Artachtron commited on
Commit
758bdf2
·
1 Parent(s): df6adfd

Upload . with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. replay.mp4 +2 -2
  3. sf_log.txt +158 -0
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 8.54 +/- 3.61
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 11.55 +/- 4.42
19
  name: mean_reward
20
  verified: false
21
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eee20367a98fefdf3865fd210582350f5ea5ba8da7edebcd1c6e73852c3068c0
3
- size 15649232
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f4a92de0bd9c2d08de26d0d442304aadce5c697897c0245ff93b96170429fa
3
+ size 21112061
sf_log.txt CHANGED
@@ -1110,3 +1110,161 @@ main_loop: 1084.7122
1110
  [2023-02-24 23:05:29,909][00267] Avg episode rewards: #0: 17.644, true rewards: #0: 8.544
1111
  [2023-02-24 23:05:29,910][00267] Avg episode reward: 17.644, avg true_objective: 8.544
1112
  [2023-02-24 23:06:22,773][00267] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
  [2023-02-24 23:05:29,909][00267] Avg episode rewards: #0: 17.644, true rewards: #0: 8.544
1111
  [2023-02-24 23:05:29,910][00267] Avg episode reward: 17.644, avg true_objective: 8.544
1112
  [2023-02-24 23:06:22,773][00267] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1113
+ [2023-02-24 23:06:34,800][00267] The model has been pushed to https://huggingface.co/Artachtron/rl_course_vizdoom_health_gathering_supreme
1114
+ [2023-02-24 23:07:08,926][00267] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1115
+ [2023-02-24 23:07:08,928][00267] Overriding arg 'num_workers' with value 1 passed from command line
1116
+ [2023-02-24 23:07:08,930][00267] Adding new argument 'no_render'=True that is not in the saved config file!
1117
+ [2023-02-24 23:07:08,932][00267] Adding new argument 'save_video'=True that is not in the saved config file!
1118
+ [2023-02-24 23:07:08,934][00267] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1119
+ [2023-02-24 23:07:08,936][00267] Adding new argument 'video_name'=None that is not in the saved config file!
1120
+ [2023-02-24 23:07:08,938][00267] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1121
+ [2023-02-24 23:07:08,944][00267] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1122
+ [2023-02-24 23:07:08,947][00267] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1123
+ [2023-02-24 23:07:08,948][00267] Adding new argument 'hf_repository'='Artachtron/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1124
+ [2023-02-24 23:07:08,950][00267] Adding new argument 'policy_index'=0 that is not in the saved config file!
1125
+ [2023-02-24 23:07:08,952][00267] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1126
+ [2023-02-24 23:07:08,954][00267] Adding new argument 'train_script'=None that is not in the saved config file!
1127
+ [2023-02-24 23:07:08,955][00267] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1128
+ [2023-02-24 23:07:08,958][00267] Using frameskip 1 and render_action_repeat=4 for evaluation
1129
+ [2023-02-24 23:07:08,985][00267] RunningMeanStd input shape: (3, 72, 128)
1130
+ [2023-02-24 23:07:08,990][00267] RunningMeanStd input shape: (1,)
1131
+ [2023-02-24 23:07:09,010][00267] ConvEncoder: input_channels=3
1132
+ [2023-02-24 23:07:09,067][00267] Conv encoder output size: 512
1133
+ [2023-02-24 23:07:09,072][00267] Policy head output size: 512
1134
+ [2023-02-24 23:07:09,101][00267] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1135
+ [2023-02-24 23:07:09,630][00267] Num frames 100...
1136
+ [2023-02-24 23:07:09,740][00267] Num frames 200...
1137
+ [2023-02-24 23:07:09,852][00267] Num frames 300...
1138
+ [2023-02-24 23:07:09,975][00267] Num frames 400...
1139
+ [2023-02-24 23:07:10,084][00267] Num frames 500...
1140
+ [2023-02-24 23:07:10,194][00267] Num frames 600...
1141
+ [2023-02-24 23:07:10,304][00267] Num frames 700...
1142
+ [2023-02-24 23:07:10,416][00267] Num frames 800...
1143
+ [2023-02-24 23:07:10,529][00267] Num frames 900...
1144
+ [2023-02-24 23:07:10,642][00267] Num frames 1000...
1145
+ [2023-02-24 23:07:10,755][00267] Num frames 1100...
1146
+ [2023-02-24 23:07:10,869][00267] Avg episode rewards: #0: 24.520, true rewards: #0: 11.520
1147
+ [2023-02-24 23:07:10,871][00267] Avg episode reward: 24.520, avg true_objective: 11.520
1148
+ [2023-02-24 23:07:10,927][00267] Num frames 1200...
1149
+ [2023-02-24 23:07:11,045][00267] Num frames 1300...
1150
+ [2023-02-24 23:07:11,158][00267] Num frames 1400...
1151
+ [2023-02-24 23:07:11,269][00267] Num frames 1500...
1152
+ [2023-02-24 23:07:11,382][00267] Num frames 1600...
1153
+ [2023-02-24 23:07:11,494][00267] Num frames 1700...
1154
+ [2023-02-24 23:07:11,625][00267] Num frames 1800...
1155
+ [2023-02-24 23:07:11,748][00267] Num frames 1900...
1156
+ [2023-02-24 23:07:11,872][00267] Num frames 2000...
1157
+ [2023-02-24 23:07:11,991][00267] Num frames 2100...
1158
+ [2023-02-24 23:07:12,106][00267] Num frames 2200...
1159
+ [2023-02-24 23:07:12,219][00267] Num frames 2300...
1160
+ [2023-02-24 23:07:12,334][00267] Num frames 2400...
1161
+ [2023-02-24 23:07:12,454][00267] Num frames 2500...
1162
+ [2023-02-24 23:07:12,593][00267] Avg episode rewards: #0: 27.380, true rewards: #0: 12.880
1163
+ [2023-02-24 23:07:12,595][00267] Avg episode reward: 27.380, avg true_objective: 12.880
1164
+ [2023-02-24 23:07:12,626][00267] Num frames 2600...
1165
+ [2023-02-24 23:07:12,737][00267] Num frames 2700...
1166
+ [2023-02-24 23:07:12,848][00267] Num frames 2800...
1167
+ [2023-02-24 23:07:12,968][00267] Num frames 2900...
1168
+ [2023-02-24 23:07:13,084][00267] Num frames 3000...
1169
+ [2023-02-24 23:07:13,201][00267] Num frames 3100...
1170
+ [2023-02-24 23:07:13,313][00267] Num frames 3200...
1171
+ [2023-02-24 23:07:13,424][00267] Avg episode rewards: #0: 23.160, true rewards: #0: 10.827
1172
+ [2023-02-24 23:07:13,425][00267] Avg episode reward: 23.160, avg true_objective: 10.827
1173
+ [2023-02-24 23:07:13,487][00267] Num frames 3300...
1174
+ [2023-02-24 23:07:13,598][00267] Num frames 3400...
1175
+ [2023-02-24 23:07:13,709][00267] Num frames 3500...
1176
+ [2023-02-24 23:07:13,831][00267] Num frames 3600...
1177
+ [2023-02-24 23:07:13,945][00267] Num frames 3700...
1178
+ [2023-02-24 23:07:14,062][00267] Num frames 3800...
1179
+ [2023-02-24 23:07:14,178][00267] Num frames 3900...
1180
+ [2023-02-24 23:07:14,296][00267] Num frames 4000...
1181
+ [2023-02-24 23:07:14,421][00267] Num frames 4100...
1182
+ [2023-02-24 23:07:14,545][00267] Num frames 4200...
1183
+ [2023-02-24 23:07:14,669][00267] Num frames 4300...
1184
+ [2023-02-24 23:07:14,791][00267] Num frames 4400...
1185
+ [2023-02-24 23:07:14,910][00267] Num frames 4500...
1186
+ [2023-02-24 23:07:15,031][00267] Num frames 4600...
1187
+ [2023-02-24 23:07:15,194][00267] Avg episode rewards: #0: 24.720, true rewards: #0: 11.720
1188
+ [2023-02-24 23:07:15,196][00267] Avg episode reward: 24.720, avg true_objective: 11.720
1189
+ [2023-02-24 23:07:15,214][00267] Num frames 4700...
1190
+ [2023-02-24 23:07:15,339][00267] Num frames 4800...
1191
+ [2023-02-24 23:07:15,454][00267] Num frames 4900...
1192
+ [2023-02-24 23:07:15,566][00267] Num frames 5000...
1193
+ [2023-02-24 23:07:15,682][00267] Num frames 5100...
1194
+ [2023-02-24 23:07:15,803][00267] Num frames 5200...
1195
+ [2023-02-24 23:07:15,965][00267] Avg episode rewards: #0: 21.592, true rewards: #0: 10.592
1196
+ [2023-02-24 23:07:15,968][00267] Avg episode reward: 21.592, avg true_objective: 10.592
1197
+ [2023-02-24 23:07:15,976][00267] Num frames 5300...
1198
+ [2023-02-24 23:07:16,094][00267] Num frames 5400...
1199
+ [2023-02-24 23:07:16,204][00267] Num frames 5500...
1200
+ [2023-02-24 23:07:16,320][00267] Num frames 5600...
1201
+ [2023-02-24 23:07:16,430][00267] Num frames 5700...
1202
+ [2023-02-24 23:07:16,544][00267] Num frames 5800...
1203
+ [2023-02-24 23:07:16,655][00267] Num frames 5900...
1204
+ [2023-02-24 23:07:16,777][00267] Num frames 6000...
1205
+ [2023-02-24 23:07:16,829][00267] Avg episode rewards: #0: 20.167, true rewards: #0: 10.000
1206
+ [2023-02-24 23:07:16,831][00267] Avg episode reward: 20.167, avg true_objective: 10.000
1207
+ [2023-02-24 23:07:16,945][00267] Num frames 6100...
1208
+ [2023-02-24 23:07:17,059][00267] Num frames 6200...
1209
+ [2023-02-24 23:07:17,184][00267] Num frames 6300...
1210
+ [2023-02-24 23:07:17,295][00267] Num frames 6400...
1211
+ [2023-02-24 23:07:17,411][00267] Num frames 6500...
1212
+ [2023-02-24 23:07:17,526][00267] Num frames 6600...
1213
+ [2023-02-24 23:07:17,647][00267] Num frames 6700...
1214
+ [2023-02-24 23:07:17,745][00267] Avg episode rewards: #0: 19.337, true rewards: #0: 9.623
1215
+ [2023-02-24 23:07:17,746][00267] Avg episode reward: 19.337, avg true_objective: 9.623
1216
+ [2023-02-24 23:07:17,822][00267] Num frames 6800...
1217
+ [2023-02-24 23:07:17,935][00267] Num frames 6900...
1218
+ [2023-02-24 23:07:18,055][00267] Num frames 7000...
1219
+ [2023-02-24 23:07:18,171][00267] Num frames 7100...
1220
+ [2023-02-24 23:07:18,284][00267] Num frames 7200...
1221
+ [2023-02-24 23:07:18,396][00267] Num frames 7300...
1222
+ [2023-02-24 23:07:18,511][00267] Num frames 7400...
1223
+ [2023-02-24 23:07:18,625][00267] Num frames 7500...
1224
+ [2023-02-24 23:07:18,739][00267] Num frames 7600...
1225
+ [2023-02-24 23:07:18,848][00267] Num frames 7700...
1226
+ [2023-02-24 23:07:18,970][00267] Num frames 7800...
1227
+ [2023-02-24 23:07:19,085][00267] Num frames 7900...
1228
+ [2023-02-24 23:07:19,203][00267] Num frames 8000...
1229
+ [2023-02-24 23:07:19,313][00267] Num frames 8100...
1230
+ [2023-02-24 23:07:19,447][00267] Num frames 8200...
1231
+ [2023-02-24 23:07:19,622][00267] Avg episode rewards: #0: 21.090, true rewards: #0: 10.340
1232
+ [2023-02-24 23:07:19,625][00267] Avg episode reward: 21.090, avg true_objective: 10.340
1233
+ [2023-02-24 23:07:19,672][00267] Num frames 8300...
1234
+ [2023-02-24 23:07:19,836][00267] Num frames 8400...
1235
+ [2023-02-24 23:07:19,990][00267] Num frames 8500...
1236
+ [2023-02-24 23:07:20,153][00267] Num frames 8600...
1237
+ [2023-02-24 23:07:20,310][00267] Num frames 8700...
1238
+ [2023-02-24 23:07:20,468][00267] Num frames 8800...
1239
+ [2023-02-24 23:07:20,623][00267] Num frames 8900...
1240
+ [2023-02-24 23:07:20,783][00267] Num frames 9000...
1241
+ [2023-02-24 23:07:20,942][00267] Num frames 9100...
1242
+ [2023-02-24 23:07:21,100][00267] Num frames 9200...
1243
+ [2023-02-24 23:07:21,268][00267] Num frames 9300...
1244
+ [2023-02-24 23:07:21,433][00267] Num frames 9400...
1245
+ [2023-02-24 23:07:21,593][00267] Num frames 9500...
1246
+ [2023-02-24 23:07:21,719][00267] Avg episode rewards: #0: 22.158, true rewards: #0: 10.602
1247
+ [2023-02-24 23:07:21,721][00267] Avg episode reward: 22.158, avg true_objective: 10.602
1248
+ [2023-02-24 23:07:21,815][00267] Num frames 9600...
1249
+ [2023-02-24 23:07:21,985][00267] Num frames 9700...
1250
+ [2023-02-24 23:07:22,151][00267] Num frames 9800...
1251
+ [2023-02-24 23:07:22,327][00267] Num frames 9900...
1252
+ [2023-02-24 23:07:22,490][00267] Num frames 10000...
1253
+ [2023-02-24 23:07:22,650][00267] Num frames 10100...
1254
+ [2023-02-24 23:07:22,815][00267] Num frames 10200...
1255
+ [2023-02-24 23:07:22,958][00267] Num frames 10300...
1256
+ [2023-02-24 23:07:23,069][00267] Num frames 10400...
1257
+ [2023-02-24 23:07:23,183][00267] Num frames 10500...
1258
+ [2023-02-24 23:07:23,305][00267] Num frames 10600...
1259
+ [2023-02-24 23:07:23,423][00267] Num frames 10700...
1260
+ [2023-02-24 23:07:23,541][00267] Num frames 10800...
1261
+ [2023-02-24 23:07:23,657][00267] Num frames 10900...
1262
+ [2023-02-24 23:07:23,774][00267] Num frames 11000...
1263
+ [2023-02-24 23:07:23,895][00267] Num frames 11100...
1264
+ [2023-02-24 23:07:24,011][00267] Num frames 11200...
1265
+ [2023-02-24 23:07:24,122][00267] Num frames 11300...
1266
+ [2023-02-24 23:07:24,238][00267] Num frames 11400...
1267
+ [2023-02-24 23:07:24,357][00267] Num frames 11500...
1268
+ [2023-02-24 23:07:24,477][00267] Avg episode rewards: #0: 25.250, true rewards: #0: 11.550
1269
+ [2023-02-24 23:07:24,478][00267] Avg episode reward: 25.250, avg true_objective: 11.550
1270
+ [2023-02-24 23:08:31,463][00267] Replay video saved to /content/train_dir/default_experiment/replay.mp4!