0BxUjIOpbUxaAdLrGgIR0C6zWQMDwH8dX2UKGgGR0Bxr6LQ5WBCaAdLlmgIR0C6zW6LwWnCdX2UKGgGR0ByFFvitJWeaAdLsGgIR0C6zYI+Sr5qdX2UKGgGR0ByRrdVNpM6aAdLsWgIR0C6zYCQ5myxdX2UKGgGR0BJMelCTlkpaAdLXmgIR0C6zX92HLzPdX2UKGgGR0Bxvh/+bVjJaAdLt2gIR0C6zYrm+0w8dX2UKGgGR0BzWzcwg1WKaAdLo2gIR0C6zZKZML4OdX2UKGgGR0By5Tg3tKI0aAdLumgIR0C6zY+mzjWDdX2UKGgGR0BxI5IsiB5HaAdLt2gIR0C6zZjg62fDdX2UKGgGR0Bx0o0IkZ75aAdLtmgIR0C6zaGxdIGydX2UKGgGR0BzD/Jmukk9aAdLnGgIR0C6za/a6BiDdX2UKGgGR0BvxNJ6IFeOaAdLnWgIR0C6zbJ40Mw2dX2UKGgGR0BykOClJpWWaAdLomgIR0C6zbbl7tzCdX2UKGgGR0Byt2Hh0hePaAdL2GgIR0C6zbeIqLCOdX2UKGgGR0ByimgGr0aqaAdLvmgIR0C6zdNVzZHvdX2UKGgGR0BzFtsKsuFpaAdLuGgIR0C6zeGxlg+hdX2UKGgGR0ByohNet0V8aAdLqGgIR0C6ze7zshPkdX2UKGgGR0BzJRE+gUUPaAdLxGgIR0C6ze1CswL3dX2UKGgGR0Bx88C9ytFKaAdLw2gIR0C6zgoUN8VpdX2UKGgGR0BwgLdKujh2aAdLmGgIR0C6zh0QoTf0dX2UKGgGR0Byw9EqlP8AaAdLkGgIR0C6zh7Ub1h9dX2UKGgGR0Bxa6OmzjWDaAdLqGgIR0C6zih2jfvXdX2UKGgGR0By4TIgeRxMaAdLwWgIR0C6zjdFjNILdX2UKGgGR0BzLZYISlFdaAdLzmgIR0C6zkVe0G/vdX2UKGgGR0BzAZb9qDbraAdLoWgIR0C6zkp8BuGcdX2UKGgGR0BzwE4cWCVbaAdLxWgIR0C6zlLobGWEdX2UKGgGR0ByZ1UOuq3maAdLvmgIR0C6zliMo+fRdX2UKGgGR0ByMZBWxQizaAdLq2gIR0C6zmvR/mT1dX2UKGgGR0ByNx5X2dupaAdLtGgIR0C6znQggX/HdX2UKGgGR0B0D8RDkU9IaAdLomgIR0C6zoMijcmCdX2UKGgGR0BzbUYDTz/ZaAdLx2gIR0C6zoF4cFQmdX2UKGgGR0Bwt5AmiQDFaAdLpWgIR0C6zoh8YyfudX2UKGgGR0Bzr8WhysCDaAdLtmgIR0C6zobUPQOXdX2UKGgGR0BxtkVeruIAaAdLiGgIR0C6zoymEXchdX2UKGgGR0BzeEJswco6aAdLy2gIR0C6zqIo/iYLdX2UKGgGR0BzYaPS2H+IaAdLumgIR0C6zq4g3cYZdX2UKGgGR0BustpM6BAfaAdLk2gIR0C6zsPsNUfgdX2UKGgGR0Bw537fpD/maAdLp2gIR0C6zsFm8M/hdX2UKGgGR0B0Da/Yao/BaAdLzWgIR0C6ztuuieundX2UKGgGR0ByivzErGzbaAdLsmgIR0C6ztp8neBQdX2UKGgGR0BzJz8/D+BIaAdLlGgIR0C6ztj9XLeRdX2UKGgGR0B0JYwL3K0VaAdLq2gIR0C6zuE4R28qdX2UKGgGR0Bx+2SxJNCaaAdLsmgIR0C6zuC2DxsmdX2UKGgGR0Bw+r7+DOC5aAdLrGgIR0C6zvVzU7SzdX2UKGgGR0B0PLE4vN/waAdLxmgIR0C6zw0M5OrRdX2UKGgGR0By7ktFrl/6aAdLw2gIR0C6zwhdt2s8dX2UKGgGR0Bzb6sXBP9DaAdLpWgIR0C6zxBeHBUJdX2UKGgGR0BzO8nndO6/aAdLwGgIR0C6zyvMjeKsdX2UKGgGR0ByMZiExqO+aAdLvWgIR0C6z0QkxASndX2UKGgGR0Bx4+zMRpUQaAdLiWgIR0C6z1Ki0v4/dX2UKGgGR0BxfcAEMb3oaAdLtmgIR0C6z18uzyBkdX2UKGgGR0BxnYYMvyskaAdLumgIR0C6z16lchTwdX2UKGgGR0BxUa3qiXY2aAdLvGgIR0C6z2u7L+xXdX2UKGgGR0Bwok9cKPXDaAdLmGgIR0C6z2n2ugYhdX2UKGgGR0Bxd/TtsvZiaAdLn2gIR0C6z3Pfj0cwdX2UKGgGR0ByJru3MINWaAdLqmgIR0C6z3P9Hc1wdX2UKGgGR0BzB0gTyrggaAdLvWgIR0C6z3JOnEVGdX2UKGgGR0ByrgNZvDP4aAdLtGgIR0C6z37aRISUdX2UKGgGR0BwNNkI5YHPaAdLqWgIR0C6z39g8bJfdX2UKGgGR0Bzpe4MF2V3aAdLy2gIR0C6z5Odf9gndX2UKGgGR0BxoFhuwX67aAdLtGgIR0C6z5nYQJ5WdX2UKGgGR0BwvO1ndweeaAdLqmgIR0C6z6rBfrrxdX2UKGgGR0BybCMm4RVZaAdLq2gIR0C6z7Q+2VmjdX2UKGgGR0BwGLjn3cpLaAdLlGgIR0C6z8Mtbs4UdX2UKGgGR0BzR5UgjhUBaAdLzGgIR0C6z77t3OfNdX2UKGgGR0ByF8Fr2xptaAdLpmgIR0C6z9OhoM8YdX2UKGgGR0BxtIKE384xaAdLkmgIR0C6z99WIXTFdX2UKGgGR0Bw6MjxCpm3aAdLnGgIR0C6z+Ziy6czdX2UKGgGR0Bx3t/b0voNaAdLkmgIR0C6z+7cfvF4dX2UKGgGR0ByjLWFvhqCaAdLvGgIR0C6z/R0yP+5dX2UKGgGR0Bw3j3ta6jGaAdLsGgIR0C60Ar3PAwgdX2UKGgGR0BziboTwlSkaAdLsWgIR0C60AwYDTz/dX2UKGgGR0BzIAxN7BwdaAdLl2gIR0C60AyjgydndX2UKGgGR0B0Oc/LTx5LaAdLvmgIR0C60Bpl4C6pdX2UKGgGR0BxvLollbu/aAdLjWgIR0C60Bi3ocJddX2UKGgGR0ByvEi4axX5aAdLtGgIR0C60Ch15jYqdX2UKGgGR0BzmD3JxNqQaAdLvGgIR0C60C6zeGfxdX2UKGgGR0BzjkYYR/ViaAdLwGgIR0C60DRqTKT0dX2UKGgGR0BxrHirDIikaAdLwWgIR0C60DYwyqMndX2UKGgGR0BxZVNrTH81aAdLuWgIR0C60ElxXGOudX2UKGgGR0BxYAdhiLEUaAdLmGgIR0C60FeclPaddX2UKGgGR0By0rSPU8V6aAdLlWgIR0C60FokZ75VdX2UKGgGR0Byhvq7iADraAdLv2gIR0C60GLs8gZCdX2UKGgGR0BzYDRZ2ZAqaAdLy2gIR0C60HYomXw9dX2UKGgGR0BxHo+dK/VRaAdLkGgIR0C60IBr30wrdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 640,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 64,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a06cafa35d39befe1ddf4c6bb550b07aaac817991f0ec62af1abc5d4abffd73
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a12c45cd0511e97a602f68a243a59ef923933a7fc37e2d803f35ae30a761a01
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 293.60595929999994, "std_reward": 12.777295076481336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T14:33:17.107529"}
|