File size: 10,041 Bytes
2a277fc 7db4529 2a277fc 7db4529 2a277fc 7d6e5d4 2a277fc 1dfde4e 2a277fc 4e6ec9f 7db4529 2a277fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: apache-2.0
datasets:
- laion/laion2B-en
- kakaobrain/coyo-700m
---
<div align="center">
<h2><a href="https://arxiv.org/abs/2402.04252">EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters</a></h2>
[Quan Sun](https://github.com/Quan-Sun)<sup>1*</sup>, [Jinsheng Wang](https://github.com/Wolfwjs/)<sup>1*</sup>, [Qiying Yu](https://yqy2001.github.io)<sup>1,2*</sup>, [Yufeng Cui](https://scholar.google.com/citations?hl=en&user=5Ydha2EAAAAJ)<sup>1</sup>, [Fan Zhang](https://scholar.google.com/citations?user=VsJ39HMAAAAJ)<sup>1</sup>, [Xiaosong Zhang](https://zhangxiaosong18.github.io)<sup>1</sup>, [Xinlong Wang](https://www.xloong.wang/)<sup>1</sup>
<sup>1</sup> [BAAI](https://www.baai.ac.cn/english.html), <sup>2</sup> [THU](https://air.tsinghua.edu.cn) <br><sup>*</sup> equal contribution
[Paper](https://arxiv.org/abs/2402.04252) | [Github](https://github.com/baaivision/EVA/tree/master/EVA-CLIP-18B)
</div>
Scaling up contrastive language-image pretraining (CLIP) is critical for empowering both vision and multimodal models. We present EVA-CLIP-18B, the largest and most powerful open-source CLIP model to date, with 18-billion parameters. With only 6-billion training samples seen, EVA-CLIP-18B achieves an exceptional **80.7%** zero-shot top-1 accuracy averaged across 27 widely recognized image classification benchmarks, outperforming its forerunner EVA-CLIP (5-billion parameters) and other open-source CLIP models by a large margin. Remarkably, we observe a consistent performance improvement with the model size scaling of EVA-CLIP, despite maintaining a constant training dataset of 2-billion image-text pairs from LAION-2B and COYO-700M. This dataset is openly available and much smaller than the in-house datasets (e.g., DFN-5B, WebLI-10B) employed in other state-of-the-art CLIP models. EVA-CLIP-18B demonstrates the potential of EVA-style weak-to-strong visual model scaling. With our model weights made publicly available, we hope to facilitate future research in vision and multimodal foundation models.
**Table of Contents**
- [Summary of EVA-CLIP performance](#summary-of-eva-clip-performance)
- [Model Card](#model-card)
- [EVA-CLIP-8B](#eva-clip-8b)
- [EVA-CLIP-18B](#eva-clip-18b)
- [Usage](#usage)
- [BibTeX \& Citation](#bibtex--citation)
## Summary of EVA-CLIP performance
![summary_tab](teaser.png)
Scaling behavior of EVA-CLIP with zero-shot classification performance averaged across 27 image classification benchmarks, compared with the current state-of-the-art and largest CLIP models (224px). The diameter of each circle demonstrates the forward GFLOPs × the number of training samples seen. The performance of EVA-CLIP consistently improves as scaling up.
## Model Card
### EVA-8B
<div align="center">
| model name | total #params | seen samples | pytorch weight |
|:-----------|:------:|:------:|:------:|
| `EVA_8B_psz14` | 7.5B | 6B | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B/resolve/main/EVA_8B_psz14.bin) (`31.0GB`) |
</div>
### EVA-CLIP-8B
> Image encoder MIM teacher: [EVA02_CLIP_E_psz14_plus_s9B](https://huggingface.co/QuanSun/EVA-CLIP/blob/main/EVA02_CLIP_E_psz14_s4B.pt).
<div align="center">
| model name | image enc. init. ckpt | text enc. init. ckpt | total #params | training data | training batch size | gpus for training | img. cls. avg. acc. | video cls. avg. acc. | retrieval MR | hf weight | pytorch weight |
|:-----|:-----|:-----------|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| `EVA-CLIP-8B` | `EVA_8B_psz14` | `EVA02_CLIP_E_psz14_plus_s9B` | 8.1B | Merged-2B | 178K | 384 A100(40GB) | **79.4** | **73.6** | **86.2**| [🤗 HF](https://huggingface.co/BAAI/EVA-CLIP-8B) | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B/resolve/main/EVA_CLIP_8B_psz14_s9B.pt) (`32.9GB`)|
| `EVA-CLIP-8B-448` | `EVA-CLIP-8B` | `EVA-CLIP-8B` | 8.1B | Merged-2B | 24K | 384 A100(40GB) | **80.0** | **73.7** | **86.4** | [🤗 HF](https://huggingface.co/BAAI/EVA-CLIP-8B-448) | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B-448/resolve/main/EVA_CLIP_8B_psz14_plus_s0.6B.pt) (`32.9GB`)|
</div>
### EVA-CLIP-18B
> Image encoder MIM teacher: [EVA02_CLIP_E_psz14_plus_s9B](https://huggingface.co/QuanSun/EVA-CLIP/blob/main/EVA02_CLIP_E_psz14_s4B.pt).
<div align="center">
| model name | image enc. init. ckpt | text enc. init. ckpt | total #params | training data | training batch size | gpus for training | img. cls. avg. acc. | video cls. avg. acc. | retrieval MR | hf weight | pytorch weight |
|:-----|:-----|:-----------|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| `EVA-CLIP-18B` | `EVA_18B_psz14` | `EVA02_CLIP_E_psz14_plus_s9B` | 18.1B | Merged-2B+ | 108K | 360 A100(40GB) | **80.7** | **75.0** | **87.8**| stay tuned | stay tuned |
</div>
- To construct Merged-2B, we merged 1.6 billion samples from [LAION-2B](https://laion.ai/blog/laion-5b/) dataset with 0.4 billion samples from [COYO-700M](https://github.com/kakaobrain/coyo-dataset).
- The Merged-2B+ consists of all samples from Merged-2B, along with 20 millions samples from [LAION-COCO](https://laion.ai/blog/laion-coco/) and 23 millions samples from Merged-video including [VideoCC](https://github.com/google-research-datasets/videoCC-data), [InternVid](https://huggingface.co/datasets/OpenGVLab/InternVid) and [WebVid-10M](https://maxbain.com/webvid-dataset/). Merged-video was added at the end of the training process.
**It's important to note that all results presented in the paper are evaluated using PyTorch weights. There may be differences in performance when using Hugging Face (hf) models.**
## Zero-Shot Evaluation
We use [CLIP-Benchmark](https://github.com/LAION-AI/CLIP_benchmark) to evaluate the zero-shot performance of EVA-CLIP models. Following [vissl](https://github.com/facebookresearch/vissl/blob/main/extra_scripts/datasets/create_k700_data_files.py), we evauate the zero-shot video classification using 1 middle frame. Further details regarding the evaluation datasets can be found in our paper, particularly in Table 11.
## Usage
### Huggingface Version
```python
from PIL import Image
from transformers import AutoModel, AutoConfig
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer
import torch
import torchvision.transforms as T
from torchvision.transforms import InterpolationMode
image_path = "CLIP.png"
model_name_or_path = "BAAI/EVA-CLIP-8B" # or /path/to/local/EVA-CLIP-8B
image_size = 448
# use image processor with conig
processor = CLIPImageProcessor(size={"shortest_edge":image_size}, do_center_crop=True, crop_size=image_size)
## you can also directly use the image processor by torchvision
## squash
# processor = T.Compose(
# [
# T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
# T.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
# T.ToTensor(),
# T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
# ]
# )
## shortest
## processor = T.Compose(
# [
# T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
# T.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
# T.CenterCrop(image_size),
# T.ToTensor(),
# T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
# ]
# )
model = AutoModel.from_pretrained(
model_name_or_path,
torch_dtype=torch.float16,
trust_remote_code=True).to('cuda').eval()
image = Image.open(image_path)
captions = ["a diagram", "a dog", "a cat"]
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path)
input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids.to('cuda')
input_pixels = processor(images=image, return_tensors="pt", padding=True).pixel_values.to('cuda')
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(input_pixels)
text_features = model.encode_text(input_ids)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print(f"Label probs: {label_probs}")
```
### Pytorch version
Go to [GitHub](https://github.com/baaivision/EVA/tree/master/EVA-CLIP-18B)
```python
import torch
from eva_clip import create_model_and_transforms, get_tokenizer
from PIL import Image
model_name = "EVA-CLIP-8B-plus"
pretrained = "eva_clip" # or "/path/to/EVA_CLIP_8B_psz14_plus_s0.6B.pt"
image_path = "CLIP.png"
caption = ["a diagram", "a dog", "a cat"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model, _, processor = create_model_and_transforms(model_name, pretrained, force_custom_clip=True)
tokenizer = get_tokenizer(model_name)
model = model.to(device)
image = processor(Image.open(image_path)).unsqueeze(0).to(device)
text = tokenizer(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
```
You can leverage [deepspeed.zero.Init()](https://deepspeed.readthedocs.io/en/stable/zero3.html#constructing-massive-models) with deepspeed zero stage 3 if you have limited CPU memory. For loading a pretrained checkpoint in the context of using deepspeed.zero.Init(), it's advised to use the `load_zero_partitions()` function in `eva_clip/factory.py`.
## BibTeX & Citation
```
@article{EVA-CLIP-18B,
title={EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters},
author={Quan Sun and Jinsheng Wang and Qiying Yu and Yufeng Cui and Fan Zhang and Xiaosong Zhang and Xinlong Wang},
journal={arXiv preprint arXiv:2402.04252},
year={2023}
}
``` |