Bluelemon883 commited on
Commit
969693c
·
1 Parent(s): 10ad433

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.28 +/- 24.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc664362040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc6643620d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc664362160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc6643621f0>", "_build": "<function ActorCriticPolicy._build at 0x7fc664362280>", "forward": "<function ActorCriticPolicy.forward at 0x7fc664362310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc6643623a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc664362430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc6643624c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc664362550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc6643625e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc66435d600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671498401565139430, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNBH778spA/A4Egvhcwkb41cE6+GvGOPQAAAAAAAAAAGuTHPRifVT9zk2w9vHuGvkJ1UT3LR7O8AAAAAAAAAADzOtM9j658uiYQ/zM66FQwmfnjOYKTqrMAAAAAAACAPzOPqrzWfis9Kka/PUJaf74GUhI9RmBNPQAAAAAAAAAAM1eJu1z/V7rK/4C20Qt2sY9fcLtSHpc1AACAPwAAgD9tt1A+O33YvPb1czzrdwG7/sE/vmaUxbsAAIA/AACAPwCaKrzsDKq7JhYdu7p3kzwuMgw9a9Z5vQAAgD8AAIA/ZibpPFVoJD6K1J296iEkvj4vfrpdynm8AAAAAAAAAACNfIY9g7A3vMiNV7teGMc82UWYPfCSob0AAIA/AACAP21Afr7bl5Q/ymRwvlLlvL6PitS+jiB8PAAAAAAAAAAAWmEovnD0ET/l04E+ME9Ovi7O1jzuq7s8AAAAAAAAAADz94C9M5OTPgu977vOuGO+nhAyvaVNgzwAAAAAAAAAADPdQrzhKuS6CtSLvK+7jjy00kW8SqR2PQAAgD8AAIA/s3lBvvaTfT+m1tO9d9+yvvXodL7WGYw9AAAAAAAAAACmLNU9qGeQP+MhUD5fuYG+KI4cPv6BEz0AAAAAAAAAANO9IL78/b4+HGwlPt99cr7y2FQ9UuBcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAVEwY8omcECUhpRSlIwBbJRNSgGMAXSUR0CSYSA7gbZOdX2UKGgGaAloD0MIgZICC6DocUCUhpRSlGgVTSYBaBZHQJJhZ6Uqx1R1fZQoaAZoCWgPQwgRV87eGUlLQJSGlFKUaBVL/mgWR0CSYc3GGVRldX2UKGgGaAloD0MIG0rtRbQwb0CUhpRSlGgVTR8BaBZHQJJ1QRlHz6J1fZQoaAZoCWgPQwivQPSkzGJvQJSGlFKUaBVNgAFoFkdAknZB/qgRLHV9lChoBmgJaA9DCEseT8sPhXBAlIaUUpRoFU1cAWgWR0CSdrGWD6FedX2UKGgGaAloD0MII9qOqft5cUCUhpRSlGgVTUIBaBZHQJJ3Dwob4rV1fZQoaAZoCWgPQwhmMEYkCsVGQJSGlFKUaBVL8WgWR0CSeqBHkLhKdX2UKGgGaAloD0MIbLHbZ5X5HkCUhpRSlGgVS/5oFkdAknsDgZTAFnV9lChoBmgJaA9DCBAlWvI4knJAlIaUUpRoFU1kAWgWR0CSe1HMlkYodX2UKGgGaAloD0MIPBHEebiqbECUhpRSlGgVTUgBaBZHQJJ7r/ZM+Nd1fZQoaAZoCWgPQwjDYWngx+RxQJSGlFKUaBVNbQFoFkdAknvY3zcynHV9lChoBmgJaA9DCEfLgR6q93BAlIaUUpRoFU0kAWgWR0CSfAZKnNxEdX2UKGgGaAloD0MIhgDg2LNpcECUhpRSlGgVTYQBaBZHQJJ8jjlxOtZ1fZQoaAZoCWgPQwj0TZoGRZFvQJSGlFKUaBVNYQFoFkdAknygj6eoUHV9lChoBmgJaA9DCE4NNJ9zDXJAlIaUUpRoFU0BAWgWR0CSfLWvr4WUdX2UKGgGaAloD0MIigW+otslb0CUhpRSlGgVTS4BaBZHQJJ9P/ZM+Nd1fZQoaAZoCWgPQwhLVkW4CTZzQJSGlFKUaBVNPwFoFkdAkn4GFvhqCnV9lChoBmgJaA9DCAJhp1i1n3BAlIaUUpRoFU11AWgWR0CSflovSMLndX2UKGgGaAloD0MIoBuastM4ckCUhpRSlGgVTTwBaBZHQJJ+7QdCE6F1fZQoaAZoCWgPQwj5ZwbxAfxsQJSGlFKUaBVNOwFoFkdAkn/jWkJrtXV9lChoBmgJaA9DCLZKsDgct29AlIaUUpRoFU03AWgWR0CSgDUh3aBadX2UKGgGaAloD0MI4WHaN3fPcECUhpRSlGgVTT8BaBZHQJKAw4ku6Et1fZQoaAZoCWgPQwgoRpbMsfpDQJSGlFKUaBVLymgWR0CSgj5BTn7pdX2UKGgGaAloD0MIi90+q8zaQECUhpRSlGgVS+JoFkdAkoLZtWMjvHV9lChoBmgJaA9DCBfYYyKlMTxAlIaUUpRoFUvjaBZHQJKC9EH+qBF1fZQoaAZoCWgPQwifzarP1R1RQJSGlFKUaBVLvGgWR0CSg0jCHh0hdX2UKGgGaAloD0MISfWdX1SlckCUhpRSlGgVTSkBaBZHQJKDUJv5xip1fZQoaAZoCWgPQwjYKsHi8GNyQJSGlFKUaBVNIwFoFkdAkoN3Rw6ySnV9lChoBmgJaA9DCBMPKJsy63FAlIaUUpRoFU1DAWgWR0CShLUiY9gXdX2UKGgGaAloD0MI1m8mpksqcECUhpRSlGgVTUMBaBZHQJKFO5VfeDZ1fZQoaAZoCWgPQwibxvZa0FFtQJSGlFKUaBVNUgFoFkdAkoWTN+so2HV9lChoBmgJaA9DCDUlWYfjl3BAlIaUUpRoFU1ZAWgWR0CShhPYFqzrdX2UKGgGaAloD0MI34yar5KTRUCUhpRSlGgVTQsBaBZHQJKG1vkzXSV1fZQoaAZoCWgPQwibrFEP0TFrQJSGlFKUaBVNNAFoFkdAkodYMKCxvHV9lChoBmgJaA9DCJBLHHmgMmxAlIaUUpRoFU1fAWgWR0CSh3O5avA5dX2UKGgGaAloD0MIBK3AkNVabkCUhpRSlGgVTUUBaBZHQJKJp3LV4HJ1fZQoaAZoCWgPQwjovMYuUcdIQJSGlFKUaBVNHAFoFkdAkosxqGlANXV9lChoBmgJaA9DCI+Oq5Hdg3FAlIaUUpRoFU14AWgWR0CSi/sK9f1IdX2UKGgGaAloD0MIbOo8Kr6tcUCUhpRSlGgVTSgBaBZHQJKMg3juKGd1fZQoaAZoCWgPQwgSTgte9LUtQJSGlFKUaBVL72gWR0CSjRg4OtnxdX2UKGgGaAloD0MIfentz4UPckCUhpRSlGgVTSsBaBZHQJKNF7kXDWN1fZQoaAZoCWgPQwjNA1jkV2NuQJSGlFKUaBVNmAFoFkdAko4M4PwuunV9lChoBmgJaA9DCDS+Ly5VUHBAlIaUUpRoFU1IAWgWR0CSjiYFJQLvdX2UKGgGaAloD0MIOq3boHZNbECUhpRSlGgVTVwBaBZHQJKOXhhpg1F1fZQoaAZoCWgPQwjp0VRP5utwQJSGlFKUaBVNNgFoFkdAko8CiAUcn3V9lChoBmgJaA9DCHODoQ6r629AlIaUUpRoFU2KAWgWR0CSkGXTVlPKdX2UKGgGaAloD0MIAmISLmTZb0CUhpRSlGgVTVEBaBZHQJKQrp/wy7B1fZQoaAZoCWgPQwicMGE0a4xwQJSGlFKUaBVNQgFoFkdAkpDBJAdGRXV9lChoBmgJaA9DCEfmkT8Yh2xAlIaUUpRoFU0xAWgWR0CSkQE2Hck/dX2UKGgGaAloD0MIhqxu9RwxcECUhpRSlGgVTR4BaBZHQJKRDt7a7Ep1fZQoaAZoCWgPQwhQGf8+o95wQJSGlFKUaBVNOwFoFkdAkpGvx2B8QnV9lChoBmgJaA9DCPyNdtzwGnFAlIaUUpRoFU1FAWgWR0CSlAfTkQwsdX2UKGgGaAloD0MIElDhCNJgcUCUhpRSlGgVTVkBaBZHQJKpPDaXa8J1fZQoaAZoCWgPQwgujzUjAzNyQJSGlFKUaBVNRAFoFkdAkqk4FJQLu3V9lChoBmgJaA9DCPp9/+bFaW9AlIaUUpRoFU1AAWgWR0CSqZToMa0hdX2UKGgGaAloD0MI7IoZ4W09cECUhpRSlGgVTVsBaBZHQJKrCvX9R791fZQoaAZoCWgPQwjChNGsLPRxQJSGlFKUaBVNcAFoFkdAkqvMQI2OyXV9lChoBmgJaA9DCFQe3QhLEHFAlIaUUpRoFU1aAWgWR0CSrDyeI2wWdX2UKGgGaAloD0MIEwoRcIhLcECUhpRSlGgVTVkBaBZHQJKs9fmcOLB1fZQoaAZoCWgPQwjjcVEtopxwQJSGlFKUaBVNLwFoFkdAkq1pdnkDIXV9lChoBmgJaA9DCGr5gas8FW5AlIaUUpRoFU0/AWgWR0CSrZNCJGe+dX2UKGgGaAloD0MID2Q9tfofb0CUhpRSlGgVTVcBaBZHQJKurnNgSe11fZQoaAZoCWgPQwhAMEePH/xwQJSGlFKUaBVNOAFoFkdAkq7ymALApXV9lChoBmgJaA9DCBsuck8XrHBAlIaUUpRoFU1rAWgWR0CSr8RfnfVJdX2UKGgGaAloD0MI14o2x/lRcUCUhpRSlGgVTZwBaBZHQJKxPK8tf5V1fZQoaAZoCWgPQwi2vHK9bZZDQJSGlFKUaBVL/GgWR0CSsb3iJfpmdX2UKGgGaAloD0MIbhPulfkPbUCUhpRSlGgVTTwBaBZHQJKxztQbdad1fZQoaAZoCWgPQwhYObTINhFxQJSGlFKUaBVNRQJoFkdAkrOPIXCTEHV9lChoBmgJaA9DCLk5lQwA+01AlIaUUpRoFUvOaBZHQJK0BrEcbR51fZQoaAZoCWgPQwgsD9JTJMZwQJSGlFKUaBVNGgFoFkdAkrRcdYGMXXV9lChoBmgJaA9DCOV9HM2RmXFAlIaUUpRoFU1FAWgWR0CStGikwevIdX2UKGgGaAloD0MIqB3+mqxhSECUhpRSlGgVS+NoFkdAkrTkj1PFenV9lChoBmgJaA9DCJd0lIPZ3DhAlIaUUpRoFUv7aBZHQJK1GEwnH/91fZQoaAZoCWgPQwg02xX6oJVxQJSGlFKUaBVNcgFoFkdAkrWKPKdQPHV9lChoBmgJaA9DCPq0iv5Q1W5AlIaUUpRoFU0wAWgWR0CStgrxiG34dX2UKGgGaAloD0MI8656wDz0cECUhpRSlGgVTZcBaBZHQJK47echC+l1fZQoaAZoCWgPQwie6pCbYYVxQJSGlFKUaBVNWQFoFkdAkrm1mrbQC3V9lChoBmgJaA9DCAcHexPDKW1AlIaUUpRoFU1aAWgWR0CSugZOzposdX2UKGgGaAloD0MIInL6ej6nbUCUhpRSlGgVTUMBaBZHQJK6HtOVPep1fZQoaAZoCWgPQwhB2ClWDZdvQJSGlFKUaBVNOQFoFkdAkrwNzS1E3XV9lChoBmgJaA9DCNsZprbUqm9AlIaUUpRoFU1DAWgWR0CSvGBkI5YHdX2UKGgGaAloD0MIKETAIRQZcECUhpRSlGgVTYMBaBZHQJK+LkT6BRR1fZQoaAZoCWgPQwiGWtO842BtQJSGlFKUaBVNOAFoFkdAkr8PoA4n4XV9lChoBmgJaA9DCI53R8Zq4HBAlIaUUpRoFU1UAWgWR0CSv0MuOCGvdX2UKGgGaAloD0MIn6pCA3ElcUCUhpRSlGgVTTgBaBZHQJK/pYoy9El1fZQoaAZoCWgPQwhTeNDsunZvQJSGlFKUaBVNOwFoFkdAkr/003wTd3V9lChoBmgJaA9DCEOu1LOgBXBAlIaUUpRoFU1SAWgWR0CSwAXmeUY9dX2UKGgGaAloD0MIpmQ5CaUxb0CUhpRSlGgVTUUBaBZHQJLBO11GLDR1fZQoaAZoCWgPQwghV+pZEPZYQJSGlFKUaBVN6ANoFkdAksHHV5KODXV9lChoBmgJaA9DCOxMofOaOnFAlIaUUpRoFU1sAWgWR0CSwdvWH1vmdX2UKGgGaAloD0MIgCpu3GJiSECUhpRSlGgVS/1oFkdAksKWkN4JNXV9lChoBmgJaA9DCMVyS6shaHFAlIaUUpRoFU3iAWgWR0CSw87D2rXEdX2UKGgGaAloD0MI/yPTodNZckCUhpRSlGgVTSsBaBZHQJLD9YSxqwh1fZQoaAZoCWgPQwiUFi6rMORtQJSGlFKUaBVNYgFoFkdAksSUMLF4s3V9lChoBmgJaA9DCLpm8s22rXFAlIaUUpRoFU1LAWgWR0CSxrZaFEiMdX2UKGgGaAloD0MIVn2utmLkUUCUhpRSlGgVTSYBaBZHQJLHZ9Wp6yB1fZQoaAZoCWgPQwhMpZ9wdkNCQJSGlFKUaBVNCAFoFkdAkse5eNT99HV9lChoBmgJaA9DCDihEAGH0HBAlIaUUpRoFU0aAWgWR0CSx8iFj/dZdX2UKGgGaAloD0MImG4Sg0BfcUCUhpRSlGgVTWgBaBZHQJLIBr6+FlF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:201a849b7778c375a16be14eb8572951321565db1b252e869ea8905f15ebc505
3
+ size 147202
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc664362040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc6643620d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc664362160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc6643621f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc664362280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc664362310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc6643623a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc664362430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc6643624c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc664362550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc6643625e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc66435d600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671498401565139430,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJNBH778spA/A4Egvhcwkb41cE6+GvGOPQAAAAAAAAAAGuTHPRifVT9zk2w9vHuGvkJ1UT3LR7O8AAAAAAAAAADzOtM9j658uiYQ/zM66FQwmfnjOYKTqrMAAAAAAACAPzOPqrzWfis9Kka/PUJaf74GUhI9RmBNPQAAAAAAAAAAM1eJu1z/V7rK/4C20Qt2sY9fcLtSHpc1AACAPwAAgD9tt1A+O33YvPb1czzrdwG7/sE/vmaUxbsAAIA/AACAPwCaKrzsDKq7JhYdu7p3kzwuMgw9a9Z5vQAAgD8AAIA/ZibpPFVoJD6K1J296iEkvj4vfrpdynm8AAAAAAAAAACNfIY9g7A3vMiNV7teGMc82UWYPfCSob0AAIA/AACAP21Afr7bl5Q/ymRwvlLlvL6PitS+jiB8PAAAAAAAAAAAWmEovnD0ET/l04E+ME9Ovi7O1jzuq7s8AAAAAAAAAADz94C9M5OTPgu977vOuGO+nhAyvaVNgzwAAAAAAAAAADPdQrzhKuS6CtSLvK+7jjy00kW8SqR2PQAAgD8AAIA/s3lBvvaTfT+m1tO9d9+yvvXodL7WGYw9AAAAAAAAAACmLNU9qGeQP+MhUD5fuYG+KI4cPv6BEz0AAAAAAAAAANO9IL78/b4+HGwlPt99cr7y2FQ9UuBcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAVEwY8omcECUhpRSlIwBbJRNSgGMAXSUR0CSYSA7gbZOdX2UKGgGaAloD0MIgZICC6DocUCUhpRSlGgVTSYBaBZHQJJhZ6Uqx1R1fZQoaAZoCWgPQwgRV87eGUlLQJSGlFKUaBVL/mgWR0CSYc3GGVRldX2UKGgGaAloD0MIG0rtRbQwb0CUhpRSlGgVTR8BaBZHQJJ1QRlHz6J1fZQoaAZoCWgPQwivQPSkzGJvQJSGlFKUaBVNgAFoFkdAknZB/qgRLHV9lChoBmgJaA9DCEseT8sPhXBAlIaUUpRoFU1cAWgWR0CSdrGWD6FedX2UKGgGaAloD0MII9qOqft5cUCUhpRSlGgVTUIBaBZHQJJ3Dwob4rV1fZQoaAZoCWgPQwhmMEYkCsVGQJSGlFKUaBVL8WgWR0CSeqBHkLhKdX2UKGgGaAloD0MIbLHbZ5X5HkCUhpRSlGgVS/5oFkdAknsDgZTAFnV9lChoBmgJaA9DCBAlWvI4knJAlIaUUpRoFU1kAWgWR0CSe1HMlkYodX2UKGgGaAloD0MIPBHEebiqbECUhpRSlGgVTUgBaBZHQJJ7r/ZM+Nd1fZQoaAZoCWgPQwjDYWngx+RxQJSGlFKUaBVNbQFoFkdAknvY3zcynHV9lChoBmgJaA9DCEfLgR6q93BAlIaUUpRoFU0kAWgWR0CSfAZKnNxEdX2UKGgGaAloD0MIhgDg2LNpcECUhpRSlGgVTYQBaBZHQJJ8jjlxOtZ1fZQoaAZoCWgPQwj0TZoGRZFvQJSGlFKUaBVNYQFoFkdAknygj6eoUHV9lChoBmgJaA9DCE4NNJ9zDXJAlIaUUpRoFU0BAWgWR0CSfLWvr4WUdX2UKGgGaAloD0MIigW+otslb0CUhpRSlGgVTS4BaBZHQJJ9P/ZM+Nd1fZQoaAZoCWgPQwhLVkW4CTZzQJSGlFKUaBVNPwFoFkdAkn4GFvhqCnV9lChoBmgJaA9DCAJhp1i1n3BAlIaUUpRoFU11AWgWR0CSflovSMLndX2UKGgGaAloD0MIoBuastM4ckCUhpRSlGgVTTwBaBZHQJJ+7QdCE6F1fZQoaAZoCWgPQwj5ZwbxAfxsQJSGlFKUaBVNOwFoFkdAkn/jWkJrtXV9lChoBmgJaA9DCLZKsDgct29AlIaUUpRoFU03AWgWR0CSgDUh3aBadX2UKGgGaAloD0MI4WHaN3fPcECUhpRSlGgVTT8BaBZHQJKAw4ku6Et1fZQoaAZoCWgPQwgoRpbMsfpDQJSGlFKUaBVLymgWR0CSgj5BTn7pdX2UKGgGaAloD0MIi90+q8zaQECUhpRSlGgVS+JoFkdAkoLZtWMjvHV9lChoBmgJaA9DCBfYYyKlMTxAlIaUUpRoFUvjaBZHQJKC9EH+qBF1fZQoaAZoCWgPQwifzarP1R1RQJSGlFKUaBVLvGgWR0CSg0jCHh0hdX2UKGgGaAloD0MISfWdX1SlckCUhpRSlGgVTSkBaBZHQJKDUJv5xip1fZQoaAZoCWgPQwjYKsHi8GNyQJSGlFKUaBVNIwFoFkdAkoN3Rw6ySnV9lChoBmgJaA9DCBMPKJsy63FAlIaUUpRoFU1DAWgWR0CShLUiY9gXdX2UKGgGaAloD0MI1m8mpksqcECUhpRSlGgVTUMBaBZHQJKFO5VfeDZ1fZQoaAZoCWgPQwibxvZa0FFtQJSGlFKUaBVNUgFoFkdAkoWTN+so2HV9lChoBmgJaA9DCDUlWYfjl3BAlIaUUpRoFU1ZAWgWR0CShhPYFqzrdX2UKGgGaAloD0MI34yar5KTRUCUhpRSlGgVTQsBaBZHQJKG1vkzXSV1fZQoaAZoCWgPQwibrFEP0TFrQJSGlFKUaBVNNAFoFkdAkodYMKCxvHV9lChoBmgJaA9DCJBLHHmgMmxAlIaUUpRoFU1fAWgWR0CSh3O5avA5dX2UKGgGaAloD0MIBK3AkNVabkCUhpRSlGgVTUUBaBZHQJKJp3LV4HJ1fZQoaAZoCWgPQwjovMYuUcdIQJSGlFKUaBVNHAFoFkdAkosxqGlANXV9lChoBmgJaA9DCI+Oq5Hdg3FAlIaUUpRoFU14AWgWR0CSi/sK9f1IdX2UKGgGaAloD0MIbOo8Kr6tcUCUhpRSlGgVTSgBaBZHQJKMg3juKGd1fZQoaAZoCWgPQwgSTgte9LUtQJSGlFKUaBVL72gWR0CSjRg4OtnxdX2UKGgGaAloD0MIfentz4UPckCUhpRSlGgVTSsBaBZHQJKNF7kXDWN1fZQoaAZoCWgPQwjNA1jkV2NuQJSGlFKUaBVNmAFoFkdAko4M4PwuunV9lChoBmgJaA9DCDS+Ly5VUHBAlIaUUpRoFU1IAWgWR0CSjiYFJQLvdX2UKGgGaAloD0MIOq3boHZNbECUhpRSlGgVTVwBaBZHQJKOXhhpg1F1fZQoaAZoCWgPQwjp0VRP5utwQJSGlFKUaBVNNgFoFkdAko8CiAUcn3V9lChoBmgJaA9DCHODoQ6r629AlIaUUpRoFU2KAWgWR0CSkGXTVlPKdX2UKGgGaAloD0MIAmISLmTZb0CUhpRSlGgVTVEBaBZHQJKQrp/wy7B1fZQoaAZoCWgPQwicMGE0a4xwQJSGlFKUaBVNQgFoFkdAkpDBJAdGRXV9lChoBmgJaA9DCEfmkT8Yh2xAlIaUUpRoFU0xAWgWR0CSkQE2Hck/dX2UKGgGaAloD0MIhqxu9RwxcECUhpRSlGgVTR4BaBZHQJKRDt7a7Ep1fZQoaAZoCWgPQwhQGf8+o95wQJSGlFKUaBVNOwFoFkdAkpGvx2B8QnV9lChoBmgJaA9DCPyNdtzwGnFAlIaUUpRoFU1FAWgWR0CSlAfTkQwsdX2UKGgGaAloD0MIElDhCNJgcUCUhpRSlGgVTVkBaBZHQJKpPDaXa8J1fZQoaAZoCWgPQwgujzUjAzNyQJSGlFKUaBVNRAFoFkdAkqk4FJQLu3V9lChoBmgJaA9DCPp9/+bFaW9AlIaUUpRoFU1AAWgWR0CSqZToMa0hdX2UKGgGaAloD0MI7IoZ4W09cECUhpRSlGgVTVsBaBZHQJKrCvX9R791fZQoaAZoCWgPQwjChNGsLPRxQJSGlFKUaBVNcAFoFkdAkqvMQI2OyXV9lChoBmgJaA9DCFQe3QhLEHFAlIaUUpRoFU1aAWgWR0CSrDyeI2wWdX2UKGgGaAloD0MIEwoRcIhLcECUhpRSlGgVTVkBaBZHQJKs9fmcOLB1fZQoaAZoCWgPQwjjcVEtopxwQJSGlFKUaBVNLwFoFkdAkq1pdnkDIXV9lChoBmgJaA9DCGr5gas8FW5AlIaUUpRoFU0/AWgWR0CSrZNCJGe+dX2UKGgGaAloD0MID2Q9tfofb0CUhpRSlGgVTVcBaBZHQJKurnNgSe11fZQoaAZoCWgPQwhAMEePH/xwQJSGlFKUaBVNOAFoFkdAkq7ymALApXV9lChoBmgJaA9DCBsuck8XrHBAlIaUUpRoFU1rAWgWR0CSr8RfnfVJdX2UKGgGaAloD0MI14o2x/lRcUCUhpRSlGgVTZwBaBZHQJKxPK8tf5V1fZQoaAZoCWgPQwi2vHK9bZZDQJSGlFKUaBVL/GgWR0CSsb3iJfpmdX2UKGgGaAloD0MIbhPulfkPbUCUhpRSlGgVTTwBaBZHQJKxztQbdad1fZQoaAZoCWgPQwhYObTINhFxQJSGlFKUaBVNRQJoFkdAkrOPIXCTEHV9lChoBmgJaA9DCLk5lQwA+01AlIaUUpRoFUvOaBZHQJK0BrEcbR51fZQoaAZoCWgPQwgsD9JTJMZwQJSGlFKUaBVNGgFoFkdAkrRcdYGMXXV9lChoBmgJaA9DCOV9HM2RmXFAlIaUUpRoFU1FAWgWR0CStGikwevIdX2UKGgGaAloD0MIqB3+mqxhSECUhpRSlGgVS+NoFkdAkrTkj1PFenV9lChoBmgJaA9DCJd0lIPZ3DhAlIaUUpRoFUv7aBZHQJK1GEwnH/91fZQoaAZoCWgPQwg02xX6oJVxQJSGlFKUaBVNcgFoFkdAkrWKPKdQPHV9lChoBmgJaA9DCPq0iv5Q1W5AlIaUUpRoFU0wAWgWR0CStgrxiG34dX2UKGgGaAloD0MI8656wDz0cECUhpRSlGgVTZcBaBZHQJK47echC+l1fZQoaAZoCWgPQwie6pCbYYVxQJSGlFKUaBVNWQFoFkdAkrm1mrbQC3V9lChoBmgJaA9DCAcHexPDKW1AlIaUUpRoFU1aAWgWR0CSugZOzposdX2UKGgGaAloD0MIInL6ej6nbUCUhpRSlGgVTUMBaBZHQJK6HtOVPep1fZQoaAZoCWgPQwhB2ClWDZdvQJSGlFKUaBVNOQFoFkdAkrwNzS1E3XV9lChoBmgJaA9DCNsZprbUqm9AlIaUUpRoFU1DAWgWR0CSvGBkI5YHdX2UKGgGaAloD0MIKETAIRQZcECUhpRSlGgVTYMBaBZHQJK+LkT6BRR1fZQoaAZoCWgPQwiGWtO842BtQJSGlFKUaBVNOAFoFkdAkr8PoA4n4XV9lChoBmgJaA9DCI53R8Zq4HBAlIaUUpRoFU1UAWgWR0CSv0MuOCGvdX2UKGgGaAloD0MIn6pCA3ElcUCUhpRSlGgVTTgBaBZHQJK/pYoy9El1fZQoaAZoCWgPQwhTeNDsunZvQJSGlFKUaBVNOwFoFkdAkr/003wTd3V9lChoBmgJaA9DCEOu1LOgBXBAlIaUUpRoFU1SAWgWR0CSwAXmeUY9dX2UKGgGaAloD0MIpmQ5CaUxb0CUhpRSlGgVTUUBaBZHQJLBO11GLDR1fZQoaAZoCWgPQwghV+pZEPZYQJSGlFKUaBVN6ANoFkdAksHHV5KODXV9lChoBmgJaA9DCOxMofOaOnFAlIaUUpRoFU1sAWgWR0CSwdvWH1vmdX2UKGgGaAloD0MIgCpu3GJiSECUhpRSlGgVS/1oFkdAksKWkN4JNXV9lChoBmgJaA9DCMVyS6shaHFAlIaUUpRoFU3iAWgWR0CSw87D2rXEdX2UKGgGaAloD0MI/yPTodNZckCUhpRSlGgVTSsBaBZHQJLD9YSxqwh1fZQoaAZoCWgPQwiUFi6rMORtQJSGlFKUaBVNYgFoFkdAksSUMLF4s3V9lChoBmgJaA9DCLpm8s22rXFAlIaUUpRoFU1LAWgWR0CSxrZaFEiMdX2UKGgGaAloD0MIVn2utmLkUUCUhpRSlGgVTSYBaBZHQJLHZ9Wp6yB1fZQoaAZoCWgPQwhMpZ9wdkNCQJSGlFKUaBVNCAFoFkdAkse5eNT99HV9lChoBmgJaA9DCDihEAGH0HBAlIaUUpRoFU0aAWgWR0CSx8iFj/dZdX2UKGgGaAloD0MImG4Sg0BfcUCUhpRSlGgVTWgBaBZHQJLIBr6+FlF1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc1d50af0d13119aec3475c9ad9187d8a8f22cab422fe2c471b579932d3baaa0
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3641d60362bdbcf0df34e264f329eafcbb1740610b0c9c18a137573cf1daf969
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (217 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.277188527132, "std_reward": 24.84129445952135, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T01:32:04.957342"}