File size: 9,897 Bytes
9a02ae4
 
 
 
 
 
5a3a245
 
 
 
 
 
 
 
 
9a02ae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3a245
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: GerMedBERT/medbert-512
model-index:
- name: GerMedBERT_NER_V01_BRONCO_CARDIO
  results: []
datasets:
- bigbio/bronco
- bigbio/cardiode
language:
- de
metrics:
- f1
- precision
- recall
---

# GerMedBERT_NER_V01_BRONCO_CARDIO

This model is a fine-tuned version of [GerMedBERT/medbert-512](https://huggingface.co/GerMedBERT/medbert-512) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0306
- Diag: {'precision': 0.7065217391304348, 'recall': 0.6345885634588564, 'f1': 0.6686260102865541, 'number': 717}
- Med: {'precision': 0.8060029282576867, 'recall': 0.7315614617940199, 'f1': 0.7669801462904912, 'number': 1505}
- Treat: {'precision': 0.8133640552995391, 'recall': 0.7431578947368421, 'f1': 0.7766776677667767, 'number': 475}
- Overall Precision: 0.7811
- Overall Recall: 0.7078
- Overall F1: 0.7427
- Overall Accuracy: 0.9903
- Num Input Tokens Seen: 11575975

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Diag                                                                                                      | Med                                                                                                        | Treat                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-----------------:|
| 0.0611        | 0.2496 | 303  | 0.0509          | {'precision': 0.6265060240963856, 'recall': 0.2900976290097629, 'f1': 0.3965681601525262, 'number': 717}  | {'precision': 0.7679127725856698, 'recall': 0.3275747508305648, 'f1': 0.45924545877969264, 'number': 1505} | {'precision': 0.8493150684931506, 'recall': 0.5221052631578947, 'f1': 0.6466753585397653, 'number': 475} | 0.7496            | 0.3519         | 0.4789     | 0.9841           | 725328            |
| 0.0532        | 0.4992 | 606  | 0.0430          | {'precision': 0.7558139534883721, 'recall': 0.36262203626220363, 'f1': 0.4901036757775683, 'number': 717} | {'precision': 0.8224076281287247, 'recall': 0.4584717607973422, 'f1': 0.5887372013651877, 'number': 1505}  | {'precision': 0.7891566265060241, 'recall': 0.5515789473684211, 'f1': 0.6493184634448574, 'number': 475} | 0.8               | 0.4494         | 0.5755     | 0.9860           | 1436640           |
| 0.0488        | 0.7488 | 909  | 0.0394          | {'precision': 0.6588486140724946, 'recall': 0.4309623430962343, 'f1': 0.521079258010118, 'number': 717}   | {'precision': 0.803639846743295, 'recall': 0.5574750830564784, 'f1': 0.6582973715182425, 'number': 1505}   | {'precision': 0.8328445747800587, 'recall': 0.5978947368421053, 'f1': 0.696078431372549, 'number': 475}  | 0.7724            | 0.5310         | 0.6293     | 0.9872           | 2157328           |
| 0.0342        | 0.9984 | 1212 | 0.0361          | {'precision': 0.6908713692946058, 'recall': 0.46443514644351463, 'f1': 0.5554628857381151, 'number': 717} | {'precision': 0.76010101010101, 'recall': 0.6, 'f1': 0.6706275529149647, 'number': 1505}                   | {'precision': 0.8910256410256411, 'recall': 0.5852631578947368, 'f1': 0.7064803049555274, 'number': 475} | 0.7639            | 0.5614         | 0.6471     | 0.9873           | 2891248           |
| 0.0347        | 1.2479 | 1515 | 0.0368          | {'precision': 0.6760828625235404, 'recall': 0.500697350069735, 'f1': 0.5753205128205129, 'number': 717}   | {'precision': 0.7350936967632027, 'recall': 0.573421926910299, 'f1': 0.6442702500933185, 'number': 1505}   | {'precision': 0.7641277641277642, 'recall': 0.6547368421052632, 'f1': 0.7052154195011338, 'number': 475} | 0.7259            | 0.5684         | 0.6376     | 0.9871           | 3607825           |
| 0.0283        | 1.4975 | 1818 | 0.0351          | {'precision': 0.6774193548387096, 'recall': 0.5564853556485355, 'f1': 0.6110260336906584, 'number': 717}  | {'precision': 0.7513134851138353, 'recall': 0.5700996677740864, 'f1': 0.6482810729127314, 'number': 1505}  | {'precision': 0.8045685279187818, 'recall': 0.6673684210526316, 'f1': 0.7295742232451093, 'number': 475} | 0.7407            | 0.5836         | 0.6528     | 0.9872           | 4320401           |
| 0.0319        | 1.7471 | 2121 | 0.0329          | {'precision': 0.6723809523809524, 'recall': 0.49232914923291493, 'f1': 0.5684380032206119, 'number': 717} | {'precision': 0.7881619937694704, 'recall': 0.6724252491694352, 'f1': 0.7257081391179634, 'number': 1505}  | {'precision': 0.8387978142076503, 'recall': 0.6463157894736842, 'f1': 0.7300832342449465, 'number': 475} | 0.7687            | 0.6199         | 0.6864     | 0.9885           | 5050561           |
| 0.0269        | 1.9967 | 2424 | 0.0311          | {'precision': 0.720353982300885, 'recall': 0.5676429567642957, 'f1': 0.6349453978159126, 'number': 717}   | {'precision': 0.7833850931677019, 'recall': 0.6704318936877076, 'f1': 0.7225205871822412, 'number': 1505}  | {'precision': 0.8696883852691218, 'recall': 0.6463157894736842, 'f1': 0.7415458937198067, 'number': 475} | 0.7811            | 0.6389         | 0.7028     | 0.9891           | 5776705           |
| 0.0268        | 2.2463 | 2727 | 0.0309          | {'precision': 0.6769706336939721, 'recall': 0.6108786610878661, 'f1': 0.6422287390029325, 'number': 717}  | {'precision': 0.7624466571834992, 'recall': 0.7122923588039867, 'f1': 0.7365166609412571, 'number': 1505}  | {'precision': 0.8233830845771144, 'recall': 0.6968421052631579, 'f1': 0.7548460661345495, 'number': 475} | 0.7499            | 0.6826         | 0.7147     | 0.9891           | 6493709           |
| 0.0265        | 2.4959 | 3030 | 0.0319          | {'precision': 0.7138103161397671, 'recall': 0.5983263598326359, 'f1': 0.6509863429438543, 'number': 717}  | {'precision': 0.7537202380952381, 'recall': 0.6730897009966778, 'f1': 0.7111267111267112, 'number': 1505}  | {'precision': 0.8165829145728644, 'recall': 0.6842105263157895, 'f1': 0.7445589919816724, 'number': 475} | 0.7542            | 0.6552         | 0.7012     | 0.9888           | 7214269           |
| 0.0255        | 2.7455 | 3333 | 0.0314          | {'precision': 0.6806853582554517, 'recall': 0.6094839609483961, 'f1': 0.643119941133186, 'number': 717}   | {'precision': 0.7615062761506276, 'recall': 0.7255813953488373, 'f1': 0.7431099013269821, 'number': 1505}  | {'precision': 0.7866666666666666, 'recall': 0.7452631578947368, 'f1': 0.7654054054054054, 'number': 475} | 0.7454            | 0.6982         | 0.7210     | 0.9892           | 7947645           |
| 0.0221        | 2.9951 | 3636 | 0.0295          | {'precision': 0.723916532905297, 'recall': 0.6290097629009763, 'f1': 0.673134328358209, 'number': 717}    | {'precision': 0.8135464231354642, 'recall': 0.7102990033222591, 'f1': 0.7584249733948208, 'number': 1505}  | {'precision': 0.85, 'recall': 0.7157894736842105, 'f1': 0.7771428571428571, 'number': 475}               | 0.7959            | 0.6897         | 0.7390     | 0.9903           | 8667437           |
| 0.018         | 3.2446 | 3939 | 0.0307          | {'precision': 0.7097288676236044, 'recall': 0.6206415620641562, 'f1': 0.6622023809523809, 'number': 717}  | {'precision': 0.7909156452775775, 'recall': 0.7289036544850498, 'f1': 0.7586445366528355, 'number': 1505}  | {'precision': 0.8165137614678899, 'recall': 0.7494736842105263, 'f1': 0.7815587266739846, 'number': 475} | 0.7747            | 0.7037         | 0.7375     | 0.9901           | 9388513           |
| 0.0238        | 3.4942 | 4242 | 0.0312          | {'precision': 0.7024922118380063, 'recall': 0.6290097629009763, 'f1': 0.6637233259749816, 'number': 717}  | {'precision': 0.781895937277263, 'recall': 0.7289036544850498, 'f1': 0.7544704264099036, 'number': 1505}   | {'precision': 0.8235294117647058, 'recall': 0.7368421052631579, 'f1': 0.7777777777777778, 'number': 475} | 0.7684            | 0.7037         | 0.7347     | 0.9898           | 10103889          |
| 0.0196        | 3.7438 | 4545 | 0.0303          | {'precision': 0.7142857142857143, 'recall': 0.6276150627615062, 'f1': 0.6681514476614699, 'number': 717}  | {'precision': 0.7932761087267525, 'recall': 0.7368770764119601, 'f1': 0.7640372028935583, 'number': 1505}  | {'precision': 0.8273381294964028, 'recall': 0.7263157894736842, 'f1': 0.773542600896861, 'number': 475}  | 0.7787            | 0.7060         | 0.7406     | 0.9902           | 10831905          |
| 0.0184        | 3.9934 | 4848 | 0.0306          | {'precision': 0.7065217391304348, 'recall': 0.6345885634588564, 'f1': 0.6686260102865541, 'number': 717}  | {'precision': 0.8054133138258961, 'recall': 0.7315614617940199, 'f1': 0.7667130919220054, 'number': 1505}  | {'precision': 0.8133640552995391, 'recall': 0.7431578947368421, 'f1': 0.7766776677667767, 'number': 475} | 0.7808            | 0.7078         | 0.7425     | 0.9903           | 11559985          |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1