File size: 2,432 Bytes
3282f55
 
b1e2f12
 
c9f83b4
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e2f12
c9f83b4
b1e2f12
 
c9f83b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: BEE-spoke-data/tFINE-900m-e16-d32-flan
tags:
- generated_from_trainer
model-index:
- name: tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tFINE-900m-e16-d32-flan-infinity-instruct-7m-T2T_en-1024

This model is a fine-tuned version of [BEE-spoke-data/tFINE-900m-e16-d32-flan](https://huggingface.co/BEE-spoke-data/tFINE-900m-e16-d32-flan) on the pszemraj/infinity-instruct-7m-T2T_en dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3588
- Num Input Tokens Seen: 810173896

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17868
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 1.6487        | 0.0969 | 2000  | 1.7665          | 78885660          |
| 1.4957        | 0.1938 | 4000  | 1.6085          | 157778628         |
| 1.4224        | 0.2907 | 6000  | 1.5239          | 236103764         |
| 1.3764        | 0.3877 | 8000  | 1.4715          | 314442716         |
| 1.3553        | 0.4846 | 10000 | 1.4268          | 392909044         |
| 1.3308        | 0.5815 | 12000 | 1.4009          | 471314876         |
| 1.2622        | 0.6784 | 14000 | 1.3831          | 550234352         |
| 1.2585        | 0.7753 | 16000 | 1.3684          | 628560668         |
| 1.2477        | 0.8722 | 18000 | 1.3608          | 707047904         |
| 1.216         | 0.9691 | 20000 | 1.3589          | 785148304         |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1