File size: 1,773 Bytes
796bde6
 
 
 
 
 
a2f63c8
 
796bde6
 
 
 
 
 
 
 
 
 
 
a2f63c8
 
 
796bde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f63c8
 
 
 
 
 
 
 
 
 
796bde6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_NEW_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vivit-b-16x2-kinetics400-finetuned-cricket_shot_detection_NEW_1

This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5183
- Accuracy: 0.8333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 5800

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6322        | 0.1207 | 700  | 0.5183          | 0.8333   |
| 0.1859        | 1.1207 | 1400 | 0.6102          | 0.7222   |
| 0.047         | 2.1207 | 2100 | 0.4966          | 0.8333   |
| 0.1622        | 3.1207 | 2800 | 0.7591          | 0.8333   |


### Framework versions

- Transformers 4.47.1
- Pytorch 1.13.1+cu117
- Datasets 3.2.0
- Tokenizers 0.21.0