BeastyZ commited on
Commit
7ff0bf4
·
verified ·
1 Parent(s): 770a890

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1852 -0
README.md CHANGED
@@ -5,6 +5,1858 @@ datasets:
5
  - BeastyZ/ConRetriever
6
  language:
7
  - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  # Model Card for e5-R-mistral-7b
 
5
  - BeastyZ/ConRetriever
6
  language:
7
  - en
8
+
9
+ model-index:
10
+ - name: e5-R-mistral-7b
11
+ results:
12
+ - dataset:
13
+ config: default
14
+ name: MTEB ArguAna (default)
15
+ revision: None
16
+ split: test
17
+ type: mteb/arguana
18
+ metrics:
19
+ - type: map_at_1
20
+ value: 33.57
21
+ - type: map_at_10
22
+ value: 49.952000000000005
23
+ - type: map_at_100
24
+ value: 50.673
25
+ - type: map_at_1000
26
+ value: 50.674
27
+ - type: map_at_3
28
+ value: 44.915
29
+ - type: map_at_5
30
+ value: 47.876999999999995
31
+ - type: mrr_at_1
32
+ value: 34.211000000000006
33
+ - type: mrr_at_10
34
+ value: 50.19
35
+ - type: mrr_at_100
36
+ value: 50.905
37
+ - type: mrr_at_1000
38
+ value: 50.906
39
+ - type: mrr_at_3
40
+ value: 45.128
41
+ - type: mrr_at_5
42
+ value: 48.097
43
+ - type: ndcg_at_1
44
+ value: 33.57
45
+ - type: ndcg_at_10
46
+ value: 58.994
47
+ - type: ndcg_at_100
48
+ value: 61.806000000000004
49
+ - type: ndcg_at_1000
50
+ value: 61.824999999999996
51
+ - type: ndcg_at_3
52
+ value: 48.681000000000004
53
+ - type: ndcg_at_5
54
+ value: 54.001
55
+ - type: precision_at_1
56
+ value: 33.57
57
+ - type: precision_at_10
58
+ value: 8.784
59
+ - type: precision_at_100
60
+ value: 0.9950000000000001
61
+ - type: precision_at_1000
62
+ value: 0.1
63
+ - type: precision_at_3
64
+ value: 19.867
65
+ - type: precision_at_5
66
+ value: 14.495
67
+ - type: recall_at_1
68
+ value: 33.57
69
+ - type: recall_at_10
70
+ value: 87.83800000000001
71
+ - type: recall_at_100
72
+ value: 99.502
73
+ - type: recall_at_1000
74
+ value: 99.644
75
+ - type: recall_at_3
76
+ value: 59.602
77
+ - type: recall_at_5
78
+ value: 72.475
79
+ - type: main_score
80
+ value: 58.994
81
+ task:
82
+ type: Retrieval
83
+ - dataset:
84
+ config: default
85
+ name: MTEB CQADupstackAndroidRetrieval (default)
86
+ revision: None
87
+ split: test
88
+ type: mteb/cqadupstack-android
89
+ metrics:
90
+ - type: map_at_1
91
+ value: 34.577999999999996
92
+ - type: map_at_10
93
+ value: 47.308
94
+ - type: map_at_100
95
+ value: 49.014
96
+ - type: map_at_1000
97
+ value: 49.126999999999995
98
+ - type: map_at_3
99
+ value: 43.4
100
+ - type: map_at_5
101
+ value: 45.426
102
+ - type: mrr_at_1
103
+ value: 42.632
104
+ - type: mrr_at_10
105
+ value: 53.711
106
+ - type: mrr_at_100
107
+ value: 54.422000000000004
108
+ - type: mrr_at_1000
109
+ value: 54.452
110
+ - type: mrr_at_3
111
+ value: 51.097
112
+ - type: mrr_at_5
113
+ value: 52.535
114
+ - type: ndcg_at_1
115
+ value: 42.632
116
+ - type: ndcg_at_10
117
+ value: 54.408
118
+ - type: ndcg_at_100
119
+ value: 59.789
120
+ - type: ndcg_at_1000
121
+ value: 61.149
122
+ - type: ndcg_at_3
123
+ value: 49.0
124
+ - type: ndcg_at_5
125
+ value: 51.141000000000005
126
+ - type: precision_at_1
127
+ value: 42.632
128
+ - type: precision_at_10
129
+ value: 10.472
130
+ - type: precision_at_100
131
+ value: 1.6469999999999998
132
+ - type: precision_at_1000
133
+ value: 0.203
134
+ - type: precision_at_3
135
+ value: 23.701
136
+ - type: precision_at_5
137
+ value: 16.938
138
+ - type: recall_at_1
139
+ value: 34.577999999999996
140
+ - type: recall_at_10
141
+ value: 67.948
142
+ - type: recall_at_100
143
+ value: 89.642
144
+ - type: recall_at_1000
145
+ value: 97.597
146
+ - type: recall_at_3
147
+ value: 51.381
148
+ - type: recall_at_5
149
+ value: 57.855000000000004
150
+ - type: main_score
151
+ value: 54.408
152
+ task:
153
+ type: Retrieval
154
+ - dataset:
155
+ config: default
156
+ name: MTEB CQADupstackEnglishRetrieval (default)
157
+ revision: None
158
+ split: test
159
+ type: mteb/cqadupstack-english
160
+ metrics:
161
+ - type: map_at_1
162
+ value: 36.195
163
+ - type: map_at_10
164
+ value: 48.433
165
+ - type: map_at_100
166
+ value: 49.724000000000004
167
+ - type: map_at_1000
168
+ value: 49.842999999999996
169
+ - type: map_at_3
170
+ value: 44.940000000000005
171
+ - type: map_at_5
172
+ value: 46.992
173
+ - type: mrr_at_1
174
+ value: 45.669
175
+ - type: mrr_at_10
176
+ value: 54.627
177
+ - type: mrr_at_100
178
+ value: 55.186
179
+ - type: mrr_at_1000
180
+ value: 55.221
181
+ - type: mrr_at_3
182
+ value: 52.282
183
+ - type: mrr_at_5
184
+ value: 53.795
185
+ - type: ndcg_at_1
186
+ value: 45.669
187
+ - type: ndcg_at_10
188
+ value: 54.494
189
+ - type: ndcg_at_100
190
+ value: 58.582
191
+ - type: ndcg_at_1000
192
+ value: 60.305
193
+ - type: ndcg_at_3
194
+ value: 49.978
195
+ - type: ndcg_at_5
196
+ value: 52.251999999999995
197
+ - type: precision_at_1
198
+ value: 45.669
199
+ - type: precision_at_10
200
+ value: 10.255
201
+ - type: precision_at_100
202
+ value: 1.582
203
+ - type: precision_at_1000
204
+ value: 0.202
205
+ - type: precision_at_3
206
+ value: 24.352
207
+ - type: precision_at_5
208
+ value: 17.236
209
+ - type: recall_at_1
210
+ value: 36.195
211
+ - type: recall_at_10
212
+ value: 65.058
213
+ - type: recall_at_100
214
+ value: 81.972
215
+ - type: recall_at_1000
216
+ value: 92.527
217
+ - type: recall_at_3
218
+ value: 51.427
219
+ - type: recall_at_5
220
+ value: 57.915000000000006
221
+ - type: main_score
222
+ value: 54.494
223
+ task:
224
+ type: Retrieval
225
+ - dataset:
226
+ config: default
227
+ name: MTEB CQADupstackGamingRetrieval (default)
228
+ revision: None
229
+ split: test
230
+ type: mteb/cqadupstack-gaming
231
+ metrics:
232
+ - type: map_at_1
233
+ value: 44.521
234
+ - type: map_at_10
235
+ value: 58.418000000000006
236
+ - type: map_at_100
237
+ value: 59.447
238
+ - type: map_at_1000
239
+ value: 59.484
240
+ - type: map_at_3
241
+ value: 54.954
242
+ - type: map_at_5
243
+ value: 56.940999999999995
244
+ - type: mrr_at_1
245
+ value: 51.097
246
+ - type: mrr_at_10
247
+ value: 61.751
248
+ - type: mrr_at_100
249
+ value: 62.373999999999995
250
+ - type: mrr_at_1000
251
+ value: 62.39
252
+ - type: mrr_at_3
253
+ value: 59.467000000000006
254
+ - type: mrr_at_5
255
+ value: 60.853
256
+ - type: ndcg_at_1
257
+ value: 51.097
258
+ - type: ndcg_at_10
259
+ value: 64.47699999999999
260
+ - type: ndcg_at_100
261
+ value: 68.162
262
+ - type: ndcg_at_1000
263
+ value: 68.807
264
+ - type: ndcg_at_3
265
+ value: 59.028000000000006
266
+ - type: ndcg_at_5
267
+ value: 61.75000000000001
268
+ - type: precision_at_1
269
+ value: 51.097
270
+ - type: precision_at_10
271
+ value: 10.313
272
+ - type: precision_at_100
273
+ value: 1.303
274
+ - type: precision_at_1000
275
+ value: 0.13899999999999998
276
+ - type: precision_at_3
277
+ value: 26.352999999999998
278
+ - type: precision_at_5
279
+ value: 17.931
280
+ - type: recall_at_1
281
+ value: 44.521
282
+ - type: recall_at_10
283
+ value: 78.81
284
+ - type: recall_at_100
285
+ value: 94.12899999999999
286
+ - type: recall_at_1000
287
+ value: 98.542
288
+ - type: recall_at_3
289
+ value: 64.363
290
+ - type: recall_at_5
291
+ value: 71.114
292
+ - type: main_score
293
+ value: 64.47699999999999
294
+ task:
295
+ type: Retrieval
296
+ - dataset:
297
+ config: default
298
+ name: MTEB CQADupstackGisRetrieval (default)
299
+ revision: None
300
+ split: test
301
+ type: mteb/cqadupstack-gis
302
+ metrics:
303
+ - type: map_at_1
304
+ value: 27.913
305
+ - type: map_at_10
306
+ value: 37.518
307
+ - type: map_at_100
308
+ value: 38.559
309
+ - type: map_at_1000
310
+ value: 38.635999999999996
311
+ - type: map_at_3
312
+ value: 34.304
313
+ - type: map_at_5
314
+ value: 36.142
315
+ - type: mrr_at_1
316
+ value: 30.056
317
+ - type: mrr_at_10
318
+ value: 39.493
319
+ - type: mrr_at_100
320
+ value: 40.411
321
+ - type: mrr_at_1000
322
+ value: 40.46
323
+ - type: mrr_at_3
324
+ value: 36.629
325
+ - type: mrr_at_5
326
+ value: 38.239000000000004
327
+ - type: ndcg_at_1
328
+ value: 30.056
329
+ - type: ndcg_at_10
330
+ value: 43.038
331
+ - type: ndcg_at_100
332
+ value: 48.254000000000005
333
+ - type: ndcg_at_1000
334
+ value: 49.94
335
+ - type: ndcg_at_3
336
+ value: 36.897000000000006
337
+ - type: ndcg_at_5
338
+ value: 39.918
339
+ - type: precision_at_1
340
+ value: 30.056
341
+ - type: precision_at_10
342
+ value: 6.701
343
+ - type: precision_at_100
344
+ value: 0.983
345
+ - type: precision_at_1000
346
+ value: 0.116
347
+ - type: precision_at_3
348
+ value: 15.518
349
+ - type: precision_at_5
350
+ value: 11.096
351
+ - type: recall_at_1
352
+ value: 27.913
353
+ - type: recall_at_10
354
+ value: 58.111999999999995
355
+ - type: recall_at_100
356
+ value: 82.133
357
+ - type: recall_at_1000
358
+ value: 94.388
359
+ - type: recall_at_3
360
+ value: 41.735
361
+ - type: recall_at_5
362
+ value: 48.929
363
+ - type: main_score
364
+ value: 43.038
365
+ task:
366
+ type: Retrieval
367
+ - dataset:
368
+ config: default
369
+ name: MTEB CQADupstackMathematicaRetrieval (default)
370
+ revision: None
371
+ split: test
372
+ type: mteb/cqadupstack-mathematica
373
+ metrics:
374
+ - type: map_at_1
375
+ value: 19.505
376
+ - type: map_at_10
377
+ value: 28.723
378
+ - type: map_at_100
379
+ value: 30.184
380
+ - type: map_at_1000
381
+ value: 30.298000000000002
382
+ - type: map_at_3
383
+ value: 25.317
384
+ - type: map_at_5
385
+ value: 27.247
386
+ - type: mrr_at_1
387
+ value: 24.254
388
+ - type: mrr_at_10
389
+ value: 33.743
390
+ - type: mrr_at_100
391
+ value: 34.8
392
+ - type: mrr_at_1000
393
+ value: 34.859
394
+ - type: mrr_at_3
395
+ value: 30.659
396
+ - type: mrr_at_5
397
+ value: 32.481
398
+ - type: ndcg_at_1
399
+ value: 24.254
400
+ - type: ndcg_at_10
401
+ value: 34.797
402
+ - type: ndcg_at_100
403
+ value: 41.074
404
+ - type: ndcg_at_1000
405
+ value: 43.639
406
+ - type: ndcg_at_3
407
+ value: 28.823
408
+ - type: ndcg_at_5
409
+ value: 31.679000000000002
410
+ - type: precision_at_1
411
+ value: 24.254
412
+ - type: precision_at_10
413
+ value: 6.691999999999999
414
+ - type: precision_at_100
415
+ value: 1.127
416
+ - type: precision_at_1000
417
+ value: 0.147
418
+ - type: precision_at_3
419
+ value: 14.179
420
+ - type: precision_at_5
421
+ value: 10.647
422
+ - type: recall_at_1
423
+ value: 19.505
424
+ - type: recall_at_10
425
+ value: 48.495
426
+ - type: recall_at_100
427
+ value: 74.888
428
+ - type: recall_at_1000
429
+ value: 93.04599999999999
430
+ - type: recall_at_3
431
+ value: 31.96
432
+ - type: recall_at_5
433
+ value: 39.183
434
+ - type: main_score
435
+ value: 34.797
436
+ task:
437
+ type: Retrieval
438
+ - dataset:
439
+ config: default
440
+ name: MTEB CQADupstackPhysicsRetrieval (default)
441
+ revision: None
442
+ split: test
443
+ type: mteb/cqadupstack-physics
444
+ metrics:
445
+ - type: map_at_1
446
+ value: 32.565
447
+ - type: map_at_10
448
+ value: 45.793
449
+ - type: map_at_100
450
+ value: 47.22
451
+ - type: map_at_1000
452
+ value: 47.309
453
+ - type: map_at_3
454
+ value: 42.164
455
+ - type: map_at_5
456
+ value: 44.114
457
+ - type: mrr_at_1
458
+ value: 40.038000000000004
459
+ - type: mrr_at_10
460
+ value: 51.086
461
+ - type: mrr_at_100
462
+ value: 51.867
463
+ - type: mrr_at_1000
464
+ value: 51.897000000000006
465
+ - type: mrr_at_3
466
+ value: 48.396
467
+ - type: mrr_at_5
468
+ value: 49.921
469
+ - type: ndcg_at_1
470
+ value: 40.038000000000004
471
+ - type: ndcg_at_10
472
+ value: 52.329
473
+ - type: ndcg_at_100
474
+ value: 57.788
475
+ - type: ndcg_at_1000
476
+ value: 59.199999999999996
477
+ - type: ndcg_at_3
478
+ value: 46.861000000000004
479
+ - type: ndcg_at_5
480
+ value: 49.318
481
+ - type: precision_at_1
482
+ value: 40.038000000000004
483
+ - type: precision_at_10
484
+ value: 9.702
485
+ - type: precision_at_100
486
+ value: 1.4500000000000002
487
+ - type: precision_at_1000
488
+ value: 0.172
489
+ - type: precision_at_3
490
+ value: 22.842000000000002
491
+ - type: precision_at_5
492
+ value: 16.014999999999997
493
+ - type: recall_at_1
494
+ value: 32.565
495
+ - type: recall_at_10
496
+ value: 66.178
497
+ - type: recall_at_100
498
+ value: 88.568
499
+ - type: recall_at_1000
500
+ value: 97.419
501
+ - type: recall_at_3
502
+ value: 50.604000000000006
503
+ - type: recall_at_5
504
+ value: 57.247
505
+ - type: main_score
506
+ value: 52.329
507
+ task:
508
+ type: Retrieval
509
+ - dataset:
510
+ config: default
511
+ name: MTEB CQADupstackProgrammersRetrieval (default)
512
+ revision: None
513
+ split: test
514
+ type: mteb/cqadupstack-programmers
515
+ metrics:
516
+ - type: map_at_1
517
+ value: 29.395
518
+ - type: map_at_10
519
+ value: 41.93
520
+ - type: map_at_100
521
+ value: 43.364999999999995
522
+ - type: map_at_1000
523
+ value: 43.461
524
+ - type: map_at_3
525
+ value: 38.076
526
+ - type: map_at_5
527
+ value: 40.099000000000004
528
+ - type: mrr_at_1
529
+ value: 36.644
530
+ - type: mrr_at_10
531
+ value: 47.336
532
+ - type: mrr_at_100
533
+ value: 48.132000000000005
534
+ - type: mrr_at_1000
535
+ value: 48.169000000000004
536
+ - type: mrr_at_3
537
+ value: 44.196999999999996
538
+ - type: mrr_at_5
539
+ value: 45.972
540
+ - type: ndcg_at_1
541
+ value: 36.644
542
+ - type: ndcg_at_10
543
+ value: 48.768
544
+ - type: ndcg_at_100
545
+ value: 54.177
546
+ - type: ndcg_at_1000
547
+ value: 55.923
548
+ - type: ndcg_at_3
549
+ value: 42.663000000000004
550
+ - type: ndcg_at_5
551
+ value: 45.308
552
+ - type: precision_at_1
553
+ value: 36.644
554
+ - type: precision_at_10
555
+ value: 9.212
556
+ - type: precision_at_100
557
+ value: 1.4000000000000001
558
+ - type: precision_at_1000
559
+ value: 0.172
560
+ - type: precision_at_3
561
+ value: 20.776
562
+ - type: precision_at_5
563
+ value: 14.954
564
+ - type: recall_at_1
565
+ value: 29.395
566
+ - type: recall_at_10
567
+ value: 63.653000000000006
568
+ - type: recall_at_100
569
+ value: 85.488
570
+ - type: recall_at_1000
571
+ value: 97.235
572
+ - type: recall_at_3
573
+ value: 46.64
574
+ - type: recall_at_5
575
+ value: 53.604
576
+ - type: main_score
577
+ value: 48.768
578
+ task:
579
+ type: Retrieval
580
+ - dataset:
581
+ config: default
582
+ name: MTEB CQADupstackStatsRetrieval (default)
583
+ revision: None
584
+ split: test
585
+ type: mteb/cqadupstack-stats
586
+ metrics:
587
+ - type: map_at_1
588
+ value: 27.642
589
+ - type: map_at_10
590
+ value: 35.988
591
+ - type: map_at_100
592
+ value: 37.016
593
+ - type: map_at_1000
594
+ value: 37.102000000000004
595
+ - type: map_at_3
596
+ value: 33.016
597
+ - type: map_at_5
598
+ value: 34.598
599
+ - type: mrr_at_1
600
+ value: 30.828
601
+ - type: mrr_at_10
602
+ value: 38.866
603
+ - type: mrr_at_100
604
+ value: 39.732
605
+ - type: mrr_at_1000
606
+ value: 39.789
607
+ - type: mrr_at_3
608
+ value: 36.35
609
+ - type: mrr_at_5
610
+ value: 37.653
611
+ - type: ndcg_at_1
612
+ value: 30.828
613
+ - type: ndcg_at_10
614
+ value: 41.134
615
+ - type: ndcg_at_100
616
+ value: 46.169
617
+ - type: ndcg_at_1000
618
+ value: 48.157
619
+ - type: ndcg_at_3
620
+ value: 35.674
621
+ - type: ndcg_at_5
622
+ value: 38.104
623
+ - type: precision_at_1
624
+ value: 30.828
625
+ - type: precision_at_10
626
+ value: 6.61
627
+ - type: precision_at_100
628
+ value: 1.0030000000000001
629
+ - type: precision_at_1000
630
+ value: 0.125
631
+ - type: precision_at_3
632
+ value: 15.235000000000001
633
+ - type: precision_at_5
634
+ value: 10.706
635
+ - type: recall_at_1
636
+ value: 27.642
637
+ - type: recall_at_10
638
+ value: 54.142
639
+ - type: recall_at_100
640
+ value: 76.988
641
+ - type: recall_at_1000
642
+ value: 91.282
643
+ - type: recall_at_3
644
+ value: 39.128
645
+ - type: recall_at_5
646
+ value: 45.117000000000004
647
+ - type: main_score
648
+ value: 41.134
649
+ task:
650
+ type: Retrieval
651
+ - dataset:
652
+ config: default
653
+ name: MTEB CQADupstackTexRetrieval (default)
654
+ revision: None
655
+ split: test
656
+ type: mteb/cqadupstack-tex
657
+ metrics:
658
+ - type: map_at_1
659
+ value: 20.505000000000003
660
+ - type: map_at_10
661
+ value: 28.921000000000003
662
+ - type: map_at_100
663
+ value: 30.165999999999997
664
+ - type: map_at_1000
665
+ value: 30.293
666
+ - type: map_at_3
667
+ value: 26.251
668
+ - type: map_at_5
669
+ value: 27.669
670
+ - type: mrr_at_1
671
+ value: 25.224000000000004
672
+ - type: mrr_at_10
673
+ value: 33.4
674
+ - type: mrr_at_100
675
+ value: 34.347
676
+ - type: mrr_at_1000
677
+ value: 34.418
678
+ - type: mrr_at_3
679
+ value: 31.028
680
+ - type: mrr_at_5
681
+ value: 32.33
682
+ - type: ndcg_at_1
683
+ value: 25.224000000000004
684
+ - type: ndcg_at_10
685
+ value: 34.202
686
+ - type: ndcg_at_100
687
+ value: 39.757
688
+ - type: ndcg_at_1000
689
+ value: 42.481
690
+ - type: ndcg_at_3
691
+ value: 29.656
692
+ - type: ndcg_at_5
693
+ value: 31.643
694
+ - type: precision_at_1
695
+ value: 25.224000000000004
696
+ - type: precision_at_10
697
+ value: 6.256
698
+ - type: precision_at_100
699
+ value: 1.054
700
+ - type: precision_at_1000
701
+ value: 0.148
702
+ - type: precision_at_3
703
+ value: 14.12
704
+ - type: precision_at_5
705
+ value: 10.103
706
+ - type: recall_at_1
707
+ value: 20.505000000000003
708
+ - type: recall_at_10
709
+ value: 45.578
710
+ - type: recall_at_100
711
+ value: 70.226
712
+ - type: recall_at_1000
713
+ value: 89.242
714
+ - type: recall_at_3
715
+ value: 32.446999999999996
716
+ - type: recall_at_5
717
+ value: 37.842
718
+ - type: main_score
719
+ value: 34.202
720
+ task:
721
+ type: Retrieval
722
+ - dataset:
723
+ config: default
724
+ name: MTEB CQADupstackUnixRetrieval (default)
725
+ revision: None
726
+ split: test
727
+ type: mteb/cqadupstack-unix
728
+ metrics:
729
+ - type: map_at_1
730
+ value: 30.446
731
+ - type: map_at_10
732
+ value: 41.296
733
+ - type: map_at_100
734
+ value: 42.620000000000005
735
+ - type: map_at_1000
736
+ value: 42.703
737
+ - type: map_at_3
738
+ value: 37.969
739
+ - type: map_at_5
740
+ value: 39.878
741
+ - type: mrr_at_1
742
+ value: 35.821
743
+ - type: mrr_at_10
744
+ value: 45.395
745
+ - type: mrr_at_100
746
+ value: 46.308
747
+ - type: mrr_at_1000
748
+ value: 46.354
749
+ - type: mrr_at_3
750
+ value: 42.553000000000004
751
+ - type: mrr_at_5
752
+ value: 44.352999999999994
753
+ - type: ndcg_at_1
754
+ value: 35.821
755
+ - type: ndcg_at_10
756
+ value: 47.176
757
+ - type: ndcg_at_100
758
+ value: 52.827999999999996
759
+ - type: ndcg_at_1000
760
+ value: 54.56100000000001
761
+ - type: ndcg_at_3
762
+ value: 41.695
763
+ - type: ndcg_at_5
764
+ value: 44.424
765
+ - type: precision_at_1
766
+ value: 35.821
767
+ - type: precision_at_10
768
+ value: 8.106
769
+ - type: precision_at_100
770
+ value: 1.2269999999999999
771
+ - type: precision_at_1000
772
+ value: 0.147
773
+ - type: precision_at_3
774
+ value: 19.403000000000002
775
+ - type: precision_at_5
776
+ value: 13.730999999999998
777
+ - type: recall_at_1
778
+ value: 30.446
779
+ - type: recall_at_10
780
+ value: 60.704
781
+ - type: recall_at_100
782
+ value: 84.73
783
+ - type: recall_at_1000
784
+ value: 96.531
785
+ - type: recall_at_3
786
+ value: 45.615
787
+ - type: recall_at_5
788
+ value: 52.683
789
+ - type: main_score
790
+ value: 47.176
791
+ task:
792
+ type: Retrieval
793
+ - dataset:
794
+ config: default
795
+ name: MTEB CQADupstackWebmastersRetrieval (default)
796
+ revision: None
797
+ split: test
798
+ type: mteb/cqadupstack-webmasters
799
+ metrics:
800
+ - type: map_at_1
801
+ value: 27.889000000000003
802
+ - type: map_at_10
803
+ value: 38.676
804
+ - type: map_at_100
805
+ value: 40.448
806
+ - type: map_at_1000
807
+ value: 40.689
808
+ - type: map_at_3
809
+ value: 35.13
810
+ - type: map_at_5
811
+ value: 37.058
812
+ - type: mrr_at_1
813
+ value: 34.19
814
+ - type: mrr_at_10
815
+ value: 43.532
816
+ - type: mrr_at_100
817
+ value: 44.504
818
+ - type: mrr_at_1000
819
+ value: 44.554
820
+ - type: mrr_at_3
821
+ value: 40.679
822
+ - type: mrr_at_5
823
+ value: 42.22
824
+ - type: ndcg_at_1
825
+ value: 34.19
826
+ - type: ndcg_at_10
827
+ value: 45.335
828
+ - type: ndcg_at_100
829
+ value: 51.196
830
+ - type: ndcg_at_1000
831
+ value: 53.337
832
+ - type: ndcg_at_3
833
+ value: 39.782000000000004
834
+ - type: ndcg_at_5
835
+ value: 42.24
836
+ - type: precision_at_1
837
+ value: 34.19
838
+ - type: precision_at_10
839
+ value: 8.834
840
+ - type: precision_at_100
841
+ value: 1.7229999999999999
842
+ - type: precision_at_1000
843
+ value: 0.255
844
+ - type: precision_at_3
845
+ value: 18.775
846
+ - type: precision_at_5
847
+ value: 13.715
848
+ - type: recall_at_1
849
+ value: 27.889000000000003
850
+ - type: recall_at_10
851
+ value: 58.391000000000005
852
+ - type: recall_at_100
853
+ value: 83.94200000000001
854
+ - type: recall_at_1000
855
+ value: 96.736
856
+ - type: recall_at_3
857
+ value: 42.208
858
+ - type: recall_at_5
859
+ value: 48.947
860
+ - type: main_score
861
+ value: 45.335
862
+ task:
863
+ type: Retrieval
864
+ - dataset:
865
+ config: default
866
+ name: MTEB CQADupstackWordpressRetrieval (default)
867
+ revision: None
868
+ split: test
869
+ type: mteb/cqadupstack-wordpress
870
+ metrics:
871
+ - type: map_at_1
872
+ value: 24.75
873
+ - type: map_at_10
874
+ value: 34.025
875
+ - type: map_at_100
876
+ value: 35.126000000000005
877
+ - type: map_at_1000
878
+ value: 35.219
879
+ - type: map_at_3
880
+ value: 31.607000000000003
881
+ - type: map_at_5
882
+ value: 32.962
883
+ - type: mrr_at_1
884
+ value: 27.357
885
+ - type: mrr_at_10
886
+ value: 36.370999999999995
887
+ - type: mrr_at_100
888
+ value: 37.364000000000004
889
+ - type: mrr_at_1000
890
+ value: 37.423
891
+ - type: mrr_at_3
892
+ value: 34.288000000000004
893
+ - type: mrr_at_5
894
+ value: 35.434
895
+ - type: ndcg_at_1
896
+ value: 27.357
897
+ - type: ndcg_at_10
898
+ value: 38.97
899
+ - type: ndcg_at_100
900
+ value: 44.317
901
+ - type: ndcg_at_1000
902
+ value: 46.475
903
+ - type: ndcg_at_3
904
+ value: 34.473
905
+ - type: ndcg_at_5
906
+ value: 36.561
907
+ - type: precision_at_1
908
+ value: 27.357
909
+ - type: precision_at_10
910
+ value: 6.081
911
+ - type: precision_at_100
912
+ value: 0.9299999999999999
913
+ - type: precision_at_1000
914
+ value: 0.124
915
+ - type: precision_at_3
916
+ value: 14.911
917
+ - type: precision_at_5
918
+ value: 10.24
919
+ - type: recall_at_1
920
+ value: 24.75
921
+ - type: recall_at_10
922
+ value: 51.856
923
+ - type: recall_at_100
924
+ value: 76.44300000000001
925
+ - type: recall_at_1000
926
+ value: 92.078
927
+ - type: recall_at_3
928
+ value: 39.427
929
+ - type: recall_at_5
930
+ value: 44.639
931
+ - type: main_score
932
+ value: 38.97
933
+ task:
934
+ type: Retrieval
935
+ - dataset:
936
+ config: default
937
+ name: MTEB ClimateFEVER (default)
938
+ revision: None
939
+ split: test
940
+ type: mteb/climate-fever
941
+ metrics:
942
+ - type: map_at_1
943
+ value: 16.436
944
+ - type: map_at_10
945
+ value: 29.693
946
+ - type: map_at_100
947
+ value: 32.179
948
+ - type: map_at_1000
949
+ value: 32.353
950
+ - type: map_at_3
951
+ value: 24.556
952
+ - type: map_at_5
953
+ value: 27.105
954
+ - type: mrr_at_1
955
+ value: 37.524
956
+ - type: mrr_at_10
957
+ value: 51.475
958
+ - type: mrr_at_100
959
+ value: 52.107000000000006
960
+ - type: mrr_at_1000
961
+ value: 52.123
962
+ - type: mrr_at_3
963
+ value: 48.35
964
+ - type: mrr_at_5
965
+ value: 50.249
966
+ - type: ndcg_at_1
967
+ value: 37.524
968
+ - type: ndcg_at_10
969
+ value: 40.258
970
+ - type: ndcg_at_100
971
+ value: 48.364000000000004
972
+ - type: ndcg_at_1000
973
+ value: 51.031000000000006
974
+ - type: ndcg_at_3
975
+ value: 33.359
976
+ - type: ndcg_at_5
977
+ value: 35.573
978
+ - type: precision_at_1
979
+ value: 37.524
980
+ - type: precision_at_10
981
+ value: 12.886000000000001
982
+ - type: precision_at_100
983
+ value: 2.169
984
+ - type: precision_at_1000
985
+ value: 0.268
986
+ - type: precision_at_3
987
+ value: 25.624000000000002
988
+ - type: precision_at_5
989
+ value: 19.453
990
+ - type: recall_at_1
991
+ value: 16.436
992
+ - type: recall_at_10
993
+ value: 47.77
994
+ - type: recall_at_100
995
+ value: 74.762
996
+ - type: recall_at_1000
997
+ value: 89.316
998
+ - type: recall_at_3
999
+ value: 30.508000000000003
1000
+ - type: recall_at_5
1001
+ value: 37.346000000000004
1002
+ - type: main_score
1003
+ value: 40.258
1004
+ task:
1005
+ type: Retrieval
1006
+ - dataset:
1007
+ config: default
1008
+ name: MTEB DBPedia (default)
1009
+ revision: None
1010
+ split: test
1011
+ type: mteb/dbpedia
1012
+ metrics:
1013
+ - type: map_at_1
1014
+ value: 10.147
1015
+ - type: map_at_10
1016
+ value: 24.631
1017
+ - type: map_at_100
1018
+ value: 35.657
1019
+ - type: map_at_1000
1020
+ value: 37.824999999999996
1021
+ - type: map_at_3
1022
+ value: 16.423
1023
+ - type: map_at_5
1024
+ value: 19.666
1025
+ - type: mrr_at_1
1026
+ value: 76.5
1027
+ - type: mrr_at_10
1028
+ value: 82.793
1029
+ - type: mrr_at_100
1030
+ value: 83.015
1031
+ - type: mrr_at_1000
1032
+ value: 83.021
1033
+ - type: mrr_at_3
1034
+ value: 81.75
1035
+ - type: mrr_at_5
1036
+ value: 82.375
1037
+ - type: ndcg_at_1
1038
+ value: 64.75
1039
+ - type: ndcg_at_10
1040
+ value: 51.031000000000006
1041
+ - type: ndcg_at_100
1042
+ value: 56.005
1043
+ - type: ndcg_at_1000
1044
+ value: 63.068000000000005
1045
+ - type: ndcg_at_3
1046
+ value: 54.571999999999996
1047
+ - type: ndcg_at_5
1048
+ value: 52.66499999999999
1049
+ - type: precision_at_1
1050
+ value: 76.5
1051
+ - type: precision_at_10
1052
+ value: 42.15
1053
+ - type: precision_at_100
1054
+ value: 13.22
1055
+ - type: precision_at_1000
1056
+ value: 2.5989999999999998
1057
+ - type: precision_at_3
1058
+ value: 58.416999999999994
1059
+ - type: precision_at_5
1060
+ value: 52.2
1061
+ - type: recall_at_1
1062
+ value: 10.147
1063
+ - type: recall_at_10
1064
+ value: 30.786
1065
+ - type: recall_at_100
1066
+ value: 62.873000000000005
1067
+ - type: recall_at_1000
1068
+ value: 85.358
1069
+ - type: recall_at_3
1070
+ value: 17.665
1071
+ - type: recall_at_5
1072
+ value: 22.088
1073
+ - type: main_score
1074
+ value: 51.031000000000006
1075
+ task:
1076
+ type: Retrieval
1077
+ - dataset:
1078
+ config: default
1079
+ name: MTEB FEVER (default)
1080
+ revision: None
1081
+ split: test
1082
+ type: mteb/fever
1083
+ metrics:
1084
+ - type: map_at_1
1085
+ value: 78.52900000000001
1086
+ - type: map_at_10
1087
+ value: 87.24199999999999
1088
+ - type: map_at_100
1089
+ value: 87.446
1090
+ - type: map_at_1000
1091
+ value: 87.457
1092
+ - type: map_at_3
1093
+ value: 86.193
1094
+ - type: map_at_5
1095
+ value: 86.898
1096
+ - type: mrr_at_1
1097
+ value: 84.518
1098
+ - type: mrr_at_10
1099
+ value: 90.686
1100
+ - type: mrr_at_100
1101
+ value: 90.73
1102
+ - type: mrr_at_1000
1103
+ value: 90.731
1104
+ - type: mrr_at_3
1105
+ value: 90.227
1106
+ - type: mrr_at_5
1107
+ value: 90.575
1108
+ - type: ndcg_at_1
1109
+ value: 84.518
1110
+ - type: ndcg_at_10
1111
+ value: 90.324
1112
+ - type: ndcg_at_100
1113
+ value: 90.96300000000001
1114
+ - type: ndcg_at_1000
1115
+ value: 91.134
1116
+ - type: ndcg_at_3
1117
+ value: 88.937
1118
+ - type: ndcg_at_5
1119
+ value: 89.788
1120
+ - type: precision_at_1
1121
+ value: 84.518
1122
+ - type: precision_at_10
1123
+ value: 10.872
1124
+ - type: precision_at_100
1125
+ value: 1.1440000000000001
1126
+ - type: precision_at_1000
1127
+ value: 0.117
1128
+ - type: precision_at_3
1129
+ value: 34.108
1130
+ - type: precision_at_5
1131
+ value: 21.154999999999998
1132
+ - type: recall_at_1
1133
+ value: 78.52900000000001
1134
+ - type: recall_at_10
1135
+ value: 96.123
1136
+ - type: recall_at_100
1137
+ value: 98.503
1138
+ - type: recall_at_1000
1139
+ value: 99.518
1140
+ - type: recall_at_3
1141
+ value: 92.444
1142
+ - type: recall_at_5
1143
+ value: 94.609
1144
+ - type: main_score
1145
+ value: 90.324
1146
+ task:
1147
+ type: Retrieval
1148
+ - dataset:
1149
+ config: default
1150
+ name: MTEB FiQA2018 (default)
1151
+ revision: None
1152
+ split: test
1153
+ type: mteb/fiqa
1154
+ metrics:
1155
+ - type: map_at_1
1156
+ value: 29.38
1157
+ - type: map_at_10
1158
+ value: 50.28
1159
+ - type: map_at_100
1160
+ value: 52.532999999999994
1161
+ - type: map_at_1000
1162
+ value: 52.641000000000005
1163
+ - type: map_at_3
1164
+ value: 43.556
1165
+ - type: map_at_5
1166
+ value: 47.617
1167
+ - type: mrr_at_1
1168
+ value: 56.79
1169
+ - type: mrr_at_10
1170
+ value: 65.666
1171
+ - type: mrr_at_100
1172
+ value: 66.211
1173
+ - type: mrr_at_1000
1174
+ value: 66.226
1175
+ - type: mrr_at_3
1176
+ value: 63.452
1177
+ - type: mrr_at_5
1178
+ value: 64.895
1179
+ - type: ndcg_at_1
1180
+ value: 56.79
1181
+ - type: ndcg_at_10
1182
+ value: 58.68
1183
+ - type: ndcg_at_100
1184
+ value: 65.22
1185
+ - type: ndcg_at_1000
1186
+ value: 66.645
1187
+ - type: ndcg_at_3
1188
+ value: 53.981
1189
+ - type: ndcg_at_5
1190
+ value: 55.95
1191
+ - type: precision_at_1
1192
+ value: 56.79
1193
+ - type: precision_at_10
1194
+ value: 16.311999999999998
1195
+ - type: precision_at_100
1196
+ value: 2.316
1197
+ - type: precision_at_1000
1198
+ value: 0.258
1199
+ - type: precision_at_3
1200
+ value: 36.214
1201
+ - type: precision_at_5
1202
+ value: 27.067999999999998
1203
+ - type: recall_at_1
1204
+ value: 29.38
1205
+ - type: recall_at_10
1206
+ value: 66.503
1207
+ - type: recall_at_100
1208
+ value: 89.885
1209
+ - type: recall_at_1000
1210
+ value: 97.954
1211
+ - type: recall_at_3
1212
+ value: 48.866
1213
+ - type: recall_at_5
1214
+ value: 57.60999999999999
1215
+ - type: main_score
1216
+ value: 58.68
1217
+ task:
1218
+ type: Retrieval
1219
+ - dataset:
1220
+ config: default
1221
+ name: MTEB HotpotQA (default)
1222
+ revision: None
1223
+ split: test
1224
+ type: mteb/hotpotqa
1225
+ metrics:
1226
+ - type: map_at_1
1227
+ value: 42.134
1228
+ - type: map_at_10
1229
+ value: 73.412
1230
+ - type: map_at_100
1231
+ value: 74.144
1232
+ - type: map_at_1000
1233
+ value: 74.181
1234
+ - type: map_at_3
1235
+ value: 70.016
1236
+ - type: map_at_5
1237
+ value: 72.174
1238
+ - type: mrr_at_1
1239
+ value: 84.267
1240
+ - type: mrr_at_10
1241
+ value: 89.18599999999999
1242
+ - type: mrr_at_100
1243
+ value: 89.29599999999999
1244
+ - type: mrr_at_1000
1245
+ value: 89.298
1246
+ - type: mrr_at_3
1247
+ value: 88.616
1248
+ - type: mrr_at_5
1249
+ value: 88.957
1250
+ - type: ndcg_at_1
1251
+ value: 84.267
1252
+ - type: ndcg_at_10
1253
+ value: 80.164
1254
+ - type: ndcg_at_100
1255
+ value: 82.52199999999999
1256
+ - type: ndcg_at_1000
1257
+ value: 83.176
1258
+ - type: ndcg_at_3
1259
+ value: 75.616
1260
+ - type: ndcg_at_5
1261
+ value: 78.184
1262
+ - type: precision_at_1
1263
+ value: 84.267
1264
+ - type: precision_at_10
1265
+ value: 16.916
1266
+ - type: precision_at_100
1267
+ value: 1.872
1268
+ - type: precision_at_1000
1269
+ value: 0.196
1270
+ - type: precision_at_3
1271
+ value: 49.71
1272
+ - type: precision_at_5
1273
+ value: 31.854
1274
+ - type: recall_at_1
1275
+ value: 42.134
1276
+ - type: recall_at_10
1277
+ value: 84.578
1278
+ - type: recall_at_100
1279
+ value: 93.606
1280
+ - type: recall_at_1000
1281
+ value: 97.86
1282
+ - type: recall_at_3
1283
+ value: 74.564
1284
+ - type: recall_at_5
1285
+ value: 79.635
1286
+ - type: main_score
1287
+ value: 80.164
1288
+ task:
1289
+ type: Retrieval
1290
+ - dataset:
1291
+ config: default
1292
+ name: MTEB MSMARCO (default)
1293
+ revision: None
1294
+ split: dev
1295
+ type: mteb/msmarco
1296
+ metrics:
1297
+ - type: map_at_1
1298
+ value: 22.276
1299
+ - type: map_at_10
1300
+ value: 35.493
1301
+ - type: map_at_100
1302
+ value: 36.656
1303
+ - type: map_at_1000
1304
+ value: 36.699
1305
+ - type: map_at_3
1306
+ value: 31.320999999999998
1307
+ - type: map_at_5
1308
+ value: 33.772999999999996
1309
+ - type: mrr_at_1
1310
+ value: 22.966
1311
+ - type: mrr_at_10
1312
+ value: 36.074
1313
+ - type: mrr_at_100
1314
+ value: 37.183
1315
+ - type: mrr_at_1000
1316
+ value: 37.219
1317
+ - type: mrr_at_3
1318
+ value: 31.984
1319
+ - type: mrr_at_5
1320
+ value: 34.419
1321
+ - type: ndcg_at_1
1322
+ value: 22.966
1323
+ - type: ndcg_at_10
1324
+ value: 42.895
1325
+ - type: ndcg_at_100
1326
+ value: 48.453
1327
+ - type: ndcg_at_1000
1328
+ value: 49.464999999999996
1329
+ - type: ndcg_at_3
1330
+ value: 34.410000000000004
1331
+ - type: ndcg_at_5
1332
+ value: 38.78
1333
+ - type: precision_at_1
1334
+ value: 22.966
1335
+ - type: precision_at_10
1336
+ value: 6.88
1337
+ - type: precision_at_100
1338
+ value: 0.966
1339
+ - type: precision_at_1000
1340
+ value: 0.105
1341
+ - type: precision_at_3
1342
+ value: 14.785
1343
+ - type: precision_at_5
1344
+ value: 11.074
1345
+ - type: recall_at_1
1346
+ value: 22.276
1347
+ - type: recall_at_10
1348
+ value: 65.756
1349
+ - type: recall_at_100
1350
+ value: 91.34100000000001
1351
+ - type: recall_at_1000
1352
+ value: 98.957
1353
+ - type: recall_at_3
1354
+ value: 42.67
1355
+ - type: recall_at_5
1356
+ value: 53.161
1357
+ - type: main_score
1358
+ value: 42.895
1359
+ task:
1360
+ type: Retrieval
1361
+ - dataset:
1362
+ config: default
1363
+ name: MTEB NFCorpus (default)
1364
+ revision: None
1365
+ split: test
1366
+ type: mteb/nfcorpus
1367
+ metrics:
1368
+ - type: map_at_1
1369
+ value: 7.188999999999999
1370
+ - type: map_at_10
1371
+ value: 16.176
1372
+ - type: map_at_100
1373
+ value: 20.504
1374
+ - type: map_at_1000
1375
+ value: 22.203999999999997
1376
+ - type: map_at_3
1377
+ value: 11.766
1378
+ - type: map_at_5
1379
+ value: 13.655999999999999
1380
+ - type: mrr_at_1
1381
+ value: 55.418
1382
+ - type: mrr_at_10
1383
+ value: 62.791
1384
+ - type: mrr_at_100
1385
+ value: 63.339
1386
+ - type: mrr_at_1000
1387
+ value: 63.369
1388
+ - type: mrr_at_3
1389
+ value: 60.99099999999999
1390
+ - type: mrr_at_5
1391
+ value: 62.059
1392
+ - type: ndcg_at_1
1393
+ value: 53.715
1394
+ - type: ndcg_at_10
1395
+ value: 41.377
1396
+ - type: ndcg_at_100
1397
+ value: 37.999
1398
+ - type: ndcg_at_1000
1399
+ value: 46.726
1400
+ - type: ndcg_at_3
1401
+ value: 47.262
1402
+ - type: ndcg_at_5
1403
+ value: 44.708999999999996
1404
+ - type: precision_at_1
1405
+ value: 55.108000000000004
1406
+ - type: precision_at_10
1407
+ value: 30.154999999999998
1408
+ - type: precision_at_100
1409
+ value: 9.582
1410
+ - type: precision_at_1000
1411
+ value: 2.2720000000000002
1412
+ - type: precision_at_3
1413
+ value: 43.55
1414
+ - type: precision_at_5
1415
+ value: 38.204
1416
+ - type: recall_at_1
1417
+ value: 7.188999999999999
1418
+ - type: recall_at_10
1419
+ value: 20.655
1420
+ - type: recall_at_100
1421
+ value: 38.068000000000005
1422
+ - type: recall_at_1000
1423
+ value: 70.208
1424
+ - type: recall_at_3
1425
+ value: 12.601
1426
+ - type: recall_at_5
1427
+ value: 15.573999999999998
1428
+ - type: main_score
1429
+ value: 41.377
1430
+ task:
1431
+ type: Retrieval
1432
+ - dataset:
1433
+ config: default
1434
+ name: MTEB NQ (default)
1435
+ revision: None
1436
+ split: test
1437
+ type: mteb/nq
1438
+ metrics:
1439
+ - type: map_at_1
1440
+ value: 46.017
1441
+ - type: map_at_10
1442
+ value: 62.910999999999994
1443
+ - type: map_at_100
1444
+ value: 63.526
1445
+ - type: map_at_1000
1446
+ value: 63.536
1447
+ - type: map_at_3
1448
+ value: 59.077999999999996
1449
+ - type: map_at_5
1450
+ value: 61.521
1451
+ - type: mrr_at_1
1452
+ value: 51.68000000000001
1453
+ - type: mrr_at_10
1454
+ value: 65.149
1455
+ - type: mrr_at_100
1456
+ value: 65.542
1457
+ - type: mrr_at_1000
1458
+ value: 65.55
1459
+ - type: mrr_at_3
1460
+ value: 62.49
1461
+ - type: mrr_at_5
1462
+ value: 64.178
1463
+ - type: ndcg_at_1
1464
+ value: 51.651
1465
+ - type: ndcg_at_10
1466
+ value: 69.83500000000001
1467
+ - type: ndcg_at_100
1468
+ value: 72.18
1469
+ - type: ndcg_at_1000
1470
+ value: 72.393
1471
+ - type: ndcg_at_3
1472
+ value: 63.168
1473
+ - type: ndcg_at_5
1474
+ value: 66.958
1475
+ - type: precision_at_1
1476
+ value: 51.651
1477
+ - type: precision_at_10
1478
+ value: 10.626
1479
+ - type: precision_at_100
1480
+ value: 1.195
1481
+ - type: precision_at_1000
1482
+ value: 0.121
1483
+ - type: precision_at_3
1484
+ value: 28.012999999999998
1485
+ - type: precision_at_5
1486
+ value: 19.09
1487
+ - type: recall_at_1
1488
+ value: 46.017
1489
+ - type: recall_at_10
1490
+ value: 88.345
1491
+ - type: recall_at_100
1492
+ value: 98.129
1493
+ - type: recall_at_1000
1494
+ value: 99.696
1495
+ - type: recall_at_3
1496
+ value: 71.531
1497
+ - type: recall_at_5
1498
+ value: 80.108
1499
+ - type: main_score
1500
+ value: 69.83500000000001
1501
+ task:
1502
+ type: Retrieval
1503
+ - dataset:
1504
+ config: default
1505
+ name: MTEB QuoraRetrieval (default)
1506
+ revision: None
1507
+ split: test
1508
+ type: mteb/quora
1509
+ metrics:
1510
+ - type: map_at_1
1511
+ value: 72.473
1512
+ - type: map_at_10
1513
+ value: 86.72800000000001
1514
+ - type: map_at_100
1515
+ value: 87.323
1516
+ - type: map_at_1000
1517
+ value: 87.332
1518
+ - type: map_at_3
1519
+ value: 83.753
1520
+ - type: map_at_5
1521
+ value: 85.627
1522
+ - type: mrr_at_1
1523
+ value: 83.39
1524
+ - type: mrr_at_10
1525
+ value: 89.149
1526
+ - type: mrr_at_100
1527
+ value: 89.228
1528
+ - type: mrr_at_1000
1529
+ value: 89.229
1530
+ - type: mrr_at_3
1531
+ value: 88.335
1532
+ - type: mrr_at_5
1533
+ value: 88.895
1534
+ - type: ndcg_at_1
1535
+ value: 83.39
1536
+ - type: ndcg_at_10
1537
+ value: 90.109
1538
+ - type: ndcg_at_100
1539
+ value: 91.09
1540
+ - type: ndcg_at_1000
1541
+ value: 91.13900000000001
1542
+ - type: ndcg_at_3
1543
+ value: 87.483
1544
+ - type: ndcg_at_5
1545
+ value: 88.942
1546
+ - type: precision_at_1
1547
+ value: 83.39
1548
+ - type: precision_at_10
1549
+ value: 13.711
1550
+ - type: precision_at_100
1551
+ value: 1.549
1552
+ - type: precision_at_1000
1553
+ value: 0.157
1554
+ - type: precision_at_3
1555
+ value: 38.342999999999996
1556
+ - type: precision_at_5
1557
+ value: 25.188
1558
+ - type: recall_at_1
1559
+ value: 72.473
1560
+ - type: recall_at_10
1561
+ value: 96.57
1562
+ - type: recall_at_100
1563
+ value: 99.792
1564
+ - type: recall_at_1000
1565
+ value: 99.99900000000001
1566
+ - type: recall_at_3
1567
+ value: 88.979
1568
+ - type: recall_at_5
1569
+ value: 93.163
1570
+ - type: main_score
1571
+ value: 90.109
1572
+ task:
1573
+ type: Retrieval
1574
+ - dataset:
1575
+ config: default
1576
+ name: MTEB SCIDOCS (default)
1577
+ revision: None
1578
+ split: test
1579
+ type: mteb/scidocs
1580
+ metrics:
1581
+ - type: map_at_1
1582
+ value: 4.598
1583
+ - type: map_at_10
1584
+ value: 11.405999999999999
1585
+ - type: map_at_100
1586
+ value: 13.447999999999999
1587
+ - type: map_at_1000
1588
+ value: 13.758999999999999
1589
+ - type: map_at_3
1590
+ value: 8.332
1591
+ - type: map_at_5
1592
+ value: 9.709
1593
+ - type: mrr_at_1
1594
+ value: 22.6
1595
+ - type: mrr_at_10
1596
+ value: 32.978
1597
+ - type: mrr_at_100
1598
+ value: 34.149
1599
+ - type: mrr_at_1000
1600
+ value: 34.213
1601
+ - type: mrr_at_3
1602
+ value: 29.7
1603
+ - type: mrr_at_5
1604
+ value: 31.485000000000003
1605
+ - type: ndcg_at_1
1606
+ value: 22.6
1607
+ - type: ndcg_at_10
1608
+ value: 19.259999999999998
1609
+ - type: ndcg_at_100
1610
+ value: 27.21
1611
+ - type: ndcg_at_1000
1612
+ value: 32.7
1613
+ - type: ndcg_at_3
1614
+ value: 18.445
1615
+ - type: ndcg_at_5
1616
+ value: 15.812000000000001
1617
+ - type: precision_at_1
1618
+ value: 22.6
1619
+ - type: precision_at_10
1620
+ value: 9.959999999999999
1621
+ - type: precision_at_100
1622
+ value: 2.139
1623
+ - type: precision_at_1000
1624
+ value: 0.345
1625
+ - type: precision_at_3
1626
+ value: 17.299999999999997
1627
+ - type: precision_at_5
1628
+ value: 13.719999999999999
1629
+ - type: recall_at_1
1630
+ value: 4.598
1631
+ - type: recall_at_10
1632
+ value: 20.186999999999998
1633
+ - type: recall_at_100
1634
+ value: 43.362
1635
+ - type: recall_at_1000
1636
+ value: 70.11800000000001
1637
+ - type: recall_at_3
1638
+ value: 10.543
1639
+ - type: recall_at_5
1640
+ value: 13.923
1641
+ - type: main_score
1642
+ value: 19.259999999999998
1643
+ task:
1644
+ type: Retrieval
1645
+ - dataset:
1646
+ config: default
1647
+ name: MTEB SciFact (default)
1648
+ revision: None
1649
+ split: test
1650
+ type: mteb/scifact
1651
+ metrics:
1652
+ - type: map_at_1
1653
+ value: 65.467
1654
+ - type: map_at_10
1655
+ value: 74.935
1656
+ - type: map_at_100
1657
+ value: 75.395
1658
+ - type: map_at_1000
1659
+ value: 75.412
1660
+ - type: map_at_3
1661
+ value: 72.436
1662
+ - type: map_at_5
1663
+ value: 73.978
1664
+ - type: mrr_at_1
1665
+ value: 68.667
1666
+ - type: mrr_at_10
1667
+ value: 76.236
1668
+ - type: mrr_at_100
1669
+ value: 76.537
1670
+ - type: mrr_at_1000
1671
+ value: 76.55499999999999
1672
+ - type: mrr_at_3
1673
+ value: 74.722
1674
+ - type: mrr_at_5
1675
+ value: 75.639
1676
+ - type: ndcg_at_1
1677
+ value: 68.667
1678
+ - type: ndcg_at_10
1679
+ value: 78.92099999999999
1680
+ - type: ndcg_at_100
1681
+ value: 80.645
1682
+ - type: ndcg_at_1000
1683
+ value: 81.045
1684
+ - type: ndcg_at_3
1685
+ value: 75.19500000000001
1686
+ - type: ndcg_at_5
1687
+ value: 77.114
1688
+ - type: precision_at_1
1689
+ value: 68.667
1690
+ - type: precision_at_10
1691
+ value: 10.133000000000001
1692
+ - type: precision_at_100
1693
+ value: 1.0999999999999999
1694
+ - type: precision_at_1000
1695
+ value: 0.11299999999999999
1696
+ - type: precision_at_3
1697
+ value: 28.889
1698
+ - type: precision_at_5
1699
+ value: 18.8
1700
+ - type: recall_at_1
1701
+ value: 65.467
1702
+ - type: recall_at_10
1703
+ value: 89.517
1704
+ - type: recall_at_100
1705
+ value: 97.0
1706
+ - type: recall_at_1000
1707
+ value: 100.0
1708
+ - type: recall_at_3
1709
+ value: 79.72200000000001
1710
+ - type: recall_at_5
1711
+ value: 84.511
1712
+ - type: main_score
1713
+ value: 78.92099999999999
1714
+ task:
1715
+ type: Retrieval
1716
+ - dataset:
1717
+ config: default
1718
+ name: MTEB TRECCOVID (default)
1719
+ revision: None
1720
+ split: test
1721
+ type: mteb/trec-covid
1722
+ metrics:
1723
+ - type: map_at_1
1724
+ value: 0.244
1725
+ - type: map_at_10
1726
+ value: 2.183
1727
+ - type: map_at_100
1728
+ value: 13.712
1729
+ - type: map_at_1000
1730
+ value: 33.147
1731
+ - type: map_at_3
1732
+ value: 0.7270000000000001
1733
+ - type: map_at_5
1734
+ value: 1.199
1735
+ - type: mrr_at_1
1736
+ value: 94.0
1737
+ - type: mrr_at_10
1738
+ value: 97.0
1739
+ - type: mrr_at_100
1740
+ value: 97.0
1741
+ - type: mrr_at_1000
1742
+ value: 97.0
1743
+ - type: mrr_at_3
1744
+ value: 97.0
1745
+ - type: mrr_at_5
1746
+ value: 97.0
1747
+ - type: ndcg_at_1
1748
+ value: 92.0
1749
+ - type: ndcg_at_10
1750
+ value: 84.399
1751
+ - type: ndcg_at_100
1752
+ value: 66.771
1753
+ - type: ndcg_at_1000
1754
+ value: 59.092
1755
+ - type: ndcg_at_3
1756
+ value: 89.173
1757
+ - type: ndcg_at_5
1758
+ value: 88.52600000000001
1759
+ - type: precision_at_1
1760
+ value: 94.0
1761
+ - type: precision_at_10
1762
+ value: 86.8
1763
+ - type: precision_at_100
1764
+ value: 68.24
1765
+ - type: precision_at_1000
1766
+ value: 26.003999999999998
1767
+ - type: precision_at_3
1768
+ value: 92.667
1769
+ - type: precision_at_5
1770
+ value: 92.4
1771
+ - type: recall_at_1
1772
+ value: 0.244
1773
+ - type: recall_at_10
1774
+ value: 2.302
1775
+ - type: recall_at_100
1776
+ value: 16.622
1777
+ - type: recall_at_1000
1778
+ value: 55.175
1779
+ - type: recall_at_3
1780
+ value: 0.748
1781
+ - type: recall_at_5
1782
+ value: 1.247
1783
+ - type: main_score
1784
+ value: 84.399
1785
+ task:
1786
+ type: Retrieval
1787
+ - dataset:
1788
+ config: default
1789
+ name: MTEB Touche2020 (default)
1790
+ revision: None
1791
+ split: test
1792
+ type: mteb/touche2020
1793
+ metrics:
1794
+ - type: map_at_1
1795
+ value: 2.707
1796
+ - type: map_at_10
1797
+ value: 10.917
1798
+ - type: map_at_100
1799
+ value: 16.308
1800
+ - type: map_at_1000
1801
+ value: 17.953
1802
+ - type: map_at_3
1803
+ value: 5.65
1804
+ - type: map_at_5
1805
+ value: 7.379
1806
+ - type: mrr_at_1
1807
+ value: 34.694
1808
+ - type: mrr_at_10
1809
+ value: 49.745
1810
+ - type: mrr_at_100
1811
+ value: 50.309000000000005
1812
+ - type: mrr_at_1000
1813
+ value: 50.32
1814
+ - type: mrr_at_3
1815
+ value: 44.897999999999996
1816
+ - type: mrr_at_5
1817
+ value: 48.061
1818
+ - type: ndcg_at_1
1819
+ value: 33.672999999999995
1820
+ - type: ndcg_at_10
1821
+ value: 26.894000000000002
1822
+ - type: ndcg_at_100
1823
+ value: 37.423
1824
+ - type: ndcg_at_1000
1825
+ value: 49.376999999999995
1826
+ - type: ndcg_at_3
1827
+ value: 30.456
1828
+ - type: ndcg_at_5
1829
+ value: 27.772000000000002
1830
+ - type: precision_at_1
1831
+ value: 34.694
1832
+ - type: precision_at_10
1833
+ value: 23.878
1834
+ - type: precision_at_100
1835
+ value: 7.489999999999999
1836
+ - type: precision_at_1000
1837
+ value: 1.555
1838
+ - type: precision_at_3
1839
+ value: 31.293
1840
+ - type: precision_at_5
1841
+ value: 26.939
1842
+ - type: recall_at_1
1843
+ value: 2.707
1844
+ - type: recall_at_10
1845
+ value: 18.104
1846
+ - type: recall_at_100
1847
+ value: 46.93
1848
+ - type: recall_at_1000
1849
+ value: 83.512
1850
+ - type: recall_at_3
1851
+ value: 6.622999999999999
1852
+ - type: recall_at_5
1853
+ value: 10.051
1854
+ - type: main_score
1855
+ value: 26.894000000000002
1856
+ task:
1857
+ type: Retrieval
1858
+ tags:
1859
+ - mteb
1860
  ---
1861
 
1862
  # Model Card for e5-R-mistral-7b