hackelle commited on
Commit
3a175d4
·
verified ·
1 Parent(s): 360bb32

Upload convnextv2_base-s1-v0.2.0

Browse files
Files changed (2) hide show
  1. README.md +5 -105
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,109 +1,9 @@
1
  ---
2
- thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
3
  tags:
4
- - convnextv2_base
5
- - BigEarthNet v2.0
6
- - Remote Sensing
7
- - Classification
8
- - image-classification
9
- - Multispectral
10
- library_name: configilm
11
- license: mit
12
- widget:
13
- - src: example.png
14
- example_title: Example
15
- output:
16
- - label: Agro-forestry areas
17
- score: 0.000001
18
- - label: Arable land
19
- score: 0.000011
20
- - label: Beaches, dunes, sands
21
- score: 0.000022
22
- - label: Broad-leaved forest
23
- score: 0.000495
24
- - label: Coastal wetlands
25
- score: 0.000003
26
  ---
27
 
28
- [TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
29
- :---:|:---:|:---:|:---:|:---:
30
- <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
31
-
32
- # Convnextv2_base pretrained on BigEarthNet v2.0 using Sentinel-1 bands
33
-
34
- <!-- Optional images -->
35
- <!--
36
- [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
37
- :---:|:---:
38
- <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
39
- -->
40
-
41
- This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
42
- It was trained using the following parameters:
43
- - Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average
44
- precision macro)
45
- - Batch size: 512
46
- - Learning rate: 0.001
47
- - Dropout rate: 0.15
48
- - Drop Path rate: 0.15
49
- - Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
50
- - Optimizer: AdamW
51
- - Seed: 42
52
-
53
- The weights published in this model card were obtained after 21 training epochs.
54
- For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.
55
-
56
- ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
57
-
58
- The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
59
-
60
- | Metric | Macro | Micro |
61
- |:------------------|------------------:|------------------:|
62
- | Average Precision | 0.586588 | 0.783575 |
63
- | F1 Score | 0.541231 | 0.691680 |
64
- | Precision | 0.616715 | 0.737481 |
65
-
66
- # Example
67
- | A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization) |
68
- |:---------------------------------------------------:|
69
- | ![[BigEarthNet](http://bigearth.net/)](example.png) |
70
-
71
- | Class labels | Predicted scores |
72
- |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
73
- | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000001 <br> 0.000011 <br> 0.000022 <br> ... <br> 0.000010 </p> |
74
-
75
-
76
- To use the model, download the codes that define the model architecture from the
77
- [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
78
- code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.
79
-
80
- ```python
81
- from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
82
-
83
- model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
84
- ```
85
-
86
- e.g.
87
-
88
- ```python
89
- from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
90
-
91
- model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
92
- "BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1")
93
- ```
94
-
95
- If you use this model in your research or the provided code, please cite the following papers:
96
- ```bibtex
97
- CITATION FOR DATASET PAPER
98
- ```
99
- ```bibtex
100
- @article{hackel2024configilm,
101
- title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
102
- author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
103
- journal={SoftwareX},
104
- volume={26},
105
- pages={101731},
106
- year={2024},
107
- publisher={Elsevier}
108
- }
109
- ```
 
1
  ---
 
2
  tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: [More Information Needed]
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e078d3be83c0deadabc228d106a8639a55b3535f8e8ae344db5e9c6f2867f5e1
3
  size 350887220
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39025759eacef4a6e668b1123ae4ae67fc982fed06f74abdc11de3c5179b9dad
3
  size 350887220