File size: 2,266 Bytes
8285905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea970e5
8285905
 
 
 
 
 
 
 
 
ea970e5
 
8285905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea970e5
8285905
ea970e5
8285905
 
 
ea970e5
8285905
 
 
 
 
ea970e5
 
 
 
 
 
 
 
 
 
8285905
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_finetuned_model
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion_finetuned_model

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3507
- Accuracy: 0.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 20   | 1.6393          | 0.4875   |
| No log        | 2.0   | 40   | 1.5461          | 0.4875   |
| No log        | 3.0   | 60   | 1.4809          | 0.4938   |
| No log        | 4.0   | 80   | 1.4289          | 0.4813   |
| No log        | 5.0   | 100  | 1.3878          | 0.4875   |
| No log        | 6.0   | 120  | 1.3792          | 0.4813   |
| No log        | 7.0   | 140  | 1.3507          | 0.5      |
| No log        | 8.0   | 160  | 1.3376          | 0.4938   |
| No log        | 9.0   | 180  | 1.3379          | 0.4875   |
| No log        | 10.0  | 200  | 1.3305          | 0.5      |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3