End of training
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: facebook/mms-1b-all
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-mms-1b-kazakh-speech2ner-ksc_synthetic-4b-10ep
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-mms-1b-kazakh-speech2ner-ksc_synthetic-4b-10ep
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: nan
|
21 |
+
- Wer: 1.0
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:------:|:---------------:|:---:|
|
54 |
+
| 0.0 | 0.15 | 8000 | nan | 1.0 |
|
55 |
+
| 0.0 | 0.3 | 16000 | nan | 1.0 |
|
56 |
+
| 0.0 | 0.44 | 24000 | nan | 1.0 |
|
57 |
+
| 0.0 | 0.59 | 32000 | nan | 1.0 |
|
58 |
+
| 0.0 | 0.74 | 40000 | nan | 1.0 |
|
59 |
+
| 0.0 | 0.89 | 48000 | nan | 1.0 |
|
60 |
+
| 0.0 | 1.03 | 56000 | nan | 1.0 |
|
61 |
+
| 0.0 | 1.18 | 64000 | nan | 1.0 |
|
62 |
+
| 0.0 | 1.33 | 72000 | nan | 1.0 |
|
63 |
+
| 0.0 | 1.48 | 80000 | nan | 1.0 |
|
64 |
+
| 0.0 | 1.62 | 88000 | nan | 1.0 |
|
65 |
+
| 0.0 | 1.77 | 96000 | nan | 1.0 |
|
66 |
+
| 0.0 | 1.92 | 104000 | nan | 1.0 |
|
67 |
+
| 0.0 | 2.07 | 112000 | nan | 1.0 |
|
68 |
+
| 0.0 | 2.21 | 120000 | nan | 1.0 |
|
69 |
+
| 0.0 | 2.36 | 128000 | nan | 1.0 |
|
70 |
+
| 0.0 | 2.51 | 136000 | nan | 1.0 |
|
71 |
+
| 0.0 | 2.66 | 144000 | nan | 1.0 |
|
72 |
+
| 0.0 | 2.8 | 152000 | nan | 1.0 |
|
73 |
+
| 0.0 | 2.95 | 160000 | nan | 1.0 |
|
74 |
+
| 0.0 | 3.1 | 168000 | nan | 1.0 |
|
75 |
+
| 0.0 | 3.25 | 176000 | nan | 1.0 |
|
76 |
+
| 0.0 | 3.39 | 184000 | nan | 1.0 |
|
77 |
+
| 0.0 | 3.54 | 192000 | nan | 1.0 |
|
78 |
+
| 0.0 | 3.69 | 200000 | nan | 1.0 |
|
79 |
+
| 0.0 | 3.84 | 208000 | nan | 1.0 |
|
80 |
+
| 0.0 | 3.98 | 216000 | nan | 1.0 |
|
81 |
+
| 0.0 | 4.13 | 224000 | nan | 1.0 |
|
82 |
+
| 0.0 | 4.28 | 232000 | nan | 1.0 |
|
83 |
+
| 0.0 | 4.43 | 240000 | nan | 1.0 |
|
84 |
+
| 0.0 | 4.57 | 248000 | nan | 1.0 |
|
85 |
+
| 0.0 | 4.72 | 256000 | nan | 1.0 |
|
86 |
+
| 0.0 | 4.87 | 264000 | nan | 1.0 |
|
87 |
+
| 0.0 | 5.02 | 272000 | nan | 1.0 |
|
88 |
+
| 0.0 | 5.16 | 280000 | nan | 1.0 |
|
89 |
+
| 0.0 | 5.31 | 288000 | nan | 1.0 |
|
90 |
+
| 0.0 | 5.46 | 296000 | nan | 1.0 |
|
91 |
+
| 0.0 | 5.61 | 304000 | nan | 1.0 |
|
92 |
+
| 0.0 | 5.75 | 312000 | nan | 1.0 |
|
93 |
+
| 0.0 | 5.9 | 320000 | nan | 1.0 |
|
94 |
+
| 0.0 | 6.05 | 328000 | nan | 1.0 |
|
95 |
+
| 0.0 | 6.2 | 336000 | nan | 1.0 |
|
96 |
+
| 0.0 | 6.34 | 344000 | nan | 1.0 |
|
97 |
+
| 0.0 | 6.49 | 352000 | nan | 1.0 |
|
98 |
+
| 0.0 | 6.64 | 360000 | nan | 1.0 |
|
99 |
+
| 0.0 | 6.79 | 368000 | nan | 1.0 |
|
100 |
+
| 0.0 | 6.93 | 376000 | nan | 1.0 |
|
101 |
+
| 0.0 | 7.08 | 384000 | nan | 1.0 |
|
102 |
+
| 0.0 | 7.23 | 392000 | nan | 1.0 |
|
103 |
+
| 0.0 | 7.38 | 400000 | nan | 1.0 |
|
104 |
+
| 0.0 | 7.52 | 408000 | nan | 1.0 |
|
105 |
+
| 0.0 | 7.67 | 416000 | nan | 1.0 |
|
106 |
+
| 0.0 | 7.82 | 424000 | nan | 1.0 |
|
107 |
+
| 0.0 | 7.97 | 432000 | nan | 1.0 |
|
108 |
+
| 0.0 | 8.11 | 440000 | nan | 1.0 |
|
109 |
+
| 0.0 | 8.26 | 448000 | nan | 1.0 |
|
110 |
+
| 0.0 | 8.41 | 456000 | nan | 1.0 |
|
111 |
+
| 0.0 | 8.56 | 464000 | nan | 1.0 |
|
112 |
+
| 0.0 | 8.7 | 472000 | nan | 1.0 |
|
113 |
+
| 0.0 | 8.85 | 480000 | nan | 1.0 |
|
114 |
+
| 0.0 | 9.0 | 488000 | nan | 1.0 |
|
115 |
+
| 0.0 | 9.15 | 496000 | nan | 1.0 |
|
116 |
+
| 0.0 | 9.29 | 504000 | nan | 1.0 |
|
117 |
+
| 0.0 | 9.44 | 512000 | nan | 1.0 |
|
118 |
+
| 0.0 | 9.59 | 520000 | nan | 1.0 |
|
119 |
+
| 0.0 | 9.74 | 528000 | nan | 1.0 |
|
120 |
+
| 0.0 | 9.88 | 536000 | nan | 1.0 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.33.0.dev0
|
126 |
+
- Pytorch 2.0.1+cu117
|
127 |
+
- Datasets 2.13.1
|
128 |
+
- Tokenizers 0.13.3
|