Add RNN model with attention
Browse files- .gitattributes +1 -0
- config.json +1 -0
- modeling.py +301 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +19 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "RNN", "vocab_size": 250002, "hidden_size": 256, "output_size": 2, "cell_type": "RNN", "architecture": "SimpleRecurrentNetworkWithAttention"}
|
modeling.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import time
|
3 |
+
from datasets import load_dataset
|
4 |
+
import numpy as np
|
5 |
+
import transformers
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.optim as optim
|
9 |
+
from torch.utils.data import DataLoader, TensorDataset
|
10 |
+
|
11 |
+
class custom_RNNCell(nn.Module):
|
12 |
+
def __init__(self, input_size: int, hidden_size: int, device='cpu'):
|
13 |
+
|
14 |
+
# Initialize a basic RNN cell with Xavier-initialized weights.
|
15 |
+
# :param input_size: Number of input features.
|
16 |
+
# :param hidden_size: Number of units in the hidden layer.
|
17 |
+
#:param device: Device to place the tensors on.
|
18 |
+
|
19 |
+
super(custom_RNNCell, self).__init__()
|
20 |
+
self.hidden_size = hidden_size
|
21 |
+
self.device = device
|
22 |
+
|
23 |
+
# Xavier initialization limits
|
24 |
+
fan_in_Wx = input_size
|
25 |
+
fan_out_Wx = hidden_size
|
26 |
+
limit_Wx = np.sqrt(6 / (fan_in_Wx + fan_out_Wx))
|
27 |
+
|
28 |
+
fan_in_Wh = hidden_size
|
29 |
+
fan_out_Wh = hidden_size
|
30 |
+
limit_Wh = np.sqrt(6 / (fan_in_Wh + fan_out_Wh))
|
31 |
+
|
32 |
+
# Convert weights to PyTorch Parameters
|
33 |
+
self.Wx = nn.Parameter(torch.empty(input_size, hidden_size, device=device))
|
34 |
+
self.Wh = nn.Parameter(torch.empty(hidden_size, hidden_size, device=device))
|
35 |
+
self.bh = nn.Parameter(torch.zeros(hidden_size, device=device))
|
36 |
+
|
37 |
+
# Initialize using Xavier uniform
|
38 |
+
nn.init.uniform_(self.Wx, -limit_Wx, limit_Wx)
|
39 |
+
nn.init.uniform_(self.Wh, -limit_Wh, limit_Wh)
|
40 |
+
|
41 |
+
def forward(self, input_t: torch.Tensor, h_prev: torch.Tensor) -> torch.Tensor:
|
42 |
+
|
43 |
+
# Forward pass for a basic RNN cell.
|
44 |
+
# :param input_t: Input at time step t (batch_size x input_size).
|
45 |
+
# :param h_prev: Hidden state from previous time step (batch_size x hidden_size).
|
46 |
+
# :return: Updated hidden state.
|
47 |
+
|
48 |
+
h_t = torch.tanh(torch.mm(input_t, self.Wx) + torch.mm(h_prev, self.Wh) + self.bh)
|
49 |
+
return h_t
|
50 |
+
|
51 |
+
class custom_GRUCell(nn.Module):
|
52 |
+
def __init__(self, input_size: int, hidden_size: int, device='cpu'):
|
53 |
+
|
54 |
+
# Initialize a GRU cell with Xavier-initialized weights.
|
55 |
+
# :param input_size: Number of input features.
|
56 |
+
# :param hidden_size: Number of units in the hidden layer.
|
57 |
+
# :param device: The device to run the computations on.
|
58 |
+
|
59 |
+
super(custom_GRUCell, self).__init__()
|
60 |
+
self.hidden_size = hidden_size
|
61 |
+
self.device = device
|
62 |
+
|
63 |
+
# Xavier initialization limits
|
64 |
+
fan_in = input_size + hidden_size
|
65 |
+
fan_out = hidden_size
|
66 |
+
limit = (6 / (fan_in + fan_out)) ** 0.5
|
67 |
+
|
68 |
+
# Weight matrices for update gate, reset gate, and candidate hidden state
|
69 |
+
self.Wz = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Update gate
|
70 |
+
self.Wr = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Reset gate
|
71 |
+
self.Wh = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Candidate hidden state
|
72 |
+
|
73 |
+
# Apply Xavier initialization
|
74 |
+
nn.init.uniform_(self.Wz, -limit, limit)
|
75 |
+
nn.init.uniform_(self.Wr, -limit, limit)
|
76 |
+
nn.init.uniform_(self.Wh, -limit, limit)
|
77 |
+
|
78 |
+
# Biases for each gate, initialized to zeros
|
79 |
+
self.bz = nn.Parameter(torch.zeros(hidden_size, device=device))
|
80 |
+
self.br = nn.Parameter(torch.zeros(hidden_size, device=device))
|
81 |
+
self.bh = nn.Parameter(torch.zeros(hidden_size, device=device))
|
82 |
+
|
83 |
+
def forward(self, input_t: torch.Tensor, h_prev: torch.Tensor) -> torch.Tensor:
|
84 |
+
|
85 |
+
# Forward pass for a single GRU cell.
|
86 |
+
# :param input_t: Input at time step t (batch_size x input_size).
|
87 |
+
# :param h_prev: Hidden state from the previous time step (batch_size x hidden_size).
|
88 |
+
# :return: Updated hidden state.
|
89 |
+
|
90 |
+
# Concatenate input and previous hidden state
|
91 |
+
concat = torch.cat((input_t, h_prev), dim=1)
|
92 |
+
|
93 |
+
# Update gate
|
94 |
+
z_t = torch.sigmoid(torch.matmul(concat, self.Wz) + self.bz)
|
95 |
+
|
96 |
+
# Reset gate
|
97 |
+
r_t = torch.sigmoid(torch.matmul(concat, self.Wr) + self.br)
|
98 |
+
|
99 |
+
# Candidate hidden state
|
100 |
+
concat_reset = torch.cat((input_t, r_t * h_prev), dim=1)
|
101 |
+
h_hat_t = torch.tanh(torch.matmul(concat_reset, self.Wh) + self.bh)
|
102 |
+
|
103 |
+
# Compute final hidden state
|
104 |
+
h_t = (1 - z_t) * h_prev + z_t * h_hat_t
|
105 |
+
|
106 |
+
return h_t
|
107 |
+
|
108 |
+
class custom_LSTMCell(nn.Module):
|
109 |
+
def __init__(self, input_size: int, hidden_size: int, device='cpu'):
|
110 |
+
super(custom_LSTMCell, self).__init__()
|
111 |
+
self.hidden_size = hidden_size
|
112 |
+
self.device = device
|
113 |
+
|
114 |
+
# Initialize LSTM weights and biases using Xavier initialization
|
115 |
+
self.Wf = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Forget gate (W_f)
|
116 |
+
self.Wi = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Input gate (W_i)
|
117 |
+
self.Wc = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Candidate cell state (W_c~)
|
118 |
+
self.Wo = nn.Parameter(torch.empty(input_size + hidden_size, hidden_size, device=device)) # Output gate (W_o)
|
119 |
+
|
120 |
+
# Apply Xavier initialization
|
121 |
+
nn.init.xavier_uniform_(self.Wf)
|
122 |
+
nn.init.xavier_uniform_(self.Wi)
|
123 |
+
nn.init.xavier_uniform_(self.Wc)
|
124 |
+
nn.init.xavier_uniform_(self.Wo)
|
125 |
+
|
126 |
+
# Initialize biases
|
127 |
+
self.bf = nn.Parameter(torch.zeros(hidden_size, device=device)) # Forget gate bias (b_f)
|
128 |
+
self.bi = nn.Parameter(torch.zeros(hidden_size, device=device)) # Input gate bias (b_i)
|
129 |
+
self.bc = nn.Parameter(torch.zeros(hidden_size, device=device)) # Candidate state bias (b_c~)
|
130 |
+
self.bo = nn.Parameter(torch.zeros(hidden_size, device=device)) # Output gate bias (b_o)
|
131 |
+
|
132 |
+
# Initialize forget gate bias to positive value to help with training
|
133 |
+
nn.init.constant_(self.bf, 1.0)
|
134 |
+
|
135 |
+
def forward(self, x_t: torch.Tensor, h_prev: torch.Tensor, c_prev: torch.Tensor) -> tuple:
|
136 |
+
|
137 |
+
# Forward pass for a single LSTM cell.
|
138 |
+
# :param x_t: Input at the current time step (batch_size x input_size).
|
139 |
+
# :param h_prev: Previous hidden state (batch_size x hidden_size).
|
140 |
+
# :param c_prev: Previous cell state (batch_size x hidden_size).
|
141 |
+
# :return: Tuple of new hidden state (h_t) and new cell state (c_t).
|
142 |
+
|
143 |
+
# Concatenate input and previous hidden state (x_t and h_{t-1})
|
144 |
+
concat = torch.cat((x_t, h_prev), dim=1)
|
145 |
+
|
146 |
+
# Forget gate: decides what to remove from the cell state
|
147 |
+
f_t = torch.sigmoid(torch.matmul(concat, self.Wf) + self.bf) # Forget gate (σ) -> f_t
|
148 |
+
|
149 |
+
# Input gate: decides what to add to the cell state
|
150 |
+
i_t = torch.sigmoid(torch.matmul(concat, self.Wi) + self.bi) # Input gate (σ) -> i_t
|
151 |
+
|
152 |
+
# Candidate cell state: new information to potentially add to the cell state
|
153 |
+
c_hat_t = torch.tanh(torch.matmul(concat, self.Wc) + self.bc) # Candidate cell state (tanh) -> c~_t
|
154 |
+
|
155 |
+
# Update cell state: new cell state (c_t) based on previous state and gates
|
156 |
+
c_t = f_t * c_prev + i_t * c_hat_t # Cell state update -> c_t
|
157 |
+
|
158 |
+
# Output gate: decides what the next hidden state should be
|
159 |
+
o_t = torch.sigmoid(torch.matmul(concat, self.Wo) + self.bo) # Output gate (σ) -> o_t
|
160 |
+
|
161 |
+
# New hidden state (h_t): based on cell state and output gate
|
162 |
+
h_t = o_t * torch.tanh(c_t) # Hidden state update -> h_t
|
163 |
+
|
164 |
+
# Return the new hidden state (h_t) and cell state (c_t)
|
165 |
+
return h_t, c_t
|
166 |
+
|
167 |
+
class RecurrentLayer(nn.Module):
|
168 |
+
def __init__(self, input_size: int, hidden_size: int, cell_type: str = 'RNN', device='cpu'):
|
169 |
+
super(RecurrentLayer, self).__init__()
|
170 |
+
self.hidden_size = hidden_size
|
171 |
+
self.device = device
|
172 |
+
self.cell_type = cell_type
|
173 |
+
|
174 |
+
# Initialize the appropriate cell type
|
175 |
+
if cell_type == 'RNN':
|
176 |
+
self.cell = nn.RNN(input_size, hidden_size, batch_first=True, bidirectional=True)
|
177 |
+
elif cell_type == 'custom_RNN':
|
178 |
+
self.cell = custom_RNNCell(input_size, hidden_size)
|
179 |
+
elif cell_type == 'GRU':
|
180 |
+
self.cell = nn.GRU(input_size, hidden_size, batch_first=True, bidirectional=True)
|
181 |
+
elif cell_type == 'custom_GRU':
|
182 |
+
self.cell = custom_GRUCell(input_size, hidden_size, device)
|
183 |
+
elif cell_type == 'LSTM':
|
184 |
+
self.cell = nn.LSTMCell(input_size, hidden_size)
|
185 |
+
elif cell_type == 'custom_LSTM':
|
186 |
+
self.cell = custom_LSTMCell(input_size, hidden_size, device)
|
187 |
+
else:
|
188 |
+
raise ValueError("Unsupported cell type")
|
189 |
+
|
190 |
+
def forward(self, inputs: torch.Tensor) -> tuple:
|
191 |
+
|
192 |
+
# Forward pass through the recurrent layer for a sequence of inputs.
|
193 |
+
# Returns a tuple of (output, last_hidden_state) to match PyTorch's interface.
|
194 |
+
|
195 |
+
batch_size, seq_len, _ = inputs.shape
|
196 |
+
|
197 |
+
# Initialize hidden states
|
198 |
+
h_forward = torch.zeros(batch_size, self.hidden_size, device=self.device)
|
199 |
+
h_backward = torch.zeros(batch_size, self.hidden_size, device=self.device)
|
200 |
+
|
201 |
+
if self.cell_type == 'custom_LSTM':
|
202 |
+
c_forward = torch.zeros(batch_size, self.hidden_size, device=self.device)
|
203 |
+
c_backward = torch.zeros(batch_size, self.hidden_size, device=self.device)
|
204 |
+
|
205 |
+
# Lists to store outputs for both directions
|
206 |
+
forward_outputs = []
|
207 |
+
backward_outputs = []
|
208 |
+
|
209 |
+
# Forward pass
|
210 |
+
h = h_forward
|
211 |
+
c = c_forward if self.cell_type == 'custom_LSTM' else None
|
212 |
+
for t in range(seq_len):
|
213 |
+
if self.cell_type == 'custom_LSTM':
|
214 |
+
h, c = self.cell(inputs[:, t], h, c)
|
215 |
+
else:
|
216 |
+
h = self.cell(inputs[:, t], h)
|
217 |
+
forward_outputs.append(h)
|
218 |
+
|
219 |
+
# Backward pass
|
220 |
+
h = h_backward
|
221 |
+
c = c_backward if self.cell_type == 'custom_LSTM' else None
|
222 |
+
for t in range(seq_len - 1, -1, -1):
|
223 |
+
if self.cell_type == 'custom_LSTM':
|
224 |
+
h, c = self.cell(inputs[:, t], h, c)
|
225 |
+
else:
|
226 |
+
h = self.cell(inputs[:, t], h)
|
227 |
+
backward_outputs.insert(0, h)
|
228 |
+
|
229 |
+
# Stack and concatenate outputs
|
230 |
+
forward_output = torch.stack(forward_outputs, dim=1) # [batch_size, seq_len, hidden_size]
|
231 |
+
backward_output = torch.stack(backward_outputs, dim=1) # [batch_size, seq_len, hidden_size]
|
232 |
+
output = torch.cat((forward_output, backward_output), dim=2) # [batch_size, seq_len, 2*hidden_size]
|
233 |
+
|
234 |
+
# Create final hidden state (concatenated forward and backward)
|
235 |
+
final_hidden = torch.stack([forward_outputs[-1], backward_outputs[-1]], dim=0) # [2, batch_size, hidden_size]
|
236 |
+
|
237 |
+
return output, final_hidden
|
238 |
+
|
239 |
+
class Attention(nn.Module):
|
240 |
+
def __init__(self, hidden_size):
|
241 |
+
super(Attention, self).__init__()
|
242 |
+
self.W1 = nn.Linear(hidden_size, hidden_size)
|
243 |
+
self.W2 = nn.Linear(hidden_size, hidden_size)
|
244 |
+
self.v = nn.Linear(hidden_size, 1, bias=False)
|
245 |
+
|
246 |
+
def forward(self, hidden, encoder_outputs):
|
247 |
+
# hidden: [batch_size, hidden_size]
|
248 |
+
# encoder_outputs: [batch_size, sequence_len, hidden_size]
|
249 |
+
sequence_len = encoder_outputs.shape[1]
|
250 |
+
hidden = hidden.unsqueeze(1).repeat(1, sequence_len, 1)
|
251 |
+
|
252 |
+
energy = torch.tanh(self.W1(encoder_outputs) + self.W2(hidden))
|
253 |
+
attention = self.v(energy).squeeze(2) # [batch_size, sequence_len]
|
254 |
+
attention_weights = torch.softmax(attention, dim=1)
|
255 |
+
|
256 |
+
# Apply attention weights to encoder outputs to get context vector
|
257 |
+
context = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs).squeeze(1)
|
258 |
+
return context, attention_weights
|
259 |
+
|
260 |
+
class SimpleRecurrentNetworkWithAttention(nn.Module):
|
261 |
+
def __init__(self, input_size, hidden_size, output_size, cell_type='RNN'):
|
262 |
+
super(SimpleRecurrentNetworkWithAttention, self).__init__()
|
263 |
+
|
264 |
+
self.embedding = nn.Embedding(input_size, hidden_size)
|
265 |
+
self.attention = Attention(hidden_size * 2) # Use hidden_size * 2 for bidirectional LSTM
|
266 |
+
self.cell_type = cell_type
|
267 |
+
|
268 |
+
if cell_type == 'RNN':
|
269 |
+
self.cell = nn.RNN(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
270 |
+
elif cell_type == 'custom_RNN':
|
271 |
+
self.cell = RecurrentLayer(hidden_size, hidden_size, cell_type="custom_RNN") #custom_RNNCell(input_size, hidden_size)
|
272 |
+
elif cell_type == 'GRU':
|
273 |
+
self.cell = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
274 |
+
elif cell_type == 'custom_GRU':
|
275 |
+
self.cell = RecurrentLayer(hidden_size, hidden_size, cell_type="custom_GRU")
|
276 |
+
elif cell_type == 'LSTM':
|
277 |
+
self.cell = nn.LSTM(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
278 |
+
elif cell_type == 'custom_LSTM':
|
279 |
+
self.cell = RecurrentLayer(hidden_size, hidden_size, cell_type="custom_LSTM")
|
280 |
+
else:
|
281 |
+
raise ValueError("Unsupported cell type. Choose from 'RNN', 'custom_RNN', 'GRU', 'custom_GRU', 'LSTM' or 'custom_LSTM'.")
|
282 |
+
|
283 |
+
self.fc = nn.Linear(hidden_size * 2, output_size) # hidden_size * 2 for bidirectional
|
284 |
+
|
285 |
+
def forward(self, inputs):
|
286 |
+
embedded = self.embedding(inputs)
|
287 |
+
rnn_output, hidden = self.cell(embedded)
|
288 |
+
|
289 |
+
if isinstance(hidden, tuple): # LSTM returns (hidden, cell_state)
|
290 |
+
hidden = hidden[0]
|
291 |
+
|
292 |
+
# Since it's bidirectional, get the last layer's forward and backward hidden states
|
293 |
+
hidden = torch.cat((hidden[-2], hidden[-1]), dim=1) # Concatenate forward and backward hidden states
|
294 |
+
|
295 |
+
# Apply attention to the concatenated hidden state
|
296 |
+
context, attention_weights = self.attention(hidden, rnn_output)
|
297 |
+
|
298 |
+
# Pass the context vector to the fully connected layer
|
299 |
+
output = self.fc(context)
|
300 |
+
|
301 |
+
return output, attention_weights
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d75a21bee6da43507a4799f32ffc505bccaca9c1d9f514341ec53c5d2a95e9e
|
3 |
+
size 259167710
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:affcfb1f45c4b14a70a6589c3d153b430ed4309e5a6613a88dab64d5a923a5d6
|
3 |
+
size 17082925
|
tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
18 |
+
"unk_token": "<unk>"
|
19 |
+
}
|