File size: 2,105 Bytes
8430a30
ff7ec0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8430a30
 
ff7ec0e
 
8430a30
ff7ec0e
8430a30
ff7ec0e
 
 
 
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
8430a30
ff7ec0e
 
 
 
 
 
 
 
 
 
8430a30
ff7ec0e
8430a30
ff7ec0e
 
 
 
 
 
 
 
 
8430a30
 
ff7ec0e
8430a30
ff7ec0e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- common_voice_1_0
metrics:
- wer
model-index:
- name: finetuning2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_1_0
      type: common_voice_1_0
      config: en
      split: validation
      args: en
    metrics:
    - name: Wer
      type: wer
      value: 0.4213759213759214
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuning2

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_1_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6883
- Wer: 0.4214

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.5277        | 4.27  | 500  | 2.8353          | 0.9863 |
| 1.2768        | 8.55  | 1000 | 0.7019          | 0.5581 |
| 0.4511        | 12.82 | 1500 | 0.6201          | 0.4726 |
| 0.2591        | 17.09 | 2000 | 0.6428          | 0.4469 |
| 0.1854        | 21.37 | 2500 | 0.6901          | 0.4388 |
| 0.1386        | 25.64 | 3000 | 0.6933          | 0.4259 |
| 0.111         | 29.91 | 3500 | 0.6883          | 0.4214 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2