Ayoub-Laachir
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -59,6 +59,133 @@ These metrics demonstrate the model's ability to accurately transcribe Moroccan
|
|
59 |
|
60 |
The fine-tuned model shows improved handling of Darija-specific words, sentence structure, and overall accuracy.
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
## Challenges and Future Improvements
|
63 |
### Challenges Encountered
|
64 |
- Diverse spellings of words in Moroccan Darija
|
|
|
59 |
|
60 |
The fine-tuned model shows improved handling of Darija-specific words, sentence structure, and overall accuracy.
|
61 |
|
62 |
+
## Audio Transcription Script
|
63 |
+
|
64 |
+
This script demonstrates how to transcribe audio files using the fine-tuned Whisper Large V3 model for Moroccan Darija. It includes steps for installing necessary libraries, loading the model, and processing audio files.
|
65 |
+
|
66 |
+
### Required Libraries
|
67 |
+
|
68 |
+
Before running the script, ensure you have the following libraries installed. You can install them using:
|
69 |
+
|
70 |
+
```bash
|
71 |
+
!pip install --upgrade pip
|
72 |
+
!pip install --upgrade transformers accelerate librosa soundfile pydub
|
73 |
+
```
|
74 |
+
|
75 |
+
```python
|
76 |
+
import torch
|
77 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
78 |
+
import librosa
|
79 |
+
import soundfile as sf
|
80 |
+
from pydub import AudioSegment
|
81 |
+
|
82 |
+
# Set the device to GPU if available, else use CPU
|
83 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
84 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
85 |
+
|
86 |
+
# Configuration for the model
|
87 |
+
config = {
|
88 |
+
"model_id": "Ayoub-Laachir/MaghrebVoice", # Model ID from Hugging Face
|
89 |
+
"language": "arabic", # Language for transcription
|
90 |
+
"task": "transcribe", # Task type
|
91 |
+
"chunk_length_s": 30, # Length of each audio chunk in seconds
|
92 |
+
"stride_length_s": 5, # Overlap between chunks in seconds
|
93 |
+
}
|
94 |
+
|
95 |
+
# Load the model and processor
|
96 |
+
def load_model_and_processor():
|
97 |
+
try:
|
98 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
99 |
+
config["model_id"],
|
100 |
+
torch_dtype=torch_dtype, # Use appropriate data type
|
101 |
+
low_cpu_mem_usage=True, # Use low CPU memory
|
102 |
+
use_safetensors=True, # Load model with safetensors
|
103 |
+
attn_implementation="sdpa", # Specify attention implementation
|
104 |
+
)
|
105 |
+
model.to(device) # Move model to the specified device
|
106 |
+
|
107 |
+
processor = AutoProcessor.from_pretrained(config["model_id"])
|
108 |
+
|
109 |
+
print("Model and processor loaded successfully.")
|
110 |
+
return model, processor
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error loading model and processor: {e}")
|
113 |
+
return None, None
|
114 |
+
|
115 |
+
# Load the model and processor
|
116 |
+
model, processor = load_model_and_processor()
|
117 |
+
if model is None or processor is None:
|
118 |
+
print("Failed to load model or processor")
|
119 |
+
exit(1)
|
120 |
+
|
121 |
+
# Configure the generation parameters for the pipeline
|
122 |
+
generate_kwargs = {
|
123 |
+
"language": config["language"], # Language for the pipeline
|
124 |
+
"task": config["task"], # Task for the pipeline
|
125 |
+
}
|
126 |
+
|
127 |
+
# Initialize the automatic speech recognition pipeline
|
128 |
+
pipe = pipeline(
|
129 |
+
"automatic-speech-recognition",
|
130 |
+
model=model,
|
131 |
+
tokenizer=processor.tokenizer,
|
132 |
+
feature_extractor=processor.feature_extractor,
|
133 |
+
torch_dtype=torch_dtype,
|
134 |
+
device=device,
|
135 |
+
generate_kwargs=generate_kwargs,
|
136 |
+
chunk_length_s=config["chunk_length_s"], # Length of each audio chunk
|
137 |
+
stride_length_s=config["stride_length_s"], # Overlap between chunks
|
138 |
+
)
|
139 |
+
|
140 |
+
# Convert audio to 16kHz sampling rate
|
141 |
+
def convert_audio_to_16khz(input_path, output_path):
|
142 |
+
audio, sr = librosa.load(input_path, sr=None) # Load the audio file
|
143 |
+
audio_16k = librosa.resample(audio, orig_sr=sr, target_sr=16000) # Resample to 16kHz
|
144 |
+
sf.write(output_path, audio_16k, 16000) # Save the converted audio
|
145 |
+
|
146 |
+
# Format time in HH:MM:SS.milliseconds
|
147 |
+
def format_time(seconds):
|
148 |
+
hours = int(seconds // 3600)
|
149 |
+
minutes = int((seconds % 3600) // 60)
|
150 |
+
seconds = seconds % 60
|
151 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:06.3f}"
|
152 |
+
|
153 |
+
# Transcribe audio file
|
154 |
+
def transcribe_audio(audio_path):
|
155 |
+
try:
|
156 |
+
result = pipe(audio_path, return_timestamps=True) # Transcribe audio and get timestamps
|
157 |
+
return result["chunks"] # Return transcription chunks
|
158 |
+
except Exception as e:
|
159 |
+
print(f"Error transcribing audio: {e}")
|
160 |
+
return None
|
161 |
+
|
162 |
+
# Main function to execute the transcription process
|
163 |
+
def main():
|
164 |
+
# Specify input and output audio paths (update paths as needed)
|
165 |
+
input_audio_path = "/path/to/your/input/audio.mp3" # Replace with your input audio path
|
166 |
+
output_audio_path = "/path/to/your/output/audio_16khz.wav" # Replace with your output audio path
|
167 |
+
|
168 |
+
# Convert audio to 16kHz
|
169 |
+
convert_audio_to_16khz(input_audio_path, output_audio_path)
|
170 |
+
|
171 |
+
# Transcribe the converted audio
|
172 |
+
transcription_chunks = transcribe_audio(output_audio_path)
|
173 |
+
|
174 |
+
if transcription_chunks:
|
175 |
+
print("WEBVTT\n") # Print header for WEBVTT format
|
176 |
+
for chunk in transcription_chunks:
|
177 |
+
start_time = format_time(chunk["timestamp"][0]) # Format start time
|
178 |
+
end_time = format_time(chunk["timestamp"][1]) # Format end time
|
179 |
+
text = chunk["text"] # Get the transcribed text
|
180 |
+
print(f"{start_time} --> {end_time}") # Print time range
|
181 |
+
print(f"{text}\n") # Print transcribed text
|
182 |
+
else:
|
183 |
+
print("Transcription failed.")
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
main()
|
187 |
+
```
|
188 |
+
|
189 |
## Challenges and Future Improvements
|
190 |
### Challenges Encountered
|
191 |
- Diverse spellings of words in Moroccan Darija
|