File size: 2,199 Bytes
d267b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: videomae-base-finetuned-cricket_shot_detection_18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-cricket_shot_detection_18
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4708
- Accuracy: 0.5789
- F1: 0.5987
- Recall: 0.5789
- Precision: 0.7316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 288
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 1.7521 | 0.1701 | 49 | 1.7640 | 0.1579 | 0.1971 | 0.1579 | 0.2632 |
| 1.6025 | 1.1701 | 98 | 1.6926 | 0.2105 | 0.2205 | 0.2105 | 0.2782 |
| 1.3708 | 2.1701 | 147 | 1.6164 | 0.3158 | 0.3062 | 0.3158 | 0.3544 |
| 1.1786 | 3.1701 | 196 | 1.5217 | 0.4211 | 0.4042 | 0.4211 | 0.4158 |
| 1.0709 | 4.1701 | 245 | 1.4708 | 0.5789 | 0.5987 | 0.5789 | 0.7316 |
| 1.0057 | 5.1493 | 288 | 1.4721 | 0.5789 | 0.5982 | 0.5789 | 0.7246 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|