Text-to-Video
Diffusers
stable-diffusion
animatediff
PeterL1n commited on
Commit
d5d4ce8
·
1 Parent(s): 543f6f6

Add readme

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ tags:
4
+ - text-to-video
5
+ - stable-diffusion
6
+ - animatediff
7
+ library_name: diffusers
8
+ inference: false
9
+ ---
10
+ # AnimateDiff-Lightning
11
+
12
+ <video src='https://huggingface.co/ByteDance/AnimateDiff-Lightning/resolve/main/animatediff_lightning_samples.mp4' width="100%" autoplay muted loop></video>
13
+
14
+ AnimateDiff-Lightning is a lightning-fast text-to-video generation model. It can generate 16-frame 512px videos in a few steps. For more information, please refer to our research paper: [AnimateDiff-Lightning: Cross-Model Diffusion Distillation](https://huggingface.co/ByteDance/AnimateDiff-Lightning/resolve/main/animatediff_lightning_report.pdf). We release the model as part of the research.
15
+
16
+ Our models are distilled from [AnimateDiff SD1.5 v2](https://huggingface.co/guoyww/animatediff). This repository contains checkpoints for 1-step, 2-step, 4-step, and 8-step distilled models. The generation quality of our 2-step, 4-step, and 8-step model is great. Our 1-step model is only provided for research purposes.
17
+
18
+
19
+ ## Recommendation
20
+
21
+ AnimateDiff-Lightning produces the best results when used with stylized base models. We recommend using the following base models:
22
+
23
+ Realistic
24
+ - [epiCRealism](https://civitai.com/models/25694)
25
+ - [Realistic Vision](https://civitai.com/models/4201)
26
+ - [DreamShaper](https://civitai.com/models/4384)
27
+ - [AbsoluteReality](https://civitai.com/models/81458)
28
+ - [MajicMix Realistic](https://civitai.com/models/43331)
29
+
30
+ Anime & Cartoon
31
+ - [ToonYou](https://civitai.com/models/30240)
32
+ - [IMP](https://civitai.com/models/56680)
33
+ - [Mistoon Anime](https://civitai.com/models/24149)
34
+ - [DynaVision](https://civitai.com/models/75549)
35
+ - [RCNZ Cartoon 3d](https://civitai.com/models/66347)
36
+ - [MajicMix Reverie](https://civitai.com/models/65055)
37
+
38
+ Additionally, feel free to explore different settings. We find using 3 inference steps on the 2-step model produces great results. We find certain base models produces better results with CFG.
39
+
40
+ ## Diffusers Usage
41
+
42
+ ```python
43
+ import torch
44
+ from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
45
+ from diffusers.utils import export_to_gif
46
+ from huggingface_hub import hf_hub_download
47
+ from safetensors.torch import load_file
48
+
49
+ device = "cuda"
50
+ dtype = torch.float16
51
+
52
+ step = 4 # Options: [1,2,4,8]
53
+ repo = "AnimateDiff-Lightning"
54
+ ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
55
+ base = "SG161222/Realistic_Vision_V5.1_noVAE" # Choose to your favorite base model.
56
+
57
+ adapter = MotionAdapter().to(device, dtype)
58
+ adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device))
59
+ pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
60
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
61
+
62
+ output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
63
+ export_to_gif(output.frames[0], "animation.gif")
64
+ ```