BAAI
/

Safetensors
English
llama
hyxmmm commited on
Commit
bdbe9e0
·
verified ·
1 Parent(s): a6ea926

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -15,7 +15,7 @@ language:
15
  <em>[Paper][Code][🤗] (would be released soon)</em>
16
  </p>
17
 
18
- Infinity-Instruct-7M-0729-Llama3-8B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-0729](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to GPT4.
19
 
20
  ## **News**
21
 
@@ -39,7 +39,7 @@ Infinity-Instruct-7M-0729-Llama3-8B is an opensource supervised instruction tuni
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
- Infinity-Instruct-7M-0729-Llama3-8B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Llama3-8B, and get the foundational instruct model Infinity-Instruct-7M-Llama3-8B. Then we finetune the Infinity-Instruct-7M-Llama3-8B to get the stronger chat model Infinity-Instruct-7M-0729-Llama3-8B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
@@ -71,7 +71,7 @@ Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatena
71
 
72
  ## **How to use**
73
 
74
- Infinity-Instruct-7M-0729-Llama3-8B adopt the same chat template of [Llama3-8B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct):
75
 
76
  ```bash
77
  <|begin_of_text|><|start_header_id|>user<|end_header_id|>
@@ -90,11 +90,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorLis
90
  import torch
91
  device = "cuda" # the device to load the model onto
92
 
93
- model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3-8B",
94
  torch_dtype=torch.bfloat16,
95
  device_map="auto"
96
  )
97
- tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3-8B")
98
 
99
  prompt = "Give me a short introduction to large language model."
100
  messages = [
 
15
  <em>[Paper][Code][🤗] (would be released soon)</em>
16
  </p>
17
 
18
+ Infinity-Instruct-7M-0729-Llama3.1-8B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-0729](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to GPT4.
19
 
20
  ## **News**
21
 
 
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
+ Infinity-Instruct-7M-0729-Llama3.1-8B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Llama3-8B, and get the foundational instruct model Infinity-Instruct-7M-Llama3.1-8B. Then we finetune the Infinity-Instruct-7M-Llama3.1-8B to get the stronger chat model Infinity-Instruct-7M-0729-Llama3.1-8B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
 
71
 
72
  ## **How to use**
73
 
74
+ Infinity-Instruct-7M-0729-Llama3.1-8B adopt the same chat template of [Llama3-8B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct):
75
 
76
  ```bash
77
  <|begin_of_text|><|start_header_id|>user<|end_header_id|>
 
90
  import torch
91
  device = "cuda" # the device to load the model onto
92
 
93
+ model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
94
  torch_dtype=torch.bfloat16,
95
  device_map="auto"
96
  )
97
+ tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B")
98
 
99
  prompt = "Give me a short introduction to large language model."
100
  messages = [