ldwang commited on
Commit
ed513d6
·
1 Parent(s): 4778d71
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,2599 @@
1
  ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: bge-small-en
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 74.34328358208955
18
+ - type: ap
19
+ value: 37.59947775195661
20
+ - type: f1
21
+ value: 68.548415491933
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 93.04527499999999
33
+ - type: ap
34
+ value: 89.60696356772135
35
+ - type: f1
36
+ value: 93.03361469382438
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 46.08
48
+ - type: f1
49
+ value: 45.66249835363254
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 35.205999999999996
61
+ - type: map_at_10
62
+ value: 50.782000000000004
63
+ - type: map_at_100
64
+ value: 51.547
65
+ - type: map_at_1000
66
+ value: 51.554
67
+ - type: map_at_3
68
+ value: 46.515
69
+ - type: map_at_5
70
+ value: 49.296
71
+ - type: mrr_at_1
72
+ value: 35.632999999999996
73
+ - type: mrr_at_10
74
+ value: 50.958999999999996
75
+ - type: mrr_at_100
76
+ value: 51.724000000000004
77
+ - type: mrr_at_1000
78
+ value: 51.731
79
+ - type: mrr_at_3
80
+ value: 46.669
81
+ - type: mrr_at_5
82
+ value: 49.439
83
+ - type: ndcg_at_1
84
+ value: 35.205999999999996
85
+ - type: ndcg_at_10
86
+ value: 58.835
87
+ - type: ndcg_at_100
88
+ value: 62.095
89
+ - type: ndcg_at_1000
90
+ value: 62.255
91
+ - type: ndcg_at_3
92
+ value: 50.255
93
+ - type: ndcg_at_5
94
+ value: 55.296
95
+ - type: precision_at_1
96
+ value: 35.205999999999996
97
+ - type: precision_at_10
98
+ value: 8.421
99
+ - type: precision_at_100
100
+ value: 0.984
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 20.365
105
+ - type: precision_at_5
106
+ value: 14.680000000000001
107
+ - type: recall_at_1
108
+ value: 35.205999999999996
109
+ - type: recall_at_10
110
+ value: 84.211
111
+ - type: recall_at_100
112
+ value: 98.43499999999999
113
+ - type: recall_at_1000
114
+ value: 99.644
115
+ - type: recall_at_3
116
+ value: 61.095
117
+ - type: recall_at_5
118
+ value: 73.4
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 47.52644476278646
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 39.973045724188964
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 62.28285314871488
152
+ - type: mrr
153
+ value: 74.52743701358659
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 80.09041909160327
165
+ - type: cos_sim_spearman
166
+ value: 79.96266537706944
167
+ - type: euclidean_pearson
168
+ value: 79.50774978162241
169
+ - type: euclidean_spearman
170
+ value: 79.9144715078551
171
+ - type: manhattan_pearson
172
+ value: 79.2062139879302
173
+ - type: manhattan_spearman
174
+ value: 79.35000081468212
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 85.31493506493506
186
+ - type: f1
187
+ value: 85.2704557977762
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 39.6837242810816
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 35.38881249555897
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 27.884999999999998
221
+ - type: map_at_10
222
+ value: 39.574
223
+ - type: map_at_100
224
+ value: 40.993
225
+ - type: map_at_1000
226
+ value: 41.129
227
+ - type: map_at_3
228
+ value: 36.089
229
+ - type: map_at_5
230
+ value: 38.191
231
+ - type: mrr_at_1
232
+ value: 34.477999999999994
233
+ - type: mrr_at_10
234
+ value: 45.411
235
+ - type: mrr_at_100
236
+ value: 46.089999999999996
237
+ - type: mrr_at_1000
238
+ value: 46.147
239
+ - type: mrr_at_3
240
+ value: 42.346000000000004
241
+ - type: mrr_at_5
242
+ value: 44.292
243
+ - type: ndcg_at_1
244
+ value: 34.477999999999994
245
+ - type: ndcg_at_10
246
+ value: 46.123999999999995
247
+ - type: ndcg_at_100
248
+ value: 51.349999999999994
249
+ - type: ndcg_at_1000
250
+ value: 53.578
251
+ - type: ndcg_at_3
252
+ value: 40.824
253
+ - type: ndcg_at_5
254
+ value: 43.571
255
+ - type: precision_at_1
256
+ value: 34.477999999999994
257
+ - type: precision_at_10
258
+ value: 8.841000000000001
259
+ - type: precision_at_100
260
+ value: 1.4460000000000002
261
+ - type: precision_at_1000
262
+ value: 0.192
263
+ - type: precision_at_3
264
+ value: 19.742
265
+ - type: precision_at_5
266
+ value: 14.421000000000001
267
+ - type: recall_at_1
268
+ value: 27.884999999999998
269
+ - type: recall_at_10
270
+ value: 59.087
271
+ - type: recall_at_100
272
+ value: 80.609
273
+ - type: recall_at_1000
274
+ value: 95.054
275
+ - type: recall_at_3
276
+ value: 44.082
277
+ - type: recall_at_5
278
+ value: 51.593999999999994
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 30.639
290
+ - type: map_at_10
291
+ value: 40.047
292
+ - type: map_at_100
293
+ value: 41.302
294
+ - type: map_at_1000
295
+ value: 41.425
296
+ - type: map_at_3
297
+ value: 37.406
298
+ - type: map_at_5
299
+ value: 38.934000000000005
300
+ - type: mrr_at_1
301
+ value: 37.707
302
+ - type: mrr_at_10
303
+ value: 46.082
304
+ - type: mrr_at_100
305
+ value: 46.745
306
+ - type: mrr_at_1000
307
+ value: 46.786
308
+ - type: mrr_at_3
309
+ value: 43.980999999999995
310
+ - type: mrr_at_5
311
+ value: 45.287
312
+ - type: ndcg_at_1
313
+ value: 37.707
314
+ - type: ndcg_at_10
315
+ value: 45.525
316
+ - type: ndcg_at_100
317
+ value: 49.976
318
+ - type: ndcg_at_1000
319
+ value: 51.94499999999999
320
+ - type: ndcg_at_3
321
+ value: 41.704
322
+ - type: ndcg_at_5
323
+ value: 43.596000000000004
324
+ - type: precision_at_1
325
+ value: 37.707
326
+ - type: precision_at_10
327
+ value: 8.465
328
+ - type: precision_at_100
329
+ value: 1.375
330
+ - type: precision_at_1000
331
+ value: 0.183
332
+ - type: precision_at_3
333
+ value: 19.979
334
+ - type: precision_at_5
335
+ value: 14.115
336
+ - type: recall_at_1
337
+ value: 30.639
338
+ - type: recall_at_10
339
+ value: 54.775
340
+ - type: recall_at_100
341
+ value: 73.678
342
+ - type: recall_at_1000
343
+ value: 86.142
344
+ - type: recall_at_3
345
+ value: 43.230000000000004
346
+ - type: recall_at_5
347
+ value: 48.622
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 38.038
359
+ - type: map_at_10
360
+ value: 49.922
361
+ - type: map_at_100
362
+ value: 51.032
363
+ - type: map_at_1000
364
+ value: 51.085
365
+ - type: map_at_3
366
+ value: 46.664
367
+ - type: map_at_5
368
+ value: 48.588
369
+ - type: mrr_at_1
370
+ value: 43.95
371
+ - type: mrr_at_10
372
+ value: 53.566
373
+ - type: mrr_at_100
374
+ value: 54.318999999999996
375
+ - type: mrr_at_1000
376
+ value: 54.348
377
+ - type: mrr_at_3
378
+ value: 51.066
379
+ - type: mrr_at_5
380
+ value: 52.649
381
+ - type: ndcg_at_1
382
+ value: 43.95
383
+ - type: ndcg_at_10
384
+ value: 55.676
385
+ - type: ndcg_at_100
386
+ value: 60.126000000000005
387
+ - type: ndcg_at_1000
388
+ value: 61.208
389
+ - type: ndcg_at_3
390
+ value: 50.20400000000001
391
+ - type: ndcg_at_5
392
+ value: 53.038
393
+ - type: precision_at_1
394
+ value: 43.95
395
+ - type: precision_at_10
396
+ value: 8.953
397
+ - type: precision_at_100
398
+ value: 1.2109999999999999
399
+ - type: precision_at_1000
400
+ value: 0.135
401
+ - type: precision_at_3
402
+ value: 22.256999999999998
403
+ - type: precision_at_5
404
+ value: 15.524
405
+ - type: recall_at_1
406
+ value: 38.038
407
+ - type: recall_at_10
408
+ value: 69.15
409
+ - type: recall_at_100
410
+ value: 88.31599999999999
411
+ - type: recall_at_1000
412
+ value: 95.993
413
+ - type: recall_at_3
414
+ value: 54.663
415
+ - type: recall_at_5
416
+ value: 61.373
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 24.872
428
+ - type: map_at_10
429
+ value: 32.912
430
+ - type: map_at_100
431
+ value: 33.972
432
+ - type: map_at_1000
433
+ value: 34.046
434
+ - type: map_at_3
435
+ value: 30.361
436
+ - type: map_at_5
437
+ value: 31.704
438
+ - type: mrr_at_1
439
+ value: 26.779999999999998
440
+ - type: mrr_at_10
441
+ value: 34.812
442
+ - type: mrr_at_100
443
+ value: 35.754999999999995
444
+ - type: mrr_at_1000
445
+ value: 35.809000000000005
446
+ - type: mrr_at_3
447
+ value: 32.335
448
+ - type: mrr_at_5
449
+ value: 33.64
450
+ - type: ndcg_at_1
451
+ value: 26.779999999999998
452
+ - type: ndcg_at_10
453
+ value: 37.623
454
+ - type: ndcg_at_100
455
+ value: 42.924
456
+ - type: ndcg_at_1000
457
+ value: 44.856
458
+ - type: ndcg_at_3
459
+ value: 32.574
460
+ - type: ndcg_at_5
461
+ value: 34.842
462
+ - type: precision_at_1
463
+ value: 26.779999999999998
464
+ - type: precision_at_10
465
+ value: 5.729
466
+ - type: precision_at_100
467
+ value: 0.886
468
+ - type: precision_at_1000
469
+ value: 0.109
470
+ - type: precision_at_3
471
+ value: 13.559
472
+ - type: precision_at_5
473
+ value: 9.469
474
+ - type: recall_at_1
475
+ value: 24.872
476
+ - type: recall_at_10
477
+ value: 50.400999999999996
478
+ - type: recall_at_100
479
+ value: 74.954
480
+ - type: recall_at_1000
481
+ value: 89.56
482
+ - type: recall_at_3
483
+ value: 36.726
484
+ - type: recall_at_5
485
+ value: 42.138999999999996
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 16.803
497
+ - type: map_at_10
498
+ value: 24.348
499
+ - type: map_at_100
500
+ value: 25.56
501
+ - type: map_at_1000
502
+ value: 25.668000000000003
503
+ - type: map_at_3
504
+ value: 21.811
505
+ - type: map_at_5
506
+ value: 23.287
507
+ - type: mrr_at_1
508
+ value: 20.771
509
+ - type: mrr_at_10
510
+ value: 28.961
511
+ - type: mrr_at_100
512
+ value: 29.979
513
+ - type: mrr_at_1000
514
+ value: 30.046
515
+ - type: mrr_at_3
516
+ value: 26.555
517
+ - type: mrr_at_5
518
+ value: 28.060000000000002
519
+ - type: ndcg_at_1
520
+ value: 20.771
521
+ - type: ndcg_at_10
522
+ value: 29.335
523
+ - type: ndcg_at_100
524
+ value: 35.188
525
+ - type: ndcg_at_1000
526
+ value: 37.812
527
+ - type: ndcg_at_3
528
+ value: 24.83
529
+ - type: ndcg_at_5
530
+ value: 27.119
531
+ - type: precision_at_1
532
+ value: 20.771
533
+ - type: precision_at_10
534
+ value: 5.4350000000000005
535
+ - type: precision_at_100
536
+ value: 0.9480000000000001
537
+ - type: precision_at_1000
538
+ value: 0.13
539
+ - type: precision_at_3
540
+ value: 11.982
541
+ - type: precision_at_5
542
+ value: 8.831
543
+ - type: recall_at_1
544
+ value: 16.803
545
+ - type: recall_at_10
546
+ value: 40.039
547
+ - type: recall_at_100
548
+ value: 65.83200000000001
549
+ - type: recall_at_1000
550
+ value: 84.478
551
+ - type: recall_at_3
552
+ value: 27.682000000000002
553
+ - type: recall_at_5
554
+ value: 33.535
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 28.345
566
+ - type: map_at_10
567
+ value: 37.757000000000005
568
+ - type: map_at_100
569
+ value: 39.141
570
+ - type: map_at_1000
571
+ value: 39.262
572
+ - type: map_at_3
573
+ value: 35.183
574
+ - type: map_at_5
575
+ value: 36.592
576
+ - type: mrr_at_1
577
+ value: 34.649
578
+ - type: mrr_at_10
579
+ value: 43.586999999999996
580
+ - type: mrr_at_100
581
+ value: 44.481
582
+ - type: mrr_at_1000
583
+ value: 44.542
584
+ - type: mrr_at_3
585
+ value: 41.29
586
+ - type: mrr_at_5
587
+ value: 42.642
588
+ - type: ndcg_at_1
589
+ value: 34.649
590
+ - type: ndcg_at_10
591
+ value: 43.161
592
+ - type: ndcg_at_100
593
+ value: 48.734
594
+ - type: ndcg_at_1000
595
+ value: 51.046
596
+ - type: ndcg_at_3
597
+ value: 39.118
598
+ - type: ndcg_at_5
599
+ value: 41.022
600
+ - type: precision_at_1
601
+ value: 34.649
602
+ - type: precision_at_10
603
+ value: 7.603
604
+ - type: precision_at_100
605
+ value: 1.209
606
+ - type: precision_at_1000
607
+ value: 0.157
608
+ - type: precision_at_3
609
+ value: 18.319
610
+ - type: precision_at_5
611
+ value: 12.839
612
+ - type: recall_at_1
613
+ value: 28.345
614
+ - type: recall_at_10
615
+ value: 53.367
616
+ - type: recall_at_100
617
+ value: 76.453
618
+ - type: recall_at_1000
619
+ value: 91.82000000000001
620
+ - type: recall_at_3
621
+ value: 41.636
622
+ - type: recall_at_5
623
+ value: 46.760000000000005
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 22.419
635
+ - type: map_at_10
636
+ value: 31.716
637
+ - type: map_at_100
638
+ value: 33.152
639
+ - type: map_at_1000
640
+ value: 33.267
641
+ - type: map_at_3
642
+ value: 28.74
643
+ - type: map_at_5
644
+ value: 30.48
645
+ - type: mrr_at_1
646
+ value: 28.310999999999996
647
+ - type: mrr_at_10
648
+ value: 37.039
649
+ - type: mrr_at_100
650
+ value: 38.09
651
+ - type: mrr_at_1000
652
+ value: 38.145
653
+ - type: mrr_at_3
654
+ value: 34.437
655
+ - type: mrr_at_5
656
+ value: 36.024
657
+ - type: ndcg_at_1
658
+ value: 28.310999999999996
659
+ - type: ndcg_at_10
660
+ value: 37.41
661
+ - type: ndcg_at_100
662
+ value: 43.647999999999996
663
+ - type: ndcg_at_1000
664
+ value: 46.007
665
+ - type: ndcg_at_3
666
+ value: 32.509
667
+ - type: ndcg_at_5
668
+ value: 34.943999999999996
669
+ - type: precision_at_1
670
+ value: 28.310999999999996
671
+ - type: precision_at_10
672
+ value: 6.963
673
+ - type: precision_at_100
674
+ value: 1.1860000000000002
675
+ - type: precision_at_1000
676
+ value: 0.154
677
+ - type: precision_at_3
678
+ value: 15.867999999999999
679
+ - type: precision_at_5
680
+ value: 11.507000000000001
681
+ - type: recall_at_1
682
+ value: 22.419
683
+ - type: recall_at_10
684
+ value: 49.28
685
+ - type: recall_at_100
686
+ value: 75.802
687
+ - type: recall_at_1000
688
+ value: 92.032
689
+ - type: recall_at_3
690
+ value: 35.399
691
+ - type: recall_at_5
692
+ value: 42.027
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 24.669249999999998
704
+ - type: map_at_10
705
+ value: 33.332583333333325
706
+ - type: map_at_100
707
+ value: 34.557833333333335
708
+ - type: map_at_1000
709
+ value: 34.67141666666666
710
+ - type: map_at_3
711
+ value: 30.663166666666662
712
+ - type: map_at_5
713
+ value: 32.14883333333333
714
+ - type: mrr_at_1
715
+ value: 29.193833333333334
716
+ - type: mrr_at_10
717
+ value: 37.47625
718
+ - type: mrr_at_100
719
+ value: 38.3545
720
+ - type: mrr_at_1000
721
+ value: 38.413166666666676
722
+ - type: mrr_at_3
723
+ value: 35.06741666666667
724
+ - type: mrr_at_5
725
+ value: 36.450666666666656
726
+ - type: ndcg_at_1
727
+ value: 29.193833333333334
728
+ - type: ndcg_at_10
729
+ value: 38.505416666666676
730
+ - type: ndcg_at_100
731
+ value: 43.81125
732
+ - type: ndcg_at_1000
733
+ value: 46.09558333333333
734
+ - type: ndcg_at_3
735
+ value: 33.90916666666667
736
+ - type: ndcg_at_5
737
+ value: 36.07666666666666
738
+ - type: precision_at_1
739
+ value: 29.193833333333334
740
+ - type: precision_at_10
741
+ value: 6.7251666666666665
742
+ - type: precision_at_100
743
+ value: 1.1058333333333332
744
+ - type: precision_at_1000
745
+ value: 0.14833333333333332
746
+ - type: precision_at_3
747
+ value: 15.554166666666665
748
+ - type: precision_at_5
749
+ value: 11.079250000000002
750
+ - type: recall_at_1
751
+ value: 24.669249999999998
752
+ - type: recall_at_10
753
+ value: 49.75583333333332
754
+ - type: recall_at_100
755
+ value: 73.06908333333332
756
+ - type: recall_at_1000
757
+ value: 88.91316666666667
758
+ - type: recall_at_3
759
+ value: 36.913250000000005
760
+ - type: recall_at_5
761
+ value: 42.48641666666666
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 24.044999999999998
773
+ - type: map_at_10
774
+ value: 30.349999999999998
775
+ - type: map_at_100
776
+ value: 31.273
777
+ - type: map_at_1000
778
+ value: 31.362000000000002
779
+ - type: map_at_3
780
+ value: 28.508
781
+ - type: map_at_5
782
+ value: 29.369
783
+ - type: mrr_at_1
784
+ value: 26.994
785
+ - type: mrr_at_10
786
+ value: 33.12
787
+ - type: mrr_at_100
788
+ value: 33.904
789
+ - type: mrr_at_1000
790
+ value: 33.967000000000006
791
+ - type: mrr_at_3
792
+ value: 31.365
793
+ - type: mrr_at_5
794
+ value: 32.124
795
+ - type: ndcg_at_1
796
+ value: 26.994
797
+ - type: ndcg_at_10
798
+ value: 34.214
799
+ - type: ndcg_at_100
800
+ value: 38.681
801
+ - type: ndcg_at_1000
802
+ value: 40.926
803
+ - type: ndcg_at_3
804
+ value: 30.725
805
+ - type: ndcg_at_5
806
+ value: 31.967000000000002
807
+ - type: precision_at_1
808
+ value: 26.994
809
+ - type: precision_at_10
810
+ value: 5.215
811
+ - type: precision_at_100
812
+ value: 0.807
813
+ - type: precision_at_1000
814
+ value: 0.108
815
+ - type: precision_at_3
816
+ value: 12.986
817
+ - type: precision_at_5
818
+ value: 8.712
819
+ - type: recall_at_1
820
+ value: 24.044999999999998
821
+ - type: recall_at_10
822
+ value: 43.456
823
+ - type: recall_at_100
824
+ value: 63.675000000000004
825
+ - type: recall_at_1000
826
+ value: 80.05499999999999
827
+ - type: recall_at_3
828
+ value: 33.561
829
+ - type: recall_at_5
830
+ value: 36.767
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 15.672
842
+ - type: map_at_10
843
+ value: 22.641
844
+ - type: map_at_100
845
+ value: 23.75
846
+ - type: map_at_1000
847
+ value: 23.877000000000002
848
+ - type: map_at_3
849
+ value: 20.219
850
+ - type: map_at_5
851
+ value: 21.648
852
+ - type: mrr_at_1
853
+ value: 18.823
854
+ - type: mrr_at_10
855
+ value: 26.101999999999997
856
+ - type: mrr_at_100
857
+ value: 27.038
858
+ - type: mrr_at_1000
859
+ value: 27.118
860
+ - type: mrr_at_3
861
+ value: 23.669
862
+ - type: mrr_at_5
863
+ value: 25.173000000000002
864
+ - type: ndcg_at_1
865
+ value: 18.823
866
+ - type: ndcg_at_10
867
+ value: 27.176000000000002
868
+ - type: ndcg_at_100
869
+ value: 32.42
870
+ - type: ndcg_at_1000
871
+ value: 35.413
872
+ - type: ndcg_at_3
873
+ value: 22.756999999999998
874
+ - type: ndcg_at_5
875
+ value: 25.032
876
+ - type: precision_at_1
877
+ value: 18.823
878
+ - type: precision_at_10
879
+ value: 5.034000000000001
880
+ - type: precision_at_100
881
+ value: 0.895
882
+ - type: precision_at_1000
883
+ value: 0.132
884
+ - type: precision_at_3
885
+ value: 10.771
886
+ - type: precision_at_5
887
+ value: 8.1
888
+ - type: recall_at_1
889
+ value: 15.672
890
+ - type: recall_at_10
891
+ value: 37.296
892
+ - type: recall_at_100
893
+ value: 60.863
894
+ - type: recall_at_1000
895
+ value: 82.234
896
+ - type: recall_at_3
897
+ value: 25.330000000000002
898
+ - type: recall_at_5
899
+ value: 30.964000000000002
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 24.633
911
+ - type: map_at_10
912
+ value: 32.858
913
+ - type: map_at_100
914
+ value: 34.038000000000004
915
+ - type: map_at_1000
916
+ value: 34.141
917
+ - type: map_at_3
918
+ value: 30.209000000000003
919
+ - type: map_at_5
920
+ value: 31.567
921
+ - type: mrr_at_1
922
+ value: 28.358
923
+ - type: mrr_at_10
924
+ value: 36.433
925
+ - type: mrr_at_100
926
+ value: 37.352000000000004
927
+ - type: mrr_at_1000
928
+ value: 37.41
929
+ - type: mrr_at_3
930
+ value: 34.033
931
+ - type: mrr_at_5
932
+ value: 35.246
933
+ - type: ndcg_at_1
934
+ value: 28.358
935
+ - type: ndcg_at_10
936
+ value: 37.973
937
+ - type: ndcg_at_100
938
+ value: 43.411
939
+ - type: ndcg_at_1000
940
+ value: 45.747
941
+ - type: ndcg_at_3
942
+ value: 32.934999999999995
943
+ - type: ndcg_at_5
944
+ value: 35.013
945
+ - type: precision_at_1
946
+ value: 28.358
947
+ - type: precision_at_10
948
+ value: 6.418
949
+ - type: precision_at_100
950
+ value: 1.02
951
+ - type: precision_at_1000
952
+ value: 0.133
953
+ - type: precision_at_3
954
+ value: 14.677000000000001
955
+ - type: precision_at_5
956
+ value: 10.335999999999999
957
+ - type: recall_at_1
958
+ value: 24.633
959
+ - type: recall_at_10
960
+ value: 50.048
961
+ - type: recall_at_100
962
+ value: 73.821
963
+ - type: recall_at_1000
964
+ value: 90.046
965
+ - type: recall_at_3
966
+ value: 36.284
967
+ - type: recall_at_5
968
+ value: 41.370000000000005
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 23.133
980
+ - type: map_at_10
981
+ value: 31.491999999999997
982
+ - type: map_at_100
983
+ value: 33.062000000000005
984
+ - type: map_at_1000
985
+ value: 33.256
986
+ - type: map_at_3
987
+ value: 28.886
988
+ - type: map_at_5
989
+ value: 30.262
990
+ - type: mrr_at_1
991
+ value: 28.063
992
+ - type: mrr_at_10
993
+ value: 36.144
994
+ - type: mrr_at_100
995
+ value: 37.14
996
+ - type: mrr_at_1000
997
+ value: 37.191
998
+ - type: mrr_at_3
999
+ value: 33.762
1000
+ - type: mrr_at_5
1001
+ value: 34.997
1002
+ - type: ndcg_at_1
1003
+ value: 28.063
1004
+ - type: ndcg_at_10
1005
+ value: 36.951
1006
+ - type: ndcg_at_100
1007
+ value: 43.287
1008
+ - type: ndcg_at_1000
1009
+ value: 45.777
1010
+ - type: ndcg_at_3
1011
+ value: 32.786
1012
+ - type: ndcg_at_5
1013
+ value: 34.65
1014
+ - type: precision_at_1
1015
+ value: 28.063
1016
+ - type: precision_at_10
1017
+ value: 7.055
1018
+ - type: precision_at_100
1019
+ value: 1.476
1020
+ - type: precision_at_1000
1021
+ value: 0.22899999999999998
1022
+ - type: precision_at_3
1023
+ value: 15.481
1024
+ - type: precision_at_5
1025
+ value: 11.186
1026
+ - type: recall_at_1
1027
+ value: 23.133
1028
+ - type: recall_at_10
1029
+ value: 47.285
1030
+ - type: recall_at_100
1031
+ value: 76.176
1032
+ - type: recall_at_1000
1033
+ value: 92.176
1034
+ - type: recall_at_3
1035
+ value: 35.223
1036
+ - type: recall_at_5
1037
+ value: 40.142
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 19.547
1049
+ - type: map_at_10
1050
+ value: 26.374
1051
+ - type: map_at_100
1052
+ value: 27.419
1053
+ - type: map_at_1000
1054
+ value: 27.539
1055
+ - type: map_at_3
1056
+ value: 23.882
1057
+ - type: map_at_5
1058
+ value: 25.163999999999998
1059
+ - type: mrr_at_1
1060
+ value: 21.442
1061
+ - type: mrr_at_10
1062
+ value: 28.458
1063
+ - type: mrr_at_100
1064
+ value: 29.360999999999997
1065
+ - type: mrr_at_1000
1066
+ value: 29.448999999999998
1067
+ - type: mrr_at_3
1068
+ value: 25.97
1069
+ - type: mrr_at_5
1070
+ value: 27.273999999999997
1071
+ - type: ndcg_at_1
1072
+ value: 21.442
1073
+ - type: ndcg_at_10
1074
+ value: 30.897000000000002
1075
+ - type: ndcg_at_100
1076
+ value: 35.99
1077
+ - type: ndcg_at_1000
1078
+ value: 38.832
1079
+ - type: ndcg_at_3
1080
+ value: 25.944
1081
+ - type: ndcg_at_5
1082
+ value: 28.126
1083
+ - type: precision_at_1
1084
+ value: 21.442
1085
+ - type: precision_at_10
1086
+ value: 4.9910000000000005
1087
+ - type: precision_at_100
1088
+ value: 0.8109999999999999
1089
+ - type: precision_at_1000
1090
+ value: 0.11800000000000001
1091
+ - type: precision_at_3
1092
+ value: 11.029
1093
+ - type: precision_at_5
1094
+ value: 7.911
1095
+ - type: recall_at_1
1096
+ value: 19.547
1097
+ - type: recall_at_10
1098
+ value: 42.886
1099
+ - type: recall_at_100
1100
+ value: 66.64999999999999
1101
+ - type: recall_at_1000
1102
+ value: 87.368
1103
+ - type: recall_at_3
1104
+ value: 29.143
1105
+ - type: recall_at_5
1106
+ value: 34.544000000000004
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 15.572
1118
+ - type: map_at_10
1119
+ value: 25.312
1120
+ - type: map_at_100
1121
+ value: 27.062
1122
+ - type: map_at_1000
1123
+ value: 27.253
1124
+ - type: map_at_3
1125
+ value: 21.601
1126
+ - type: map_at_5
1127
+ value: 23.473
1128
+ - type: mrr_at_1
1129
+ value: 34.984
1130
+ - type: mrr_at_10
1131
+ value: 46.406
1132
+ - type: mrr_at_100
1133
+ value: 47.179
1134
+ - type: mrr_at_1000
1135
+ value: 47.21
1136
+ - type: mrr_at_3
1137
+ value: 43.485
1138
+ - type: mrr_at_5
1139
+ value: 45.322
1140
+ - type: ndcg_at_1
1141
+ value: 34.984
1142
+ - type: ndcg_at_10
1143
+ value: 34.344
1144
+ - type: ndcg_at_100
1145
+ value: 41.015
1146
+ - type: ndcg_at_1000
1147
+ value: 44.366
1148
+ - type: ndcg_at_3
1149
+ value: 29.119
1150
+ - type: ndcg_at_5
1151
+ value: 30.825999999999997
1152
+ - type: precision_at_1
1153
+ value: 34.984
1154
+ - type: precision_at_10
1155
+ value: 10.358
1156
+ - type: precision_at_100
1157
+ value: 1.762
1158
+ - type: precision_at_1000
1159
+ value: 0.23900000000000002
1160
+ - type: precision_at_3
1161
+ value: 21.368000000000002
1162
+ - type: precision_at_5
1163
+ value: 15.948
1164
+ - type: recall_at_1
1165
+ value: 15.572
1166
+ - type: recall_at_10
1167
+ value: 39.367999999999995
1168
+ - type: recall_at_100
1169
+ value: 62.183
1170
+ - type: recall_at_1000
1171
+ value: 80.92200000000001
1172
+ - type: recall_at_3
1173
+ value: 26.131999999999998
1174
+ - type: recall_at_5
1175
+ value: 31.635999999999996
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 8.848
1187
+ - type: map_at_10
1188
+ value: 19.25
1189
+ - type: map_at_100
1190
+ value: 27.193
1191
+ - type: map_at_1000
1192
+ value: 28.721999999999998
1193
+ - type: map_at_3
1194
+ value: 13.968
1195
+ - type: map_at_5
1196
+ value: 16.283
1197
+ - type: mrr_at_1
1198
+ value: 68.75
1199
+ - type: mrr_at_10
1200
+ value: 76.25
1201
+ - type: mrr_at_100
1202
+ value: 76.534
1203
+ - type: mrr_at_1000
1204
+ value: 76.53999999999999
1205
+ - type: mrr_at_3
1206
+ value: 74.667
1207
+ - type: mrr_at_5
1208
+ value: 75.86699999999999
1209
+ - type: ndcg_at_1
1210
+ value: 56.00000000000001
1211
+ - type: ndcg_at_10
1212
+ value: 41.426
1213
+ - type: ndcg_at_100
1214
+ value: 45.660000000000004
1215
+ - type: ndcg_at_1000
1216
+ value: 53.02
1217
+ - type: ndcg_at_3
1218
+ value: 46.581
1219
+ - type: ndcg_at_5
1220
+ value: 43.836999999999996
1221
+ - type: precision_at_1
1222
+ value: 68.75
1223
+ - type: precision_at_10
1224
+ value: 32.800000000000004
1225
+ - type: precision_at_100
1226
+ value: 10.440000000000001
1227
+ - type: precision_at_1000
1228
+ value: 1.9980000000000002
1229
+ - type: precision_at_3
1230
+ value: 49.667
1231
+ - type: precision_at_5
1232
+ value: 42.25
1233
+ - type: recall_at_1
1234
+ value: 8.848
1235
+ - type: recall_at_10
1236
+ value: 24.467
1237
+ - type: recall_at_100
1238
+ value: 51.344
1239
+ - type: recall_at_1000
1240
+ value: 75.235
1241
+ - type: recall_at_3
1242
+ value: 15.329
1243
+ - type: recall_at_5
1244
+ value: 18.892999999999997
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 48.95
1256
+ - type: f1
1257
+ value: 43.44563593360779
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 78.036
1269
+ - type: map_at_10
1270
+ value: 85.639
1271
+ - type: map_at_100
1272
+ value: 85.815
1273
+ - type: map_at_1000
1274
+ value: 85.829
1275
+ - type: map_at_3
1276
+ value: 84.795
1277
+ - type: map_at_5
1278
+ value: 85.336
1279
+ - type: mrr_at_1
1280
+ value: 84.353
1281
+ - type: mrr_at_10
1282
+ value: 90.582
1283
+ - type: mrr_at_100
1284
+ value: 90.617
1285
+ - type: mrr_at_1000
1286
+ value: 90.617
1287
+ - type: mrr_at_3
1288
+ value: 90.132
1289
+ - type: mrr_at_5
1290
+ value: 90.447
1291
+ - type: ndcg_at_1
1292
+ value: 84.353
1293
+ - type: ndcg_at_10
1294
+ value: 89.003
1295
+ - type: ndcg_at_100
1296
+ value: 89.60000000000001
1297
+ - type: ndcg_at_1000
1298
+ value: 89.836
1299
+ - type: ndcg_at_3
1300
+ value: 87.81400000000001
1301
+ - type: ndcg_at_5
1302
+ value: 88.478
1303
+ - type: precision_at_1
1304
+ value: 84.353
1305
+ - type: precision_at_10
1306
+ value: 10.482
1307
+ - type: precision_at_100
1308
+ value: 1.099
1309
+ - type: precision_at_1000
1310
+ value: 0.11399999999999999
1311
+ - type: precision_at_3
1312
+ value: 33.257999999999996
1313
+ - type: precision_at_5
1314
+ value: 20.465
1315
+ - type: recall_at_1
1316
+ value: 78.036
1317
+ - type: recall_at_10
1318
+ value: 94.517
1319
+ - type: recall_at_100
1320
+ value: 96.828
1321
+ - type: recall_at_1000
1322
+ value: 98.261
1323
+ - type: recall_at_3
1324
+ value: 91.12
1325
+ - type: recall_at_5
1326
+ value: 92.946
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 20.191
1338
+ - type: map_at_10
1339
+ value: 32.369
1340
+ - type: map_at_100
1341
+ value: 34.123999999999995
1342
+ - type: map_at_1000
1343
+ value: 34.317
1344
+ - type: map_at_3
1345
+ value: 28.71
1346
+ - type: map_at_5
1347
+ value: 30.607
1348
+ - type: mrr_at_1
1349
+ value: 40.894999999999996
1350
+ - type: mrr_at_10
1351
+ value: 48.842
1352
+ - type: mrr_at_100
1353
+ value: 49.599
1354
+ - type: mrr_at_1000
1355
+ value: 49.647000000000006
1356
+ - type: mrr_at_3
1357
+ value: 46.785
1358
+ - type: mrr_at_5
1359
+ value: 47.672
1360
+ - type: ndcg_at_1
1361
+ value: 40.894999999999996
1362
+ - type: ndcg_at_10
1363
+ value: 39.872
1364
+ - type: ndcg_at_100
1365
+ value: 46.126
1366
+ - type: ndcg_at_1000
1367
+ value: 49.476
1368
+ - type: ndcg_at_3
1369
+ value: 37.153000000000006
1370
+ - type: ndcg_at_5
1371
+ value: 37.433
1372
+ - type: precision_at_1
1373
+ value: 40.894999999999996
1374
+ - type: precision_at_10
1375
+ value: 10.818
1376
+ - type: precision_at_100
1377
+ value: 1.73
1378
+ - type: precision_at_1000
1379
+ value: 0.231
1380
+ - type: precision_at_3
1381
+ value: 25.051000000000002
1382
+ - type: precision_at_5
1383
+ value: 17.531
1384
+ - type: recall_at_1
1385
+ value: 20.191
1386
+ - type: recall_at_10
1387
+ value: 45.768
1388
+ - type: recall_at_100
1389
+ value: 68.82000000000001
1390
+ - type: recall_at_1000
1391
+ value: 89.133
1392
+ - type: recall_at_3
1393
+ value: 33.296
1394
+ - type: recall_at_5
1395
+ value: 38.022
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 39.257
1407
+ - type: map_at_10
1408
+ value: 61.467000000000006
1409
+ - type: map_at_100
1410
+ value: 62.364
1411
+ - type: map_at_1000
1412
+ value: 62.424
1413
+ - type: map_at_3
1414
+ value: 58.228
1415
+ - type: map_at_5
1416
+ value: 60.283
1417
+ - type: mrr_at_1
1418
+ value: 78.515
1419
+ - type: mrr_at_10
1420
+ value: 84.191
1421
+ - type: mrr_at_100
1422
+ value: 84.378
1423
+ - type: mrr_at_1000
1424
+ value: 84.385
1425
+ - type: mrr_at_3
1426
+ value: 83.284
1427
+ - type: mrr_at_5
1428
+ value: 83.856
1429
+ - type: ndcg_at_1
1430
+ value: 78.515
1431
+ - type: ndcg_at_10
1432
+ value: 69.78999999999999
1433
+ - type: ndcg_at_100
1434
+ value: 72.886
1435
+ - type: ndcg_at_1000
1436
+ value: 74.015
1437
+ - type: ndcg_at_3
1438
+ value: 65.23
1439
+ - type: ndcg_at_5
1440
+ value: 67.80199999999999
1441
+ - type: precision_at_1
1442
+ value: 78.515
1443
+ - type: precision_at_10
1444
+ value: 14.519000000000002
1445
+ - type: precision_at_100
1446
+ value: 1.694
1447
+ - type: precision_at_1000
1448
+ value: 0.184
1449
+ - type: precision_at_3
1450
+ value: 41.702
1451
+ - type: precision_at_5
1452
+ value: 27.046999999999997
1453
+ - type: recall_at_1
1454
+ value: 39.257
1455
+ - type: recall_at_10
1456
+ value: 72.59299999999999
1457
+ - type: recall_at_100
1458
+ value: 84.679
1459
+ - type: recall_at_1000
1460
+ value: 92.12
1461
+ - type: recall_at_3
1462
+ value: 62.552
1463
+ - type: recall_at_5
1464
+ value: 67.616
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 91.5152
1476
+ - type: ap
1477
+ value: 87.64584669595709
1478
+ - type: f1
1479
+ value: 91.50605576428437
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 21.926000000000002
1491
+ - type: map_at_10
1492
+ value: 34.049
1493
+ - type: map_at_100
1494
+ value: 35.213
1495
+ - type: map_at_1000
1496
+ value: 35.265
1497
+ - type: map_at_3
1498
+ value: 30.309
1499
+ - type: map_at_5
1500
+ value: 32.407000000000004
1501
+ - type: mrr_at_1
1502
+ value: 22.55
1503
+ - type: mrr_at_10
1504
+ value: 34.657
1505
+ - type: mrr_at_100
1506
+ value: 35.760999999999996
1507
+ - type: mrr_at_1000
1508
+ value: 35.807
1509
+ - type: mrr_at_3
1510
+ value: 30.989
1511
+ - type: mrr_at_5
1512
+ value: 33.039
1513
+ - type: ndcg_at_1
1514
+ value: 22.55
1515
+ - type: ndcg_at_10
1516
+ value: 40.842
1517
+ - type: ndcg_at_100
1518
+ value: 46.436
1519
+ - type: ndcg_at_1000
1520
+ value: 47.721999999999994
1521
+ - type: ndcg_at_3
1522
+ value: 33.209
1523
+ - type: ndcg_at_5
1524
+ value: 36.943
1525
+ - type: precision_at_1
1526
+ value: 22.55
1527
+ - type: precision_at_10
1528
+ value: 6.447
1529
+ - type: precision_at_100
1530
+ value: 0.9249999999999999
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 14.136000000000001
1535
+ - type: precision_at_5
1536
+ value: 10.381
1537
+ - type: recall_at_1
1538
+ value: 21.926000000000002
1539
+ - type: recall_at_10
1540
+ value: 61.724999999999994
1541
+ - type: recall_at_100
1542
+ value: 87.604
1543
+ - type: recall_at_1000
1544
+ value: 97.421
1545
+ - type: recall_at_3
1546
+ value: 40.944
1547
+ - type: recall_at_5
1548
+ value: 49.915
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 93.54765161878704
1560
+ - type: f1
1561
+ value: 93.3298945415573
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 75.71591427268582
1573
+ - type: f1
1574
+ value: 59.32113870474471
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 75.83053127101547
1586
+ - type: f1
1587
+ value: 73.60757944876475
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 78.72562205783457
1599
+ - type: f1
1600
+ value: 78.63761662505502
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 33.37935633767996
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 31.55270546130387
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.462692753143834
1634
+ - type: mrr
1635
+ value: 31.497569753511563
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 5.646
1647
+ - type: map_at_10
1648
+ value: 12.498
1649
+ - type: map_at_100
1650
+ value: 15.486
1651
+ - type: map_at_1000
1652
+ value: 16.805999999999997
1653
+ - type: map_at_3
1654
+ value: 9.325
1655
+ - type: map_at_5
1656
+ value: 10.751
1657
+ - type: mrr_at_1
1658
+ value: 43.034
1659
+ - type: mrr_at_10
1660
+ value: 52.662
1661
+ - type: mrr_at_100
1662
+ value: 53.189
1663
+ - type: mrr_at_1000
1664
+ value: 53.25
1665
+ - type: mrr_at_3
1666
+ value: 50.929
1667
+ - type: mrr_at_5
1668
+ value: 51.92
1669
+ - type: ndcg_at_1
1670
+ value: 41.796
1671
+ - type: ndcg_at_10
1672
+ value: 33.477000000000004
1673
+ - type: ndcg_at_100
1674
+ value: 29.996000000000002
1675
+ - type: ndcg_at_1000
1676
+ value: 38.864
1677
+ - type: ndcg_at_3
1678
+ value: 38.940000000000005
1679
+ - type: ndcg_at_5
1680
+ value: 36.689
1681
+ - type: precision_at_1
1682
+ value: 43.034
1683
+ - type: precision_at_10
1684
+ value: 24.799
1685
+ - type: precision_at_100
1686
+ value: 7.432999999999999
1687
+ - type: precision_at_1000
1688
+ value: 1.9929999999999999
1689
+ - type: precision_at_3
1690
+ value: 36.842000000000006
1691
+ - type: precision_at_5
1692
+ value: 32.135999999999996
1693
+ - type: recall_at_1
1694
+ value: 5.646
1695
+ - type: recall_at_10
1696
+ value: 15.963
1697
+ - type: recall_at_100
1698
+ value: 29.492
1699
+ - type: recall_at_1000
1700
+ value: 61.711000000000006
1701
+ - type: recall_at_3
1702
+ value: 10.585
1703
+ - type: recall_at_5
1704
+ value: 12.753999999999998
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 27.602
1716
+ - type: map_at_10
1717
+ value: 41.545
1718
+ - type: map_at_100
1719
+ value: 42.644999999999996
1720
+ - type: map_at_1000
1721
+ value: 42.685
1722
+ - type: map_at_3
1723
+ value: 37.261
1724
+ - type: map_at_5
1725
+ value: 39.706
1726
+ - type: mrr_at_1
1727
+ value: 31.141000000000002
1728
+ - type: mrr_at_10
1729
+ value: 44.139
1730
+ - type: mrr_at_100
1731
+ value: 44.997
1732
+ - type: mrr_at_1000
1733
+ value: 45.025999999999996
1734
+ - type: mrr_at_3
1735
+ value: 40.503
1736
+ - type: mrr_at_5
1737
+ value: 42.64
1738
+ - type: ndcg_at_1
1739
+ value: 31.141000000000002
1740
+ - type: ndcg_at_10
1741
+ value: 48.995
1742
+ - type: ndcg_at_100
1743
+ value: 53.788000000000004
1744
+ - type: ndcg_at_1000
1745
+ value: 54.730000000000004
1746
+ - type: ndcg_at_3
1747
+ value: 40.844
1748
+ - type: ndcg_at_5
1749
+ value: 44.955
1750
+ - type: precision_at_1
1751
+ value: 31.141000000000002
1752
+ - type: precision_at_10
1753
+ value: 8.233
1754
+ - type: precision_at_100
1755
+ value: 1.093
1756
+ - type: precision_at_1000
1757
+ value: 0.11800000000000001
1758
+ - type: precision_at_3
1759
+ value: 18.579
1760
+ - type: precision_at_5
1761
+ value: 13.533999999999999
1762
+ - type: recall_at_1
1763
+ value: 27.602
1764
+ - type: recall_at_10
1765
+ value: 69.216
1766
+ - type: recall_at_100
1767
+ value: 90.252
1768
+ - type: recall_at_1000
1769
+ value: 97.27
1770
+ - type: recall_at_3
1771
+ value: 47.987
1772
+ - type: recall_at_5
1773
+ value: 57.438
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 70.949
1785
+ - type: map_at_10
1786
+ value: 84.89999999999999
1787
+ - type: map_at_100
1788
+ value: 85.531
1789
+ - type: map_at_1000
1790
+ value: 85.548
1791
+ - type: map_at_3
1792
+ value: 82.027
1793
+ - type: map_at_5
1794
+ value: 83.853
1795
+ - type: mrr_at_1
1796
+ value: 81.69999999999999
1797
+ - type: mrr_at_10
1798
+ value: 87.813
1799
+ - type: mrr_at_100
1800
+ value: 87.917
1801
+ - type: mrr_at_1000
1802
+ value: 87.91799999999999
1803
+ - type: mrr_at_3
1804
+ value: 86.938
1805
+ - type: mrr_at_5
1806
+ value: 87.53999999999999
1807
+ - type: ndcg_at_1
1808
+ value: 81.75
1809
+ - type: ndcg_at_10
1810
+ value: 88.55499999999999
1811
+ - type: ndcg_at_100
1812
+ value: 89.765
1813
+ - type: ndcg_at_1000
1814
+ value: 89.871
1815
+ - type: ndcg_at_3
1816
+ value: 85.905
1817
+ - type: ndcg_at_5
1818
+ value: 87.41
1819
+ - type: precision_at_1
1820
+ value: 81.75
1821
+ - type: precision_at_10
1822
+ value: 13.403
1823
+ - type: precision_at_100
1824
+ value: 1.528
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 37.597
1829
+ - type: precision_at_5
1830
+ value: 24.69
1831
+ - type: recall_at_1
1832
+ value: 70.949
1833
+ - type: recall_at_10
1834
+ value: 95.423
1835
+ - type: recall_at_100
1836
+ value: 99.509
1837
+ - type: recall_at_1000
1838
+ value: 99.982
1839
+ - type: recall_at_3
1840
+ value: 87.717
1841
+ - type: recall_at_5
1842
+ value: 92.032
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 51.76962893449579
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 62.32897690686379
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 4.478
1876
+ - type: map_at_10
1877
+ value: 11.994
1878
+ - type: map_at_100
1879
+ value: 13.977
1880
+ - type: map_at_1000
1881
+ value: 14.295
1882
+ - type: map_at_3
1883
+ value: 8.408999999999999
1884
+ - type: map_at_5
1885
+ value: 10.024
1886
+ - type: mrr_at_1
1887
+ value: 22.1
1888
+ - type: mrr_at_10
1889
+ value: 33.526
1890
+ - type: mrr_at_100
1891
+ value: 34.577000000000005
1892
+ - type: mrr_at_1000
1893
+ value: 34.632000000000005
1894
+ - type: mrr_at_3
1895
+ value: 30.217
1896
+ - type: mrr_at_5
1897
+ value: 31.962000000000003
1898
+ - type: ndcg_at_1
1899
+ value: 22.1
1900
+ - type: ndcg_at_10
1901
+ value: 20.191
1902
+ - type: ndcg_at_100
1903
+ value: 27.954
1904
+ - type: ndcg_at_1000
1905
+ value: 33.491
1906
+ - type: ndcg_at_3
1907
+ value: 18.787000000000003
1908
+ - type: ndcg_at_5
1909
+ value: 16.378999999999998
1910
+ - type: precision_at_1
1911
+ value: 22.1
1912
+ - type: precision_at_10
1913
+ value: 10.69
1914
+ - type: precision_at_100
1915
+ value: 2.1919999999999997
1916
+ - type: precision_at_1000
1917
+ value: 0.35200000000000004
1918
+ - type: precision_at_3
1919
+ value: 17.732999999999997
1920
+ - type: precision_at_5
1921
+ value: 14.499999999999998
1922
+ - type: recall_at_1
1923
+ value: 4.478
1924
+ - type: recall_at_10
1925
+ value: 21.657
1926
+ - type: recall_at_100
1927
+ value: 44.54
1928
+ - type: recall_at_1000
1929
+ value: 71.542
1930
+ - type: recall_at_3
1931
+ value: 10.778
1932
+ - type: recall_at_5
1933
+ value: 14.687
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 82.82325259156718
1945
+ - type: cos_sim_spearman
1946
+ value: 79.2463589100662
1947
+ - type: euclidean_pearson
1948
+ value: 80.48318380496771
1949
+ - type: euclidean_spearman
1950
+ value: 79.34451935199979
1951
+ - type: manhattan_pearson
1952
+ value: 80.39041824178759
1953
+ - type: manhattan_spearman
1954
+ value: 79.23002892700211
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 85.74130231431258
1966
+ - type: cos_sim_spearman
1967
+ value: 78.36856568042397
1968
+ - type: euclidean_pearson
1969
+ value: 82.48301631890303
1970
+ - type: euclidean_spearman
1971
+ value: 78.28376980722732
1972
+ - type: manhattan_pearson
1973
+ value: 82.43552075450525
1974
+ - type: manhattan_spearman
1975
+ value: 78.22702443947126
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 79.96138619461459
1987
+ - type: cos_sim_spearman
1988
+ value: 81.85436343502379
1989
+ - type: euclidean_pearson
1990
+ value: 81.82895226665367
1991
+ - type: euclidean_spearman
1992
+ value: 82.22707349602916
1993
+ - type: manhattan_pearson
1994
+ value: 81.66303369445873
1995
+ - type: manhattan_spearman
1996
+ value: 82.05030197179455
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 80.05481244198648
2008
+ - type: cos_sim_spearman
2009
+ value: 80.85052504637808
2010
+ - type: euclidean_pearson
2011
+ value: 80.86728419744497
2012
+ - type: euclidean_spearman
2013
+ value: 81.033786401512
2014
+ - type: manhattan_pearson
2015
+ value: 80.90107531061103
2016
+ - type: manhattan_spearman
2017
+ value: 81.11374116827795
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 84.615220756399
2029
+ - type: cos_sim_spearman
2030
+ value: 86.46858500002092
2031
+ - type: euclidean_pearson
2032
+ value: 86.08307800247586
2033
+ - type: euclidean_spearman
2034
+ value: 86.72691443870013
2035
+ - type: manhattan_pearson
2036
+ value: 85.96155594487269
2037
+ - type: manhattan_spearman
2038
+ value: 86.605909505275
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 82.14363913634436
2050
+ - type: cos_sim_spearman
2051
+ value: 84.48430226487102
2052
+ - type: euclidean_pearson
2053
+ value: 83.75303424801902
2054
+ - type: euclidean_spearman
2055
+ value: 84.56762380734538
2056
+ - type: manhattan_pearson
2057
+ value: 83.6135447165928
2058
+ - type: manhattan_spearman
2059
+ value: 84.39898212616731
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 85.09909252554525
2071
+ - type: cos_sim_spearman
2072
+ value: 85.70951402743276
2073
+ - type: euclidean_pearson
2074
+ value: 87.1991936239908
2075
+ - type: euclidean_spearman
2076
+ value: 86.07745840612071
2077
+ - type: manhattan_pearson
2078
+ value: 87.25039137549952
2079
+ - type: manhattan_spearman
2080
+ value: 85.99938746659761
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 63.529332093413615
2092
+ - type: cos_sim_spearman
2093
+ value: 65.38177340147439
2094
+ - type: euclidean_pearson
2095
+ value: 66.35278011412136
2096
+ - type: euclidean_spearman
2097
+ value: 65.47147267032997
2098
+ - type: manhattan_pearson
2099
+ value: 66.71804682408693
2100
+ - type: manhattan_spearman
2101
+ value: 65.67406521423597
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 82.45802942885662
2113
+ - type: cos_sim_spearman
2114
+ value: 84.8853341842566
2115
+ - type: euclidean_pearson
2116
+ value: 84.60915021096707
2117
+ - type: euclidean_spearman
2118
+ value: 85.11181242913666
2119
+ - type: manhattan_pearson
2120
+ value: 84.38600521210364
2121
+ - type: manhattan_spearman
2122
+ value: 84.89045417981723
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 85.92793380635129
2134
+ - type: mrr
2135
+ value: 95.85834191226348
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 55.74400000000001
2147
+ - type: map_at_10
2148
+ value: 65.455
2149
+ - type: map_at_100
2150
+ value: 66.106
2151
+ - type: map_at_1000
2152
+ value: 66.129
2153
+ - type: map_at_3
2154
+ value: 62.719
2155
+ - type: map_at_5
2156
+ value: 64.441
2157
+ - type: mrr_at_1
2158
+ value: 58.667
2159
+ - type: mrr_at_10
2160
+ value: 66.776
2161
+ - type: mrr_at_100
2162
+ value: 67.363
2163
+ - type: mrr_at_1000
2164
+ value: 67.384
2165
+ - type: mrr_at_3
2166
+ value: 64.889
2167
+ - type: mrr_at_5
2168
+ value: 66.122
2169
+ - type: ndcg_at_1
2170
+ value: 58.667
2171
+ - type: ndcg_at_10
2172
+ value: 69.904
2173
+ - type: ndcg_at_100
2174
+ value: 72.807
2175
+ - type: ndcg_at_1000
2176
+ value: 73.423
2177
+ - type: ndcg_at_3
2178
+ value: 65.405
2179
+ - type: ndcg_at_5
2180
+ value: 67.86999999999999
2181
+ - type: precision_at_1
2182
+ value: 58.667
2183
+ - type: precision_at_10
2184
+ value: 9.3
2185
+ - type: precision_at_100
2186
+ value: 1.08
2187
+ - type: precision_at_1000
2188
+ value: 0.11299999999999999
2189
+ - type: precision_at_3
2190
+ value: 25.444
2191
+ - type: precision_at_5
2192
+ value: 17.0
2193
+ - type: recall_at_1
2194
+ value: 55.74400000000001
2195
+ - type: recall_at_10
2196
+ value: 82.122
2197
+ - type: recall_at_100
2198
+ value: 95.167
2199
+ - type: recall_at_1000
2200
+ value: 100.0
2201
+ - type: recall_at_3
2202
+ value: 70.14399999999999
2203
+ - type: recall_at_5
2204
+ value: 76.417
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.86534653465347
2216
+ - type: cos_sim_ap
2217
+ value: 96.54142419791388
2218
+ - type: cos_sim_f1
2219
+ value: 93.07535641547861
2220
+ - type: cos_sim_precision
2221
+ value: 94.81327800829875
2222
+ - type: cos_sim_recall
2223
+ value: 91.4
2224
+ - type: dot_accuracy
2225
+ value: 99.86435643564356
2226
+ - type: dot_ap
2227
+ value: 96.53682260449868
2228
+ - type: dot_f1
2229
+ value: 92.98515104966718
2230
+ - type: dot_precision
2231
+ value: 95.27806925498426
2232
+ - type: dot_recall
2233
+ value: 90.8
2234
+ - type: euclidean_accuracy
2235
+ value: 99.86336633663366
2236
+ - type: euclidean_ap
2237
+ value: 96.5228676185697
2238
+ - type: euclidean_f1
2239
+ value: 92.9735234215886
2240
+ - type: euclidean_precision
2241
+ value: 94.70954356846472
2242
+ - type: euclidean_recall
2243
+ value: 91.3
2244
+ - type: manhattan_accuracy
2245
+ value: 99.85841584158416
2246
+ - type: manhattan_ap
2247
+ value: 96.50392760934032
2248
+ - type: manhattan_f1
2249
+ value: 92.84642321160581
2250
+ - type: manhattan_precision
2251
+ value: 92.8928928928929
2252
+ - type: manhattan_recall
2253
+ value: 92.80000000000001
2254
+ - type: max_accuracy
2255
+ value: 99.86534653465347
2256
+ - type: max_ap
2257
+ value: 96.54142419791388
2258
+ - type: max_f1
2259
+ value: 93.07535641547861
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 61.08285408766616
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 35.640675309010604
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 53.20333913710715
2293
+ - type: mrr
2294
+ value: 54.088813555725324
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 30.79465221925075
2306
+ - type: cos_sim_spearman
2307
+ value: 30.530816059163634
2308
+ - type: dot_pearson
2309
+ value: 31.364837244718043
2310
+ - type: dot_spearman
2311
+ value: 30.79726823684003
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.22599999999999998
2323
+ - type: map_at_10
2324
+ value: 1.735
2325
+ - type: map_at_100
2326
+ value: 8.978
2327
+ - type: map_at_1000
2328
+ value: 20.851
2329
+ - type: map_at_3
2330
+ value: 0.613
2331
+ - type: map_at_5
2332
+ value: 0.964
2333
+ - type: mrr_at_1
2334
+ value: 88.0
2335
+ - type: mrr_at_10
2336
+ value: 92.867
2337
+ - type: mrr_at_100
2338
+ value: 92.867
2339
+ - type: mrr_at_1000
2340
+ value: 92.867
2341
+ - type: mrr_at_3
2342
+ value: 92.667
2343
+ - type: mrr_at_5
2344
+ value: 92.667
2345
+ - type: ndcg_at_1
2346
+ value: 82.0
2347
+ - type: ndcg_at_10
2348
+ value: 73.164
2349
+ - type: ndcg_at_100
2350
+ value: 51.878
2351
+ - type: ndcg_at_1000
2352
+ value: 44.864
2353
+ - type: ndcg_at_3
2354
+ value: 79.184
2355
+ - type: ndcg_at_5
2356
+ value: 76.39
2357
+ - type: precision_at_1
2358
+ value: 88.0
2359
+ - type: precision_at_10
2360
+ value: 76.2
2361
+ - type: precision_at_100
2362
+ value: 52.459999999999994
2363
+ - type: precision_at_1000
2364
+ value: 19.692
2365
+ - type: precision_at_3
2366
+ value: 82.667
2367
+ - type: precision_at_5
2368
+ value: 80.0
2369
+ - type: recall_at_1
2370
+ value: 0.22599999999999998
2371
+ - type: recall_at_10
2372
+ value: 1.942
2373
+ - type: recall_at_100
2374
+ value: 12.342
2375
+ - type: recall_at_1000
2376
+ value: 41.42
2377
+ - type: recall_at_3
2378
+ value: 0.637
2379
+ - type: recall_at_5
2380
+ value: 1.034
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 3.567
2392
+ - type: map_at_10
2393
+ value: 13.116
2394
+ - type: map_at_100
2395
+ value: 19.39
2396
+ - type: map_at_1000
2397
+ value: 20.988
2398
+ - type: map_at_3
2399
+ value: 7.109
2400
+ - type: map_at_5
2401
+ value: 9.950000000000001
2402
+ - type: mrr_at_1
2403
+ value: 42.857
2404
+ - type: mrr_at_10
2405
+ value: 57.404999999999994
2406
+ - type: mrr_at_100
2407
+ value: 58.021
2408
+ - type: mrr_at_1000
2409
+ value: 58.021
2410
+ - type: mrr_at_3
2411
+ value: 54.762
2412
+ - type: mrr_at_5
2413
+ value: 56.19
2414
+ - type: ndcg_at_1
2415
+ value: 38.775999999999996
2416
+ - type: ndcg_at_10
2417
+ value: 30.359
2418
+ - type: ndcg_at_100
2419
+ value: 41.284
2420
+ - type: ndcg_at_1000
2421
+ value: 52.30200000000001
2422
+ - type: ndcg_at_3
2423
+ value: 36.744
2424
+ - type: ndcg_at_5
2425
+ value: 34.326
2426
+ - type: precision_at_1
2427
+ value: 42.857
2428
+ - type: precision_at_10
2429
+ value: 26.122
2430
+ - type: precision_at_100
2431
+ value: 8.082
2432
+ - type: precision_at_1000
2433
+ value: 1.559
2434
+ - type: precision_at_3
2435
+ value: 40.136
2436
+ - type: precision_at_5
2437
+ value: 35.510000000000005
2438
+ - type: recall_at_1
2439
+ value: 3.567
2440
+ - type: recall_at_10
2441
+ value: 19.045
2442
+ - type: recall_at_100
2443
+ value: 49.979
2444
+ - type: recall_at_1000
2445
+ value: 84.206
2446
+ - type: recall_at_3
2447
+ value: 8.52
2448
+ - type: recall_at_5
2449
+ value: 13.103000000000002
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 68.8394
2461
+ - type: ap
2462
+ value: 13.454399712443099
2463
+ - type: f1
2464
+ value: 53.04963076364322
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 60.546123372948514
2476
+ - type: f1
2477
+ value: 60.86952793277713
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 49.10042955060234
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 85.03308100375514
2500
+ - type: cos_sim_ap
2501
+ value: 71.08284605869684
2502
+ - type: cos_sim_f1
2503
+ value: 65.42539436255494
2504
+ - type: cos_sim_precision
2505
+ value: 64.14807302231237
2506
+ - type: cos_sim_recall
2507
+ value: 66.75461741424802
2508
+ - type: dot_accuracy
2509
+ value: 84.68736961316088
2510
+ - type: dot_ap
2511
+ value: 69.20524036530992
2512
+ - type: dot_f1
2513
+ value: 63.54893953365829
2514
+ - type: dot_precision
2515
+ value: 63.45698500394633
2516
+ - type: dot_recall
2517
+ value: 63.641160949868066
2518
+ - type: euclidean_accuracy
2519
+ value: 85.07480479227513
2520
+ - type: euclidean_ap
2521
+ value: 71.14592761009864
2522
+ - type: euclidean_f1
2523
+ value: 65.43814432989691
2524
+ - type: euclidean_precision
2525
+ value: 63.95465994962216
2526
+ - type: euclidean_recall
2527
+ value: 66.99208443271768
2528
+ - type: manhattan_accuracy
2529
+ value: 85.06288370984085
2530
+ - type: manhattan_ap
2531
+ value: 71.07289742593868
2532
+ - type: manhattan_f1
2533
+ value: 65.37585421412301
2534
+ - type: manhattan_precision
2535
+ value: 62.816147859922175
2536
+ - type: manhattan_recall
2537
+ value: 68.15303430079156
2538
+ - type: max_accuracy
2539
+ value: 85.07480479227513
2540
+ - type: max_ap
2541
+ value: 71.14592761009864
2542
+ - type: max_f1
2543
+ value: 65.43814432989691
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.79058485659952
2555
+ - type: cos_sim_ap
2556
+ value: 83.7183187008759
2557
+ - type: cos_sim_f1
2558
+ value: 75.86921142180798
2559
+ - type: cos_sim_precision
2560
+ value: 73.00683371298405
2561
+ - type: cos_sim_recall
2562
+ value: 78.96519864490298
2563
+ - type: dot_accuracy
2564
+ value: 87.0085768618776
2565
+ - type: dot_ap
2566
+ value: 81.87467488474279
2567
+ - type: dot_f1
2568
+ value: 74.04188363990559
2569
+ - type: dot_precision
2570
+ value: 72.10507114191901
2571
+ - type: dot_recall
2572
+ value: 76.08561749307053
2573
+ - type: euclidean_accuracy
2574
+ value: 87.8332751193387
2575
+ - type: euclidean_ap
2576
+ value: 83.83585648120315
2577
+ - type: euclidean_f1
2578
+ value: 76.02582177042369
2579
+ - type: euclidean_precision
2580
+ value: 73.36388371759989
2581
+ - type: euclidean_recall
2582
+ value: 78.88820449645827
2583
+ - type: manhattan_accuracy
2584
+ value: 87.87208444910156
2585
+ - type: manhattan_ap
2586
+ value: 83.8101950642973
2587
+ - type: manhattan_f1
2588
+ value: 75.90454195535027
2589
+ - type: manhattan_precision
2590
+ value: 72.44419564761039
2591
+ - type: manhattan_recall
2592
+ value: 79.71204188481676
2593
+ - type: max_accuracy
2594
+ value: 87.87208444910156
2595
+ - type: max_ap
2596
+ value: 83.83585648120315
2597
+ - type: max_f1
2598
+ value: 76.02582177042369
2599
+ ---
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/models/ours/en/finetune/v5_newdata_7neg_prompt2_s512_clustering02_class_small3e5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.28.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662afbeea6d658f743f3fc11b0e710a0a092837b220eaa7ca0bde604df562153
3
+ size 133508397
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 1000000000000000019884624838656,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff