BmanClark commited on
Commit
582064a
·
1 Parent(s): 6051762

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a859e91054474fdf8d5fc38e700eae47a6a69efb7d348ab6209a85400310fdfb
3
+ size 106829
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c02a43530a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c02a433f980>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 900000,
23
+ "_total_timesteps": 900000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694968926404912377,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnEqdPwNzYj8iq3e/Dhu1vziDr7+tUzA/AszSPulzoj/DZpy/xvATv3FEqD7v8Z4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUjycPxntfj4oZhm/RpK4v2yXjr8IIwI/l3pLP+UNqj859iK/k8lHv8DmTD51Wzg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcSp0/A3NiPyKrd7/rN6Q+DuaLOz8yzb8OG7W/OIOvv61TMD9cdC6/r+KHv6gM1D8CzNI+6XOiP8NmnL+Sym8/5M5IP9ABsb/G8BO/cUSoPu/xnj56SoS/W/AVP4SaTD+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.2288394 0.88456744 -0.967455 ]\n [-1.4148881 -1.371192 0.6887768 ]\n [ 0.4117127 1.2691623 -1.221886 ]\n [-0.57789266 0.32864717 0.31043956]]",
34
+ "desired_goal": "[[ 1.2205908 0.24895133 -0.59921503]\n [-1.4419639 -1.113996 0.50834703]\n [ 0.7948393 1.328549 -0.63656956]\n [-0.7804195 0.20009899 0.18003638]]",
35
+ "observation": "[[ 1.2288394 0.88456744 -0.967455 0.32073912 0.00426937 -1.6030959 ]\n [-1.4148881 -1.371192 0.6887768 -0.681463 -1.0616053 1.6566362 ]\n [ 0.4117127 1.2691623 -1.221886 0.9366847 0.7844069 -1.3828678 ]\n [-0.57789266 0.32864717 0.31043956 -1.0335228 0.5856988 0.7992327 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqGEDvV+O+z009ok+zzWVPbG5CL0mS3o+B2JzPSWYXb2+opE+NSFIvSf5sj0X29g9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.03207555 0.12283015 0.2694565 ]\n [ 0.07285654 -0.03338021 0.2444273 ]\n [ 0.05941966 -0.05410017 0.28444475]\n [-0.04885979 0.08738928 0.10588663]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8Iq/dqL0jGMAWyUSwKMAXSUR0Ci85Ql8gIQdX2UKGgGR7/RZpi7TUiIaAdLA2gIR0Ci9J0lqrR0dX2UKGgGR7/EXw9aEBbOaAdLAmgIR0Ci9Dy2x6fKdX2UKGgGR7/BvZyuIRAbaAdLAmgIR0Ci86N7rs0IdX2UKGgGR7+4vRJEpiI+aAdLAmgIR0Ci9Kv2f02+dX2UKGgGR7/Xu5BkZrHmaAdLBGgIR0Ci8/V/DtPYdX2UKGgGR7/YWSU1Q66raAdLBGgIR0Ci9F3o9s7/dX2UKGgGR7+NQwblzU7TaAdLAWgIR0Ci9AFNUOurdX2UKGgGR7/LziCJ40MxaAdLA2gIR0Ci9MZR8+ibdX2UKGgGR7/UE3Kji4rjaAdLBGgIR0Ci88WRigCfdX2UKGgGR7+0FdLQHAymaAdLAmgIR0Ci9NYaHbh4dX2UKGgGR7/cDTSb6P8yaAdLBGgIR0Ci9HzfzjFRdX2UKGgGR7/Wgc94eLeiaAdLBGgIR0Ci9CDUd7v5dX2UKGgGR7/YleF+NLlFaAdLBGgIR0Ci8+jIzWPMdX2UKGgGR7/RqCYkVvdeaAdLA2gIR0Ci9PGKqGUOdX2UKGgGR7+11KXfIjnnaAdLAmgIR0Ci9JD28IzFdX2UKGgGR7/Me+VTrE9/aAdLA2gIR0Ci9DwxFiKBdX2UKGgGR7/NczImw7koaAdLA2gIR0Ci9Qg8B+4LdX2UKGgGR7/MocaOxSpBaAdLA2gIR0Ci9Kf/WDpUdX2UKGgGR7+y4FzMibDuaAdLAmgIR0Ci9EuAAhjfdX2UKGgGR7/VcbiqABkqaAdLBGgIR0Ci9Ag1ejVQdX2UKGgGR7/AxLTQVsUJaAdLAmgIR0Ci9RwA+6iCdX2UKGgGR7+35gw482aVaAdLAmgIR0Ci9F69sabXdX2UKGgGR7+/LyMDOkckaAdLAmgIR0Ci9BtFBppOdX2UKGgGR7/LTEzfrKNiaAdLA2gIR0Ci9MO0LMLXdX2UKGgGR7/McyWRigCfaAdLA2gIR0Ci9TKj8DSxdX2UKGgGR7+97dBSk0rLaAdLAmgIR0Ci9NKODJ2ddX2UKGgGR7/S2ETQE6kqaAdLA2gIR0Ci9HX9rGipdX2UKGgGR7/PkBCD28IzaAdLA2gIR0Ci9DP9DQZ5dX2UKGgGR7+XEuQIUrTZaAdLAWgIR0Ci9IPOpsGgdX2UKGgGR7/TYywfQrtmaAdLA2gIR0Ci9U+u/1xsdX2UKGgGR7+/8hs67ulXaAdLAmgIR0Ci9JIXsPatdX2UKGgGR7/b0kGA08/2aAdLBGgIR0Ci9PZxR2r5dX2UKGgGR7/Wan752yLRaAdLBGgIR0Ci9FZ6t1ZDdX2UKGgGR7/A4b0e2d/baAdLAmgIR0Ci9V8+zMRpdX2UKGgGR7+41fmcOLBLaAdLAmgIR0Ci9KJhWo3rdX2UKGgGR7+JAQg9vCMxaAdLAWgIR0Ci9F8R+SbIdX2UKGgGR7+1vitJWeYlaAdLAmgIR0Ci9QqI7/4qdX2UKGgGR7+lJQLux8lYaAdLAWgIR0Ci9K4LkS26dX2UKGgGR7+lZeRgZ0jkaAdLAWgIR0Ci9LWbwz+FdX2UKGgGR7/LIqbz9S/CaAdLA2gIR0Ci9Xq7ZnL8dX2UKGgGR7/QFUADJU5uaAdLA2gIR0Ci9HsYdhiLdX2UKGgGR7/RjHGS6lLwaAdLA2gIR0Ci9SLuhK15dX2UKGgGR7+/zqbBoEjgaAdLAmgIR0Ci9MbrcCYDdX2UKGgGR7/RtW+49X9zaAdLA2gIR0Ci9ZcsMAmzdX2UKGgGR7/NUhFEy+HraAdLA2gIR0Ci9T5XMhX9dX2UKGgGR7/RqmCROk+HaAdLA2gIR0Ci9OHzg/C7dX2UKGgGR7/W7sOXmeUZaAdLBGgIR0Ci9J6SDAaedX2UKGgGR7/TGYrrgOz6aAdLBGgIR0Ci9bWrn1WbdX2UKGgGR7/NjbzshPj5aAdLA2gIR0Ci9VVA7gbZdX2UKGgGR7/RiiZfD1oQaAdLA2gIR0Ci9PjbrTpgdX2UKGgGR7/X/bTMJQchaAdLBGgIR0Ci9L+otL+QdX2UKGgGR7/MbmU4aP0aaAdLA2gIR0Ci9c845tFbdX2UKGgGR7/NwZOzposaaAdLA2gIR0Ci9W6Ww/xEdX2UKGgGR7/WMuez2OABaAdLA2gIR0Ci9RINNJvpdX2UKGgGR7+2MJhOP/70aAdLAmgIR0Ci9M6MaS9vdX2UKGgGR7/CpTdcjZ+QaAdLAmgIR0Ci9X1CgK4QdX2UKGgGR7/Rax5cC5mRaAdLA2gIR0Ci9egQxvehdX2UKGgGR7/NzasZHd43aAdLA2gIR0Ci9OYWUKRddX2UKGgGR7/ZmpEQXhwVaAdLBGgIR0Ci9TEbYK6XdX2UKGgGR7/LPnjhky1vaAdLA2gIR0Ci9ZUm+j/NdX2UKGgGR7/DQHiWE9McaAdLAmgIR0Ci9PRMFlkIdX2UKGgGR7+32+PBBRhuaAdLAmgIR0Ci9T8Md92HdX2UKGgGR7/X29+PRzBAaAdLBGgIR0Ci9gJemelLdX2UKGgGR7+05sCT2WY4aAdLAmgIR0Ci9aELpiZwdX2UKGgGR7+ewHJLdvbXaAdLAWgIR0Ci9aeHBUJfdX2UKGgGR7/TqDsdDIBBaAdLA2gIR0Ci9U7qQiiZdX2UKGgGR7/ZY5DJEH+qaAdLBGgIR0Ci9QqVpsXSdX2UKGgGR7/SJZW7voeQaAdLA2gIR0Ci9hIXj2i+dX2UKGgGR7/AMuvllsguaAdLAmgIR0Ci9bC+De0pdX2UKGgGR7+82Kl54W1uaAdLAmgIR0Ci9RMvZh8ZdX2UKGgGR7/PRP420iQlaAdLA2gIR0Ci9Vu4G2TgdX2UKGgGR7/TxRl6JIlMaAdLA2gIR0Ci9iCy6cy4dX2UKGgGR7/P4Ju2qkuZaAdLA2gIR0Ci9b9B0ITodX2UKGgGR7/A75Ec81XOaAdLAmgIR0Ci9ihhpg1FdX2UKGgGR7/RVWjoIOYqaAdLA2gIR0Ci9Wmqo60ZdX2UKGgGR7/aG+bmU4aQaAdLBGgIR0Ci9SWb5M11dX2UKGgGR7/I7GNrCWNWaAdLA2gIR0Ci9cunVG1AdX2UKGgGR7+khFEy+HrRaAdLAWgIR0Ci9SoVdonKdX2UKGgGR7+/Mpw0fozOaAdLAmgIR0Ci9jGG21D0dX2UKGgGR7/Cl67dznzQaAdLAmgIR0Ci9dYzrNW3dX2UKGgGR7/YKm8/UvwmaAdLA2gIR0Ci9Xjy4FzNdX2UKGgGR7/KB8QZn+Q2aAdLA2gIR0Ci9Th+4LCvdX2UKGgGR7/RN+9alk6LaAdLA2gIR0Ci9j/ZVXFMdX2UKGgGR7/IouwosqaxaAdLA2gIR0Ci9eKKxcFAdX2UKGgGR7/IsMiKR+z/aAdLA2gIR0Ci9YVYyO7ydX2UKGgGR7/BcC5mRNh3aAdLAmgIR0Ci9UEVWS2ZdX2UKGgGR7/EHnEETxoaaAdLAmgIR0Ci9kig9NeudX2UKGgGR7+y9L6DXe3yaAdLAmgIR0Ci9lNAs053dX2UKGgGR7/QfYjB2wFDaAdLA2gIR0Ci9fHRsuWbdX2UKGgGR7/RFId2gWadaAdLA2gIR0Ci9ZTiS7oTdX2UKGgGR7/YbxmTTvy9aAdLBGgIR0Ci9VSmhufmdX2UKGgGR7/Gnuy/sVtXaAdLA2gIR0Ci9f3bdrO8dX2UKGgGR7/U/FirksBiaAdLA2gIR0Ci9aDHwPRRdX2UKGgGR7/YdiUgSvkjaAdLBGgIR0Ci9mYAbQ1KdX2UKGgGR7/FFNtZV4oraAdLA2gIR0Ci9WL26ClKdX2UKGgGR7/BiVB2OhkBaAdLAmgIR0Ci9m6wljVhdX2UKGgGR7/Gh/y5I6KcaAdLA2gIR0Ci9g2MCLdfdX2UKGgGR7/KU0Nz8xbjaAdLA2gIR0Ci9bBoM8YAdX2UKGgGR7/IHxjJ+2E1aAdLA2gIR0Ci9XA+IMz/dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 45000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a570fa0594a03a4ce0ad8319c7888ee44f1a85fd40dbafd9978592e1972c7c67
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34f02542fcda75b8c195857a608d51f39e2255978828c0ae336c0f62047c91c4
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c02a43530a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c02a433f980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 900000, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694968926404912377, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnEqdPwNzYj8iq3e/Dhu1vziDr7+tUzA/AszSPulzoj/DZpy/xvATv3FEqD7v8Z4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUjycPxntfj4oZhm/RpK4v2yXjr8IIwI/l3pLP+UNqj859iK/k8lHv8DmTD51Wzg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcSp0/A3NiPyKrd7/rN6Q+DuaLOz8yzb8OG7W/OIOvv61TMD9cdC6/r+KHv6gM1D8CzNI+6XOiP8NmnL+Sym8/5M5IP9ABsb/G8BO/cUSoPu/xnj56SoS/W/AVP4SaTD+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.2288394 0.88456744 -0.967455 ]\n [-1.4148881 -1.371192 0.6887768 ]\n [ 0.4117127 1.2691623 -1.221886 ]\n [-0.57789266 0.32864717 0.31043956]]", "desired_goal": "[[ 1.2205908 0.24895133 -0.59921503]\n [-1.4419639 -1.113996 0.50834703]\n [ 0.7948393 1.328549 -0.63656956]\n [-0.7804195 0.20009899 0.18003638]]", "observation": "[[ 1.2288394 0.88456744 -0.967455 0.32073912 0.00426937 -1.6030959 ]\n [-1.4148881 -1.371192 0.6887768 -0.681463 -1.0616053 1.6566362 ]\n [ 0.4117127 1.2691623 -1.221886 0.9366847 0.7844069 -1.3828678 ]\n [-0.57789266 0.32864717 0.31043956 -1.0335228 0.5856988 0.7992327 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqGEDvV+O+z009ok+zzWVPbG5CL0mS3o+B2JzPSWYXb2+opE+NSFIvSf5sj0X29g9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03207555 0.12283015 0.2694565 ]\n [ 0.07285654 -0.03338021 0.2444273 ]\n [ 0.05941966 -0.05410017 0.28444475]\n [-0.04885979 0.08738928 0.10588663]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8Iq/dqL0jGMAWyUSwKMAXSUR0Ci85Ql8gIQdX2UKGgGR7/RZpi7TUiIaAdLA2gIR0Ci9J0lqrR0dX2UKGgGR7/EXw9aEBbOaAdLAmgIR0Ci9Dy2x6fKdX2UKGgGR7/BvZyuIRAbaAdLAmgIR0Ci86N7rs0IdX2UKGgGR7+4vRJEpiI+aAdLAmgIR0Ci9Kv2f02+dX2UKGgGR7/Xu5BkZrHmaAdLBGgIR0Ci8/V/DtPYdX2UKGgGR7/YWSU1Q66raAdLBGgIR0Ci9F3o9s7/dX2UKGgGR7+NQwblzU7TaAdLAWgIR0Ci9AFNUOurdX2UKGgGR7/LziCJ40MxaAdLA2gIR0Ci9MZR8+ibdX2UKGgGR7/UE3Kji4rjaAdLBGgIR0Ci88WRigCfdX2UKGgGR7+0FdLQHAymaAdLAmgIR0Ci9NYaHbh4dX2UKGgGR7/cDTSb6P8yaAdLBGgIR0Ci9HzfzjFRdX2UKGgGR7/Wgc94eLeiaAdLBGgIR0Ci9CDUd7v5dX2UKGgGR7/YleF+NLlFaAdLBGgIR0Ci8+jIzWPMdX2UKGgGR7/RqCYkVvdeaAdLA2gIR0Ci9PGKqGUOdX2UKGgGR7+11KXfIjnnaAdLAmgIR0Ci9JD28IzFdX2UKGgGR7/Me+VTrE9/aAdLA2gIR0Ci9DwxFiKBdX2UKGgGR7/NczImw7koaAdLA2gIR0Ci9Qg8B+4LdX2UKGgGR7/MocaOxSpBaAdLA2gIR0Ci9Kf/WDpUdX2UKGgGR7+y4FzMibDuaAdLAmgIR0Ci9EuAAhjfdX2UKGgGR7/VcbiqABkqaAdLBGgIR0Ci9Ag1ejVQdX2UKGgGR7/AxLTQVsUJaAdLAmgIR0Ci9RwA+6iCdX2UKGgGR7+35gw482aVaAdLAmgIR0Ci9F69sabXdX2UKGgGR7+/LyMDOkckaAdLAmgIR0Ci9BtFBppOdX2UKGgGR7/LTEzfrKNiaAdLA2gIR0Ci9MO0LMLXdX2UKGgGR7/McyWRigCfaAdLA2gIR0Ci9TKj8DSxdX2UKGgGR7+97dBSk0rLaAdLAmgIR0Ci9NKODJ2ddX2UKGgGR7/S2ETQE6kqaAdLA2gIR0Ci9HX9rGipdX2UKGgGR7/PkBCD28IzaAdLA2gIR0Ci9DP9DQZ5dX2UKGgGR7+XEuQIUrTZaAdLAWgIR0Ci9IPOpsGgdX2UKGgGR7/TYywfQrtmaAdLA2gIR0Ci9U+u/1xsdX2UKGgGR7+/8hs67ulXaAdLAmgIR0Ci9JIXsPatdX2UKGgGR7/b0kGA08/2aAdLBGgIR0Ci9PZxR2r5dX2UKGgGR7/Wan752yLRaAdLBGgIR0Ci9FZ6t1ZDdX2UKGgGR7/A4b0e2d/baAdLAmgIR0Ci9V8+zMRpdX2UKGgGR7+41fmcOLBLaAdLAmgIR0Ci9KJhWo3rdX2UKGgGR7+JAQg9vCMxaAdLAWgIR0Ci9F8R+SbIdX2UKGgGR7+1vitJWeYlaAdLAmgIR0Ci9QqI7/4qdX2UKGgGR7+lJQLux8lYaAdLAWgIR0Ci9K4LkS26dX2UKGgGR7+lZeRgZ0jkaAdLAWgIR0Ci9LWbwz+FdX2UKGgGR7/LIqbz9S/CaAdLA2gIR0Ci9Xq7ZnL8dX2UKGgGR7/QFUADJU5uaAdLA2gIR0Ci9HsYdhiLdX2UKGgGR7/RjHGS6lLwaAdLA2gIR0Ci9SLuhK15dX2UKGgGR7+/zqbBoEjgaAdLAmgIR0Ci9MbrcCYDdX2UKGgGR7/RtW+49X9zaAdLA2gIR0Ci9ZcsMAmzdX2UKGgGR7/NUhFEy+HraAdLA2gIR0Ci9T5XMhX9dX2UKGgGR7/RqmCROk+HaAdLA2gIR0Ci9OHzg/C7dX2UKGgGR7/W7sOXmeUZaAdLBGgIR0Ci9J6SDAaedX2UKGgGR7/TGYrrgOz6aAdLBGgIR0Ci9bWrn1WbdX2UKGgGR7/NjbzshPj5aAdLA2gIR0Ci9VVA7gbZdX2UKGgGR7/RiiZfD1oQaAdLA2gIR0Ci9PjbrTpgdX2UKGgGR7/X/bTMJQchaAdLBGgIR0Ci9L+otL+QdX2UKGgGR7/MbmU4aP0aaAdLA2gIR0Ci9c845tFbdX2UKGgGR7/NwZOzposaaAdLA2gIR0Ci9W6Ww/xEdX2UKGgGR7/WMuez2OABaAdLA2gIR0Ci9RINNJvpdX2UKGgGR7+2MJhOP/70aAdLAmgIR0Ci9M6MaS9vdX2UKGgGR7/CpTdcjZ+QaAdLAmgIR0Ci9X1CgK4QdX2UKGgGR7/Rax5cC5mRaAdLA2gIR0Ci9egQxvehdX2UKGgGR7/NzasZHd43aAdLA2gIR0Ci9OYWUKRddX2UKGgGR7/ZmpEQXhwVaAdLBGgIR0Ci9TEbYK6XdX2UKGgGR7/LPnjhky1vaAdLA2gIR0Ci9ZUm+j/NdX2UKGgGR7/DQHiWE9McaAdLAmgIR0Ci9PRMFlkIdX2UKGgGR7+32+PBBRhuaAdLAmgIR0Ci9T8Md92HdX2UKGgGR7/X29+PRzBAaAdLBGgIR0Ci9gJemelLdX2UKGgGR7+05sCT2WY4aAdLAmgIR0Ci9aELpiZwdX2UKGgGR7+ewHJLdvbXaAdLAWgIR0Ci9aeHBUJfdX2UKGgGR7/TqDsdDIBBaAdLA2gIR0Ci9U7qQiiZdX2UKGgGR7/ZY5DJEH+qaAdLBGgIR0Ci9QqVpsXSdX2UKGgGR7/SJZW7voeQaAdLA2gIR0Ci9hIXj2i+dX2UKGgGR7/AMuvllsguaAdLAmgIR0Ci9bC+De0pdX2UKGgGR7+82Kl54W1uaAdLAmgIR0Ci9RMvZh8ZdX2UKGgGR7/PRP420iQlaAdLA2gIR0Ci9Vu4G2TgdX2UKGgGR7/TxRl6JIlMaAdLA2gIR0Ci9iCy6cy4dX2UKGgGR7/P4Ju2qkuZaAdLA2gIR0Ci9b9B0ITodX2UKGgGR7/A75Ec81XOaAdLAmgIR0Ci9ihhpg1FdX2UKGgGR7/RVWjoIOYqaAdLA2gIR0Ci9Wmqo60ZdX2UKGgGR7/aG+bmU4aQaAdLBGgIR0Ci9SWb5M11dX2UKGgGR7/I7GNrCWNWaAdLA2gIR0Ci9cunVG1AdX2UKGgGR7+khFEy+HrRaAdLAWgIR0Ci9SoVdonKdX2UKGgGR7+/Mpw0fozOaAdLAmgIR0Ci9jGG21D0dX2UKGgGR7/Cl67dznzQaAdLAmgIR0Ci9dYzrNW3dX2UKGgGR7/YKm8/UvwmaAdLA2gIR0Ci9Xjy4FzNdX2UKGgGR7/KB8QZn+Q2aAdLA2gIR0Ci9Th+4LCvdX2UKGgGR7/RN+9alk6LaAdLA2gIR0Ci9j/ZVXFMdX2UKGgGR7/IouwosqaxaAdLA2gIR0Ci9eKKxcFAdX2UKGgGR7/IsMiKR+z/aAdLA2gIR0Ci9YVYyO7ydX2UKGgGR7/BcC5mRNh3aAdLAmgIR0Ci9UEVWS2ZdX2UKGgGR7/EHnEETxoaaAdLAmgIR0Ci9kig9NeudX2UKGgGR7+y9L6DXe3yaAdLAmgIR0Ci9lNAs053dX2UKGgGR7/QfYjB2wFDaAdLA2gIR0Ci9fHRsuWbdX2UKGgGR7/RFId2gWadaAdLA2gIR0Ci9ZTiS7oTdX2UKGgGR7/YbxmTTvy9aAdLBGgIR0Ci9VSmhufmdX2UKGgGR7/Gnuy/sVtXaAdLA2gIR0Ci9f3bdrO8dX2UKGgGR7/U/FirksBiaAdLA2gIR0Ci9aDHwPRRdX2UKGgGR7/YdiUgSvkjaAdLBGgIR0Ci9mYAbQ1KdX2UKGgGR7/FFNtZV4oraAdLA2gIR0Ci9WL26ClKdX2UKGgGR7/BiVB2OhkBaAdLAmgIR0Ci9m6wljVhdX2UKGgGR7/Gh/y5I6KcaAdLA2gIR0Ci9g2MCLdfdX2UKGgGR7/KU0Nz8xbjaAdLA2gIR0Ci9bBoM8YAdX2UKGgGR7/IHxjJ+2E1aAdLA2gIR0Ci9XA+IMz/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 45000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (676 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.20259893396869302, "std_reward": 0.07428550086242401, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T17:26:47.563614"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2fbbbd082ffca5fbea9d008257d9b06170352e0c48aa710f8f8c8dbdf857851
3
+ size 2636