Upload 5 files
Browse files- APE_tr1.csv +0 -0
- APE_tr2.ipynb +813 -0
- APR_tr2_2.ipynb +0 -0
- digital_green_process_data.py +62 -0
APE_tr1.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
APE_tr2.ipynb
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "9db57e75-ba95-4e96-836a-ce2eb9689c7b",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"!pip install torch\n",
|
11 |
+
"\n",
|
12 |
+
"\n",
|
13 |
+
"from torch import Tensor\n",
|
14 |
+
"import torch\n",
|
15 |
+
"import torch.nn as nn\n",
|
16 |
+
"from torch.nn import Transformer\n",
|
17 |
+
"import math\n",
|
18 |
+
"DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
19 |
+
"import os\n",
|
20 |
+
"from argparse import Namespace\n",
|
21 |
+
"from collections import Counter\n",
|
22 |
+
"import json\n",
|
23 |
+
"import re\n",
|
24 |
+
"import string\n",
|
25 |
+
"import datetime\n",
|
26 |
+
"\n",
|
27 |
+
"import numpy as np\n",
|
28 |
+
"import pandas as pd\n",
|
29 |
+
"import torch\n",
|
30 |
+
"import torch.nn as nn\n",
|
31 |
+
"from torch.nn import functional as F\n",
|
32 |
+
"from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence\n",
|
33 |
+
"import torch.optim as optima\n",
|
34 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
35 |
+
"\n",
|
36 |
+
"\n",
|
37 |
+
"\n",
|
38 |
+
"\n",
|
39 |
+
"\n",
|
40 |
+
"\n",
|
41 |
+
"class Vocabulary(object):\n",
|
42 |
+
" \"\"\"Class to process text and extract vocabulary for mapping\"\"\"\n",
|
43 |
+
"\n",
|
44 |
+
" def __init__(self, token_to_idx=None):\n",
|
45 |
+
" \"\"\"\n",
|
46 |
+
" Args:\n",
|
47 |
+
" token_to_idx (dict): a pre-existing map of tokens to indices\n",
|
48 |
+
" \"\"\"\n",
|
49 |
+
"\n",
|
50 |
+
" if token_to_idx is None:\n",
|
51 |
+
" token_to_idx = {}\n",
|
52 |
+
" self._token_to_idx = token_to_idx\n",
|
53 |
+
"\n",
|
54 |
+
" self._idx_to_token = {idx: token \n",
|
55 |
+
" for token, idx in self._token_to_idx.items()}\n",
|
56 |
+
" \n",
|
57 |
+
" def to_serializable(self):\n",
|
58 |
+
" \"\"\" returns a dictionary that can be serialized \"\"\"\n",
|
59 |
+
" return {'token_to_idx': self._token_to_idx}\n",
|
60 |
+
"\n",
|
61 |
+
" @classmethod\n",
|
62 |
+
" def from_serializable(cls, contents):\n",
|
63 |
+
" \"\"\" instantiates the Vocabulary from a serialized dictionary \"\"\"\n",
|
64 |
+
" return cls(**contents)\n",
|
65 |
+
"\n",
|
66 |
+
" def add_token(self, token):\n",
|
67 |
+
" \"\"\"Update mapping dicts based on the token.\n",
|
68 |
+
"\n",
|
69 |
+
" Args:\n",
|
70 |
+
" token (str): the item to add into the Vocabulary\n",
|
71 |
+
" Returns:\n",
|
72 |
+
" index (int): the integer corresponding to the token\n",
|
73 |
+
" \"\"\"\n",
|
74 |
+
" if token in self._token_to_idx:\n",
|
75 |
+
" index = self._token_to_idx[token]\n",
|
76 |
+
" else:\n",
|
77 |
+
" index = len(self._token_to_idx)\n",
|
78 |
+
" self._token_to_idx[token] = index\n",
|
79 |
+
" self._idx_to_token[index] = token\n",
|
80 |
+
" return index\n",
|
81 |
+
" \n",
|
82 |
+
" def add_many(self, tokens):\n",
|
83 |
+
" \"\"\"Add a list of tokens into the Vocabulary\n",
|
84 |
+
" \n",
|
85 |
+
" Args:\n",
|
86 |
+
" tokens (list): a list of string tokens\n",
|
87 |
+
" Returns:\n",
|
88 |
+
" indices (list): a list of indices corresponding to the tokens\n",
|
89 |
+
" \"\"\"\n",
|
90 |
+
" return [self.add_token(token) for token in tokens]\n",
|
91 |
+
"\n",
|
92 |
+
" def lookup_token(self, token):\n",
|
93 |
+
" \"\"\"Retrieve the index associated with the token \n",
|
94 |
+
" \n",
|
95 |
+
" Args:\n",
|
96 |
+
" token (str): the token to look up \n",
|
97 |
+
" Returns:\n",
|
98 |
+
" index (int): the index corresponding to the token\n",
|
99 |
+
" \"\"\"\n",
|
100 |
+
" return self._token_to_idx[token]\n",
|
101 |
+
"\n",
|
102 |
+
" def lookup_index(self, index):\n",
|
103 |
+
" \"\"\"Return the token associated with the index\n",
|
104 |
+
" \n",
|
105 |
+
" Args: \n",
|
106 |
+
" index (int): the index to look up\n",
|
107 |
+
" Returns:\n",
|
108 |
+
" token (str): the token corresponding to the index\n",
|
109 |
+
" Raises:\n",
|
110 |
+
" KeyError: if the index is not in the Vocabulary\n",
|
111 |
+
" \"\"\"\n",
|
112 |
+
" if index not in self._idx_to_token:\n",
|
113 |
+
" raise KeyError(\"the index (%d) is not in the Vocabulary\" % index)\n",
|
114 |
+
" return self._idx_to_token[index]\n",
|
115 |
+
"\n",
|
116 |
+
" def __str__(self):\n",
|
117 |
+
" return \"<Vocabulary(size=%d)>\" % len(self)\n",
|
118 |
+
"\n",
|
119 |
+
" def __len__(self):\n",
|
120 |
+
" return len(self._token_to_idx)\n",
|
121 |
+
" \n",
|
122 |
+
"\n",
|
123 |
+
"\n",
|
124 |
+
"\n",
|
125 |
+
"\n",
|
126 |
+
"class SequenceVocabulary(Vocabulary):\n",
|
127 |
+
" def __init__(self, token_to_idx=None, unk_token=\"<UNK>\",\n",
|
128 |
+
" mask_token=\"<MASK>\", begin_seq_token=\"<BEGIN>\",\n",
|
129 |
+
" end_seq_token=\"<END>\"):\n",
|
130 |
+
"\n",
|
131 |
+
" super(SequenceVocabulary, self).__init__(token_to_idx)\n",
|
132 |
+
"\n",
|
133 |
+
" self._mask_token = mask_token\n",
|
134 |
+
" self._unk_token = unk_token\n",
|
135 |
+
" self._begin_seq_token = begin_seq_token\n",
|
136 |
+
" self._end_seq_token = end_seq_token\n",
|
137 |
+
"\n",
|
138 |
+
" self.mask_index = self.add_token(self._mask_token)\n",
|
139 |
+
" self.unk_index = self.add_token(self._unk_token)\n",
|
140 |
+
" self.begin_seq_index = self.add_token(self._begin_seq_token)\n",
|
141 |
+
" self.end_seq_index = self.add_token(self._end_seq_token)\n",
|
142 |
+
"\n",
|
143 |
+
" def to_serializable(self):\n",
|
144 |
+
" contents = super(SequenceVocabulary, self).to_serializable()\n",
|
145 |
+
" contents.update({'unk_token': self._unk_token,\n",
|
146 |
+
" 'mask_token': self._mask_token,\n",
|
147 |
+
" 'begin_seq_token': self._begin_seq_token,\n",
|
148 |
+
" 'end_seq_token': self._end_seq_token})\n",
|
149 |
+
" return contents\n",
|
150 |
+
"\n",
|
151 |
+
" def lookup_token(self, token):\n",
|
152 |
+
" \"\"\"Retrieve the index associated with the token \n",
|
153 |
+
" or the UNK index if token isn't present.\n",
|
154 |
+
" \n",
|
155 |
+
" Args:\n",
|
156 |
+
" token (str): the token to look up \n",
|
157 |
+
" Returns:\n",
|
158 |
+
" index (int): the index corresponding to the token\n",
|
159 |
+
" Notes:\n",
|
160 |
+
" `unk_index` needs to be >=0 (having been added into the Vocabulary) \n",
|
161 |
+
" for the UNK functionality \n",
|
162 |
+
" \"\"\"\n",
|
163 |
+
" if self.unk_index >= 0:\n",
|
164 |
+
" return self._token_to_idx.get(token, self.unk_index)\n",
|
165 |
+
" else:\n",
|
166 |
+
" return self._token_to_idx[token]\n",
|
167 |
+
" \n",
|
168 |
+
"\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
+
"class NMTVectorizer(object):\n",
|
172 |
+
" \"\"\" The Vectorizer which coordinates the Vocabularies and puts them to use\"\"\" \n",
|
173 |
+
" def __init__(self, source_vocab, target_vocab, max_source_length, max_target_length):\n",
|
174 |
+
" \"\"\"\n",
|
175 |
+
" Args:\n",
|
176 |
+
" source_vocab (SequenceVocabulary): maps source words to integers\n",
|
177 |
+
" target_vocab (SequenceVocabulary): maps target words to integers\n",
|
178 |
+
" max_source_length (int): the longest sequence in the source dataset\n",
|
179 |
+
" max_target_length (int): the longest sequence in the target dataset\n",
|
180 |
+
" \"\"\"\n",
|
181 |
+
" self.source_vocab = source_vocab\n",
|
182 |
+
" self.target_vocab = target_vocab\n",
|
183 |
+
" \n",
|
184 |
+
" self.max_source_length = max_source_length\n",
|
185 |
+
" self.max_target_length = max_target_length\n",
|
186 |
+
" \n",
|
187 |
+
"\n",
|
188 |
+
" def _vectorize(self, indices, vector_length=-1, mask_index=0):\n",
|
189 |
+
" \"\"\"Vectorize the provided indices\n",
|
190 |
+
" \n",
|
191 |
+
" Args:\n",
|
192 |
+
" indices (list): a list of integers that represent a sequence\n",
|
193 |
+
" vector_length (int): an argument for forcing the length of index vector\n",
|
194 |
+
" mask_index (int): the mask_index to use; almost always 0\n",
|
195 |
+
" \"\"\"\n",
|
196 |
+
" if vector_length < 0:\n",
|
197 |
+
" vector_length = len(indices)\n",
|
198 |
+
" \n",
|
199 |
+
" vector = np.zeros(vector_length, dtype=np.int64)\n",
|
200 |
+
" vector[:len(indices)] = indices\n",
|
201 |
+
" vector[len(indices):] = mask_index\n",
|
202 |
+
"\n",
|
203 |
+
" return vector\n",
|
204 |
+
" \n",
|
205 |
+
" def _get_source_indices(self, text):\n",
|
206 |
+
" \"\"\"Return the vectorized source text\n",
|
207 |
+
" \n",
|
208 |
+
" Args:\n",
|
209 |
+
" text (str): the source text; tokens should be separated by spaces\n",
|
210 |
+
" Returns:\n",
|
211 |
+
" indices (list): list of integers representing the text\n",
|
212 |
+
" \"\"\"\n",
|
213 |
+
" indices = [self.source_vocab.begin_seq_index]\n",
|
214 |
+
" indices.extend(self.source_vocab.lookup_token(token) for token in text.split(\" \"))\n",
|
215 |
+
" indices.append(self.source_vocab.end_seq_index)\n",
|
216 |
+
" return indices\n",
|
217 |
+
" \n",
|
218 |
+
" def _get_target_indices(self, text):\n",
|
219 |
+
" \"\"\"Return the vectorized source text\n",
|
220 |
+
" \n",
|
221 |
+
" Args:\n",
|
222 |
+
" text (str): the source text; tokens should be separated by spaces\n",
|
223 |
+
" Returns:\n",
|
224 |
+
" a tuple: (x_indices, y_indices)\n",
|
225 |
+
" x_indices (list): list of integers representing the observations in target decoder \n",
|
226 |
+
" y_indices (list): list of integers representing predictions in target decoder\n",
|
227 |
+
" \"\"\"\n",
|
228 |
+
" indices = [self.target_vocab.lookup_token(token) for token in text.split(\" \")]\n",
|
229 |
+
" x_indices = [self.target_vocab.begin_seq_index] + indices\n",
|
230 |
+
" y_indices = indices + [self.target_vocab.end_seq_index]\n",
|
231 |
+
" return x_indices, y_indices\n",
|
232 |
+
" \n",
|
233 |
+
" def vectorize(self, source_text, target_text, use_dataset_max_lengths=True):\n",
|
234 |
+
" \"\"\"Return the vectorized source and target text\n",
|
235 |
+
" \n",
|
236 |
+
" The vetorized source text is just the a single vector.\n",
|
237 |
+
" The vectorized target text is split into two vectors in a similar style to \n",
|
238 |
+
" the surname modeling in Chapter 7.\n",
|
239 |
+
" At each timestep, the first vector is the observation and the second vector is the target. \n",
|
240 |
+
" \n",
|
241 |
+
" \n",
|
242 |
+
" Args:\n",
|
243 |
+
" source_text (str): text from the source language\n",
|
244 |
+
" target_text (str): text from the target language\n",
|
245 |
+
" use_dataset_max_lengths (bool): whether to use the global max vector lengths\n",
|
246 |
+
" Returns:\n",
|
247 |
+
" The vectorized data point as a dictionary with the keys: \n",
|
248 |
+
" source_vector, target_x_vector, target_y_vector, source_length\n",
|
249 |
+
" \"\"\"\n",
|
250 |
+
" source_vector_length = -1\n",
|
251 |
+
" target_vector_length = -1\n",
|
252 |
+
" \n",
|
253 |
+
" if use_dataset_max_lengths:\n",
|
254 |
+
" source_vector_length = self.max_source_length + 2\n",
|
255 |
+
" target_vector_length = self.max_target_length + 1\n",
|
256 |
+
" \n",
|
257 |
+
" source_indices = self._get_source_indices(source_text)\n",
|
258 |
+
" source_vector = self._vectorize(source_indices, \n",
|
259 |
+
" vector_length=source_vector_length, \n",
|
260 |
+
" mask_index=self.source_vocab.mask_index)\n",
|
261 |
+
" \n",
|
262 |
+
" target_x_indices, target_y_indices = self._get_target_indices(target_text)\n",
|
263 |
+
" target_x_vector = self._vectorize(target_x_indices,\n",
|
264 |
+
" vector_length=target_vector_length,\n",
|
265 |
+
" mask_index=self.target_vocab.mask_index)\n",
|
266 |
+
" target_y_vector = self._vectorize(target_y_indices,\n",
|
267 |
+
" vector_length=target_vector_length,\n",
|
268 |
+
" mask_index=self.target_vocab.mask_index)\n",
|
269 |
+
" return {\"source_vector\": source_vector, \n",
|
270 |
+
" \"target_x_vector\": target_x_vector, \n",
|
271 |
+
" \"target_y_vector\": target_y_vector, \n",
|
272 |
+
" \"source_length\": len(source_indices)}\n",
|
273 |
+
" \n",
|
274 |
+
" @classmethod\n",
|
275 |
+
" def from_dataframe(cls, bitext_df):\n",
|
276 |
+
" \"\"\"Instantiate the vectorizer from the dataset dataframe\n",
|
277 |
+
" \n",
|
278 |
+
" Args:\n",
|
279 |
+
" bitext_df (pandas.DataFrame): the parallel text dataset\n",
|
280 |
+
" Returns:\n",
|
281 |
+
" an instance of the NMTVectorizer\n",
|
282 |
+
" \"\"\"\n",
|
283 |
+
" source_vocab = SequenceVocabulary()\n",
|
284 |
+
" target_vocab = SequenceVocabulary()\n",
|
285 |
+
" \n",
|
286 |
+
" max_source_length = 50\n",
|
287 |
+
" max_target_length = 25\n",
|
288 |
+
"\n",
|
289 |
+
" for _, row in bitext_df.iterrows():\n",
|
290 |
+
" source_tokens = row[\"source_language\"].split(\" \")\n",
|
291 |
+
" if len(source_tokens) > max_source_length:\n",
|
292 |
+
" max_source_length = len(source_tokens)\n",
|
293 |
+
" for token in source_tokens:\n",
|
294 |
+
" source_vocab.add_token(token)\n",
|
295 |
+
" \n",
|
296 |
+
" target_tokens = row[\"target_language\"].split(\" \")\n",
|
297 |
+
" if len(target_tokens) > max_target_length:\n",
|
298 |
+
" max_target_length = len(target_tokens)\n",
|
299 |
+
" for token in target_tokens:\n",
|
300 |
+
" target_vocab.add_token(token)\n",
|
301 |
+
" \n",
|
302 |
+
" return cls(source_vocab, target_vocab, max_source_length, max_target_length)\n",
|
303 |
+
"\n",
|
304 |
+
" @classmethod\n",
|
305 |
+
" def from_serializable(cls, contents):\n",
|
306 |
+
" source_vocab = SequenceVocabulary.from_serializable(contents[\"source_vocab\"])\n",
|
307 |
+
" target_vocab = SequenceVocabulary.from_serializable(contents[\"target_vocab\"])\n",
|
308 |
+
" \n",
|
309 |
+
" return cls(source_vocab=source_vocab, \n",
|
310 |
+
" target_vocab=target_vocab, \n",
|
311 |
+
" max_source_length=contents[\"max_source_length\"], \n",
|
312 |
+
" max_target_length=contents[\"max_target_length\"])\n",
|
313 |
+
"\n",
|
314 |
+
" def to_serializable(self):\n",
|
315 |
+
" return {\"source_vocab\": self.source_vocab.to_serializable(), \n",
|
316 |
+
" \"target_vocab\": self.target_vocab.to_serializable(), \n",
|
317 |
+
" \"max_source_length\": self.max_source_length,\n",
|
318 |
+
" \"max_target_length\": self.max_target_length}\n",
|
319 |
+
" \n",
|
320 |
+
"\n",
|
321 |
+
"\n",
|
322 |
+
"\n",
|
323 |
+
"\n",
|
324 |
+
"class NMTDataset(Dataset):\n",
|
325 |
+
" def __init__(self, text_df, vectorizer):\n",
|
326 |
+
" \"\"\"\n",
|
327 |
+
" Args:\n",
|
328 |
+
" surname_df (pandas.DataFrame): the dataset\n",
|
329 |
+
" vectorizer (SurnameVectorizer): vectorizer instatiated from dataset\n",
|
330 |
+
" \"\"\"\n",
|
331 |
+
" self.text_df = text_df\n",
|
332 |
+
" self._vectorizer = vectorizer\n",
|
333 |
+
"\n",
|
334 |
+
" self.train_df = self.text_df[self.text_df.split=='train']\n",
|
335 |
+
" self.train_size = len(self.train_df)\n",
|
336 |
+
"\n",
|
337 |
+
" self.val_df = self.text_df[self.text_df.split=='val']\n",
|
338 |
+
" self.validation_size = len(self.val_df)\n",
|
339 |
+
"\n",
|
340 |
+
" self.test_df = self.text_df[self.text_df.split=='test']\n",
|
341 |
+
" self.test_size = len(self.test_df)\n",
|
342 |
+
"\n",
|
343 |
+
" self._lookup_dict = {'train': (self.train_df, self.train_size),\n",
|
344 |
+
" 'val': (self.val_df, self.validation_size),\n",
|
345 |
+
" 'test': (self.test_df, self.test_size)}\n",
|
346 |
+
"\n",
|
347 |
+
" self.set_split('train')\n",
|
348 |
+
"\n",
|
349 |
+
" @classmethod\n",
|
350 |
+
" def load_dataset_and_make_vectorizer(cls, dataset_csv):\n",
|
351 |
+
" \"\"\"Load dataset and make a new vectorizer from scratch\n",
|
352 |
+
" \n",
|
353 |
+
" Args:\n",
|
354 |
+
" surname_csv (str): location of the dataset\n",
|
355 |
+
" Returns:\n",
|
356 |
+
" an instance of SurnameDataset\n",
|
357 |
+
" \"\"\"\n",
|
358 |
+
" text_df = pd.read_csv(dataset_csv).fillna(' ')\n",
|
359 |
+
" train_subset = text_df[text_df.split=='train']\n",
|
360 |
+
" return cls(text_df, NMTVectorizer.from_dataframe(train_subset))\n",
|
361 |
+
"\n",
|
362 |
+
" @classmethod\n",
|
363 |
+
" def load_dataset_and_load_vectorizer(cls, dataset_csv, vectorizer_filepath):\n",
|
364 |
+
" \"\"\"Load dataset and the corresponding vectorizer. \n",
|
365 |
+
" Used in the case in the vectorizer has been cached for re-use\n",
|
366 |
+
" \n",
|
367 |
+
" Args:\n",
|
368 |
+
" surname_csv (str): location of the dataset\n",
|
369 |
+
" vectorizer_filepath (str): location of the saved vectorizer\n",
|
370 |
+
" Returns:\n",
|
371 |
+
" an instance of SurnameDataset\n",
|
372 |
+
" \"\"\"\n",
|
373 |
+
" text_df = pd.read_csv(dataset_csv).fillna(' ')\n",
|
374 |
+
" vectorizer = cls.load_vectorizer_only(vectorizer_filepath)\n",
|
375 |
+
" return cls(text_df, vectorizer)\n",
|
376 |
+
"\n",
|
377 |
+
" @staticmethod\n",
|
378 |
+
" def load_vectorizer_only(vectorizer_filepath):\n",
|
379 |
+
" \"\"\"a static method for loading the vectorizer from file\n",
|
380 |
+
" \n",
|
381 |
+
" Args:\n",
|
382 |
+
" vectorizer_filepath (str): the location of the serialized vectorizer\n",
|
383 |
+
" Returns:\n",
|
384 |
+
" an instance of SurnameVectorizer\n",
|
385 |
+
" \"\"\"\n",
|
386 |
+
" with open(vectorizer_filepath) as fp:\n",
|
387 |
+
" return NMTVectorizer.from_serializable(json.load(fp))\n",
|
388 |
+
"\n",
|
389 |
+
" def save_vectorizer(self, vectorizer_filepath):\n",
|
390 |
+
" \"\"\"saves the vectorizer to disk using json\n",
|
391 |
+
" \n",
|
392 |
+
" Args:\n",
|
393 |
+
" vectorizer_filepath (str): the location to save the vectorizer\n",
|
394 |
+
" \"\"\"\n",
|
395 |
+
" with open(vectorizer_filepath, \"w\") as fp:\n",
|
396 |
+
" json.dump(self._vectorizer.to_serializable(), fp)\n",
|
397 |
+
"\n",
|
398 |
+
" def get_vectorizer(self):\n",
|
399 |
+
" \"\"\" returns the vectorizer \"\"\"\n",
|
400 |
+
" return self._vectorizer\n",
|
401 |
+
"\n",
|
402 |
+
" def set_split(self, split=\"train\"):\n",
|
403 |
+
" self._target_split = split\n",
|
404 |
+
" self._target_df, self._target_size = self._lookup_dict[split]\n",
|
405 |
+
"\n",
|
406 |
+
" def __len__(self):\n",
|
407 |
+
" return self._target_size\n",
|
408 |
+
"\n",
|
409 |
+
" def __getitem__(self, index):\n",
|
410 |
+
" \"\"\"the primary entry point method for PyTorch datasets\n",
|
411 |
+
" \n",
|
412 |
+
" Args:\n",
|
413 |
+
" index (int): the index to the data point \n",
|
414 |
+
" Returns:\n",
|
415 |
+
" a dictionary holding the data point: (x_data, y_target, class_index)\n",
|
416 |
+
" \"\"\"\n",
|
417 |
+
" row = self._target_df.iloc[index]\n",
|
418 |
+
"\n",
|
419 |
+
" vector_dict = self._vectorizer.vectorize(row.source_language, row.target_language)\n",
|
420 |
+
"\n",
|
421 |
+
" return {\"x_source\": vector_dict[\"source_vector\"], \n",
|
422 |
+
" \"x_target\": vector_dict[\"target_x_vector\"],\n",
|
423 |
+
" \"y_target\": vector_dict[\"target_y_vector\"], \n",
|
424 |
+
" \"x_source_length\": vector_dict[\"source_length\"]}\n",
|
425 |
+
" \n",
|
426 |
+
" def get_num_batches(self, batch_size):\n",
|
427 |
+
" \"\"\"Given a batch size, return the number of batches in the dataset\n",
|
428 |
+
" \n",
|
429 |
+
" Args:\n",
|
430 |
+
" batch_size (int)\n",
|
431 |
+
" Returns:\n",
|
432 |
+
" number of batches in the dataset\n",
|
433 |
+
" \"\"\"\n",
|
434 |
+
" return len(self) // batch_size\n",
|
435 |
+
" \n",
|
436 |
+
"\n",
|
437 |
+
"\n",
|
438 |
+
"\n",
|
439 |
+
"def generate_nmt_batches(dataset, batch_size, shuffle=True, \n",
|
440 |
+
" drop_last=True, device=\"cpu\"):\n",
|
441 |
+
" \"\"\"A generator function which wraps the PyTorch DataLoader. The NMT Version \"\"\"\n",
|
442 |
+
" dataloader = DataLoader(dataset=dataset, batch_size=batch_size,\n",
|
443 |
+
" shuffle=shuffle, drop_last=drop_last)\n",
|
444 |
+
"\n",
|
445 |
+
" for data_dict in dataloader:\n",
|
446 |
+
" lengths = data_dict['x_source_length'].numpy()\n",
|
447 |
+
" # Get the indices according to sorted length\n",
|
448 |
+
" sorted_length_indices = lengths.argsort()[::-1].tolist()\n",
|
449 |
+
" \n",
|
450 |
+
" # Sort the minibatch\n",
|
451 |
+
" out_data_dict = {}\n",
|
452 |
+
" for name, tensor in data_dict.items():\n",
|
453 |
+
" out_data_dict[name] = data_dict[name][sorted_length_indices].to(device)\n",
|
454 |
+
" yield out_data_dict\n",
|
455 |
+
"\n",
|
456 |
+
"\n",
|
457 |
+
"\n",
|
458 |
+
"\n",
|
459 |
+
"class PositionalEncoding(nn.Module):\n",
|
460 |
+
" def __init__(self, emb_size, drop_out, max_len:int = 200):\n",
|
461 |
+
" super(PositionalEncoding, self).__init__()\n",
|
462 |
+
" den = torch.exp(-torch.arange(0, emb_size,2)*math.log(10000)/emb_size)\n",
|
463 |
+
" pos = torch.arange(0,max_len).reshape(max_len,1)\n",
|
464 |
+
" pos_embedding = torch.zeros((max_len, emb_size))\n",
|
465 |
+
" pos_embedding[:,0::2]= torch.sin(pos*den)\n",
|
466 |
+
" pos_embedding[:,1::2] = torch.cos(pos*den)\n",
|
467 |
+
" pos_embedding = pos_embedding.unsqueeze(-2)\n",
|
468 |
+
" self.dropout = nn.Dropout(drop_out)\n",
|
469 |
+
" self.register_buffer('pos_embedding', pos_embedding)\n",
|
470 |
+
"\n",
|
471 |
+
" def forward(self, token_embedding:Tensor):\n",
|
472 |
+
" return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0),:])\n",
|
473 |
+
"\n",
|
474 |
+
"class TokenEmbedding(nn.Module):\n",
|
475 |
+
" def __init__(self, vocab_size:int, emb_size):\n",
|
476 |
+
" super(TokenEmbedding, self).__init__()\n",
|
477 |
+
" self.embedding = nn.Embedding(vocab_size, emb_size)\n",
|
478 |
+
" self.emb_size = emb_size\n",
|
479 |
+
"\n",
|
480 |
+
" def forward(self, tokens:Tensor):\n",
|
481 |
+
" return self.embedding(tokens.long())*math.sqrt(self.emb_size)\n",
|
482 |
+
"\n",
|
483 |
+
"\n",
|
484 |
+
"class Seq2SeqTransformer(nn.Module):\n",
|
485 |
+
" def __init__(self, num_encoder_layers,num_decoder_layers, emb_size, nhead,src_vocab_size,tgt_vocab_size, dim_feedforward = 512, dropout = 0.1):\n",
|
486 |
+
" super(Seq2SeqTransformer,self).__init__()\n",
|
487 |
+
" self.transformer = Transformer(d_model = emb_size, nhead = nhead, num_encoder_layers = num_encoder_layers, num_decoder_layers = num_decoder_layers, dim_feedforward = dim_feedforward, dropout = dropout, norm_first = True)\n",
|
488 |
+
" self.generator = nn.Linear(emb_size, tgt_vocab_size)\n",
|
489 |
+
" self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)\n",
|
490 |
+
" self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)\n",
|
491 |
+
" self.positional_encoding = PositionalEncoding(emb_size, drop_out = dropout)\n",
|
492 |
+
"\n",
|
493 |
+
" def forward(self, src:Tensor, trg:Tensor, src_mask:Tensor, tgt_mask: Tensor, src_padding_mask: Tensor, tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):\n",
|
494 |
+
" src_emb = self.positional_encoding(self.src_tok_emb(src))\n",
|
495 |
+
" tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))\n",
|
496 |
+
" outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, src_padding_mask, tgt_padding_mask, memory_key_padding_mask)\n",
|
497 |
+
" return self.generator(outs)\n",
|
498 |
+
"\n",
|
499 |
+
" def encode(self, src, src_mask):\n",
|
500 |
+
" return self.transformer.encoder(self.positional_encoding(self.src_tok_emb(src)),src_mask)\n",
|
501 |
+
"\n",
|
502 |
+
" def decode(self, tgt:Tensor, memory:Tensor, tgt_mask:Tensor):\n",
|
503 |
+
" return self.transformer.decoder(self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask)\n",
|
504 |
+
"\n",
|
505 |
+
"\n",
|
506 |
+
"\n",
|
507 |
+
"\n",
|
508 |
+
"\n",
|
509 |
+
"\n",
|
510 |
+
"def set_seed_everywhere(seed, cuda):\n",
|
511 |
+
" #seed = self.seed\n",
|
512 |
+
" #cuda = self.cuda\n",
|
513 |
+
" np.random.seed(seed)\n",
|
514 |
+
" torch.manual_seed(seed)\n",
|
515 |
+
" print(seed)\n",
|
516 |
+
" if cuda:\n",
|
517 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
518 |
+
"\n",
|
519 |
+
"\n",
|
520 |
+
"def generate_square_subsequent_mask(sz):\n",
|
521 |
+
" mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)\n",
|
522 |
+
" mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))\n",
|
523 |
+
" return mask\n",
|
524 |
+
"\n",
|
525 |
+
"\n",
|
526 |
+
"\n",
|
527 |
+
"def handle_dirs(save_dirs):\n",
|
528 |
+
" dirpath = save_dir\n",
|
529 |
+
" if not os.path.exists(dirpath):\n",
|
530 |
+
" os.makedirs(dirpath)\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"\n",
|
534 |
+
"def create_mask(src, tgt,PAD_IDX):\n",
|
535 |
+
" src_seq_len = src.shape[0]\n",
|
536 |
+
" tgt_seq_len = tgt.shape[0]\n",
|
537 |
+
" \n",
|
538 |
+
" tgt_mask = generate_square_subsequent_mask(tgt_seq_len)\n",
|
539 |
+
" src_mask = torch.zeros((src_seq_len, src_seq_len),device=DEVICE).type(torch.bool)\n",
|
540 |
+
" \n",
|
541 |
+
" src_padding_mask = (src == PAD_IDX).transpose(0, 1)\n",
|
542 |
+
" tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)\n",
|
543 |
+
" return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask\n",
|
544 |
+
"\n",
|
545 |
+
"\n",
|
546 |
+
"\n",
|
547 |
+
"def train_epoch(batch_size, device, model, dataset, split_value, optimizer, PAD_IDX, loss_fn):\n",
|
548 |
+
" BATCH_SIZE = batch_size\n",
|
549 |
+
" model.train()\n",
|
550 |
+
" losses = 0\n",
|
551 |
+
" print(dataset.__len__())\n",
|
552 |
+
" train_dataloader = DataLoader(dataset, batch_size=BATCH_SIZE)\n",
|
553 |
+
" #print(BATCH_SIZE,len(list(train_dataloader)))\n",
|
554 |
+
" dataset.set_split(split_value)\n",
|
555 |
+
" batch_generator = generate_nmt_batches(dataset, batch_size=BATCH_SIZE, device = device)\n",
|
556 |
+
" print(\"printing batch generator\",batch_generator)\n",
|
557 |
+
" ctr = 0\n",
|
558 |
+
" for batch_index, batch_dict in enumerate(batch_generator):\n",
|
559 |
+
" ctr = ctr+1\n",
|
560 |
+
" #optimizer.zero_grad()\n",
|
561 |
+
" #print(torch.cat((torch.transpose(batch_dict['x_source'],0,1),torch.transpose(batch_dict['x_target'],0,1),torch.transpose(batch_dict['y_target'],0,1)),1).numpy().shape)\n",
|
562 |
+
" #print(torch.transpose(batch_dict['x_target'],0,1))\n",
|
563 |
+
" #print(torch.transpose(batch_dict['y_target'],0,1))\n",
|
564 |
+
" src=torch.transpose(batch_dict['x_source'],0,1)\n",
|
565 |
+
" tgt=torch.transpose(batch_dict['y_target'],0,1)\n",
|
566 |
+
" tgt_input = tgt[:-1,:]\n",
|
567 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src,tgt_input, PAD_IDX)\n",
|
568 |
+
" logits = model(src,tgt_input, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
569 |
+
" optimizer.zero_grad()\n",
|
570 |
+
" tgt_out = tgt[1:,:]\n",
|
571 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]),tgt_out.reshape(-1))\n",
|
572 |
+
" loss.backward()\n",
|
573 |
+
" optimizer.step()\n",
|
574 |
+
" losses += loss.item()\n",
|
575 |
+
" if ctr%50==0:\n",
|
576 |
+
" #print('source_shape',src.shape, 'target_shape',tgt.shape)\n",
|
577 |
+
" print(\"ctr: \",ctr,\" losses: \",losses/ctr,'time',datetime.datetime.now())#,\" len_train_dataloader: \",len(list(train_dataloader)))\n",
|
578 |
+
" return losses/len(list(train_dataloader))\n",
|
579 |
+
"\n",
|
580 |
+
"\n",
|
581 |
+
"def evaluate(batch_size,device,model, dataset,split_value,PAD_IDX,loss_fn):\n",
|
582 |
+
" model.eval()\n",
|
583 |
+
" losses = 0\n",
|
584 |
+
" dataset.set_split(split_value)\n",
|
585 |
+
" val_dataloader=DataLoader(dataset, batch_size=batch_size)\n",
|
586 |
+
" batch_generator=generate_nmt_batches(dataset, batch_size=batch_size, device=device)\n",
|
587 |
+
" ctr = 0\n",
|
588 |
+
" for batch_index, batch_dict in enumerate(batch_generator):\n",
|
589 |
+
" src = torch.transpose(batch_dict['x_source'],0,1)\n",
|
590 |
+
" tgt = torch.transpose(batch_dict['y_target'],0,1)\n",
|
591 |
+
" tgt_input = tgt[:-1,:]\n",
|
592 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src,tgt_input, PAD_IDX)\n",
|
593 |
+
" logits = model(src,tgt_input,src_mask,tgt_mask, src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
594 |
+
" tgt_out=tgt[1:,:]\n",
|
595 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]),tgt_out.reshape(-1))#loss_fn(logits.reshape[-1],tgt_out.reshape[-1])\n",
|
596 |
+
" losses += loss.item()\n",
|
597 |
+
" ctr = ctr+1\n",
|
598 |
+
" print(ctr,\"validation\",losses/ctr)\n",
|
599 |
+
"\n",
|
600 |
+
" \"\"\"for src, tgt in val_dataloader:\n",
|
601 |
+
" src = src.to(DEVICE)\n",
|
602 |
+
" tgt = tgt.to(DEVICE)\n",
|
603 |
+
"\n",
|
604 |
+
" tgt_input = tgt[:-1, :]\n",
|
605 |
+
"\n",
|
606 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)\n",
|
607 |
+
"\n",
|
608 |
+
" logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
609 |
+
"\n",
|
610 |
+
" tgt_out = tgt[1:, :]\n",
|
611 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))\n",
|
612 |
+
" losses += loss.item()\"\"\"\n",
|
613 |
+
" return losses/len(list(val_dataloader))\n",
|
614 |
+
"\n",
|
615 |
+
"\n",
|
616 |
+
"\n",
|
617 |
+
"def greedy_decode(DEVICE, model, src, src_mask, max_len, start_symbol, EOS_IDX):\n",
|
618 |
+
" src = src.to(DEVICE)\n",
|
619 |
+
" src_mask=src_mask.to(DEVICE)\n",
|
620 |
+
" memory = model.encode(src, src_mask)\n",
|
621 |
+
" ys = torch.ones(1,1).fill_(start_symbol).type(torch.long).to(DEVICE)\n",
|
622 |
+
" for i in range(max_len):\n",
|
623 |
+
" #print(i,'ys',ys)\n",
|
624 |
+
" memory = memory.to(DEVICE)\n",
|
625 |
+
" tgt_mask = (generate_square_subsequent_mask(ys.size(0)).type(torch.bool)).to(DEVICE)\n",
|
626 |
+
" #print('tgt_mask',tgt_mask)\n",
|
627 |
+
" out = model.decode(ys,memory, tgt_mask)#.squeeze()\n",
|
628 |
+
" #print(\"out\",out,'out_shape',out.shape)\n",
|
629 |
+
" out = out.transpose(0,1)\n",
|
630 |
+
" #print(\"out transpose\",out,'out_transpose_shape',out.shape)\n",
|
631 |
+
" prob = model.generator(out)[:,-1]\n",
|
632 |
+
" _, next_word = torch.max(prob, dim=1)\n",
|
633 |
+
" next_word = next_word.item()\n",
|
634 |
+
" #print('next_word = ',next_word)\n",
|
635 |
+
" ys = torch.cat([ys, torch.ones(1,1).type_as(src.data).fill_(next_word)], dim = 0)\n",
|
636 |
+
" #print('ys',ys)\n",
|
637 |
+
" if next_word == EOS_IDX:\n",
|
638 |
+
" break\n",
|
639 |
+
" return ys\n",
|
640 |
+
"\n",
|
641 |
+
"\n",
|
642 |
+
"\n",
|
643 |
+
"def translate( device,model:torch.nn.Module, src_sentence:str, BOS_IDX, EOS_IDX):\n",
|
644 |
+
" model.eval()\n",
|
645 |
+
" src= src_sentence\n",
|
646 |
+
" #print('src',src)\n",
|
647 |
+
" num_tokens = src.shape[0]\n",
|
648 |
+
" #print(num_tokens)\n",
|
649 |
+
" src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)\n",
|
650 |
+
" #print('src_mask',src_mask)\n",
|
651 |
+
" tgt_tokens = greedy_decode(device,model, src, src_mask, max_len = num_tokens, start_symbol=BOS_IDX, EOS_IDX=EOS_IDX).flatten()\n",
|
652 |
+
" return tgt_tokens\n",
|
653 |
+
"\n",
|
654 |
+
"\n",
|
655 |
+
"\n",
|
656 |
+
"\n",
|
657 |
+
"\n",
|
658 |
+
"\n",
|
659 |
+
"\n",
|
660 |
+
"\n",
|
661 |
+
"\n",
|
662 |
+
"\n",
|
663 |
+
"\n",
|
664 |
+
"\n",
|
665 |
+
"\n",
|
666 |
+
"\n",
|
667 |
+
"\n",
|
668 |
+
"\n",
|
669 |
+
"input_df = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
670 |
+
"fpath = \"nmt_IITB_APE2\"\n",
|
671 |
+
"\n",
|
672 |
+
"\n",
|
673 |
+
"#dataset = NMTDataset.load_dataset_and_make_vectorizer('IITB_dataset_1.csv')\n",
|
674 |
+
"#dataset.save_vectorizer(\"vectorizer_transformer_3layer_IITB1mill.json\")\n",
|
675 |
+
"\n",
|
676 |
+
"\n",
|
677 |
+
"\n",
|
678 |
+
"#dataloader = DataLoader(dataset=dataset, batch_size=1024,shuffle=False, drop_last=True)\n",
|
679 |
+
"\n",
|
680 |
+
"dataset_csv = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
681 |
+
"vectorizer_file = 'vectorizer_APE_2.json'\n",
|
682 |
+
"print(vectorizer_file)\n",
|
683 |
+
"model_state_file = 'APE_2.pth'\n",
|
684 |
+
"save_dir = \"nmt_DG2_FFNN8192\"#'GenV1_Transforemer_1',\n",
|
685 |
+
"print(save_dir)\n",
|
686 |
+
"reload_from_files = True\n",
|
687 |
+
"cuda = False\n",
|
688 |
+
"seed = 13\n",
|
689 |
+
"learning_rate = 8e-3\n",
|
690 |
+
"batch_size = 1024\n",
|
691 |
+
"batch_size_val = 1\n",
|
692 |
+
"num_epochs = 40\n",
|
693 |
+
"source_embedding_size = 256\n",
|
694 |
+
"target_embedding_size = 256\n",
|
695 |
+
"encoding_size = 256\n",
|
696 |
+
"use_glove = False\n",
|
697 |
+
"expand_filepaths_to_save_dir = True\n",
|
698 |
+
"early_stopping_criteria = 10\n",
|
699 |
+
"dataset_to_evaluate = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
700 |
+
"path_to_save = 'APE_1_new.csv'\n",
|
701 |
+
"saved_model_path = 'APE_1_new.pt'\n",
|
702 |
+
"file_exist = 0\n",
|
703 |
+
"existing_file_name = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
704 |
+
"\n",
|
705 |
+
"\n",
|
706 |
+
"dataset_path = fpath\n",
|
707 |
+
"existing_file_name = input_df\n",
|
708 |
+
"fname = existing_file_name\n",
|
709 |
+
"dataset_csv = fname\n",
|
710 |
+
"\n",
|
711 |
+
"\n",
|
712 |
+
"\n",
|
713 |
+
"\n",
|
714 |
+
"\n",
|
715 |
+
"\n",
|
716 |
+
"model_state_file = model_state_file\n",
|
717 |
+
"save_dir = save_dir\n",
|
718 |
+
"print(save_dir)\n",
|
719 |
+
"reload_from_files = reload_from_files\n",
|
720 |
+
"expand_filepaths_to_save_dir = expand_filepaths_to_save_dir\n",
|
721 |
+
"cuda = cuda\n",
|
722 |
+
"seed = seed\n",
|
723 |
+
"learning_rate = learning_rate\n",
|
724 |
+
"batch_size = batch_size\n",
|
725 |
+
"batch_size_val = batch_size_val\n",
|
726 |
+
"num_epochs = num_epochs\n",
|
727 |
+
"early_stopping_criteria = True#self.early_stopping_criteria\n",
|
728 |
+
"source_embedding_size = source_embedding_size\n",
|
729 |
+
"target_embedding_size = target_embedding_size\n",
|
730 |
+
"encoding_size = encoding_size\n",
|
731 |
+
"use_glove = False\n",
|
732 |
+
"catch_keyboard_interrupt = True\n",
|
733 |
+
"if expand_filepaths_to_save_dir:\n",
|
734 |
+
" vectorizer_file = os.path.join(save_dir, vectorizer_file)\n",
|
735 |
+
"model_state_file = os.path.join(save_dir, model_state_file)\n",
|
736 |
+
"if not torch.cuda.is_available():\n",
|
737 |
+
" cuda = False\n",
|
738 |
+
"device = torch.device(\"cuda\" if cuda else \"cpu\")\n",
|
739 |
+
"set_seed_everywhere(seed,cuda)\n",
|
740 |
+
"handle_dirs(save_dir)\n",
|
741 |
+
"if reload_from_files and os.path.exists(vectorizer_file):\n",
|
742 |
+
" dataset = NMTDataset.load_dataset_and_load_vectorizer(dataset_csv, vectorizer_file)\n",
|
743 |
+
" print('load_dataset_and_load_vectorizer______')\n",
|
744 |
+
"else:\n",
|
745 |
+
" dataset = NMTDataset.load_dataset_and_make_vectorizer(dataset_csv)\n",
|
746 |
+
" dataset.save_vectorizer(vectorizer_file)\n",
|
747 |
+
" print('_________load_dataset_and_make_vectorizer______')\n",
|
748 |
+
"vectorizer = dataset.get_vectorizer()\n",
|
749 |
+
"PAD_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<MASK>']\n",
|
750 |
+
"BOS_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<BEGIN>']\n",
|
751 |
+
"EOS_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<END>']\n",
|
752 |
+
"SRC_VOCAB_SIZE = len(vectorizer.to_serializable()['source_vocab']['token_to_idx'])\n",
|
753 |
+
"TGT_VOCAB_SiZE = len(vectorizer.to_serializable()['target_vocab']['token_to_idx'])\n",
|
754 |
+
"print('target vocab size',TGT_VOCAB_SiZE)\n",
|
755 |
+
"print('dataset_size 1: ', dataset.__len__(), dataset_path, dataset_csv)\n",
|
756 |
+
"print(' dataset csv length',len(pd.read_csv(dataset_csv)))\n",
|
757 |
+
"EMB_SIZE = 256\n",
|
758 |
+
"NHEAD = 16\n",
|
759 |
+
"FFN_HID_DIM =8192\n",
|
760 |
+
"BATCH_SIZE = 128\n",
|
761 |
+
"NUM_ENCODER_LAYERS = 3\n",
|
762 |
+
"NUM_DECODER_LAYERS = 3\n",
|
763 |
+
"batch_size = BATCH_SIZE\n",
|
764 |
+
"transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SiZE, FFN_HID_DIM)\n",
|
765 |
+
"transformer = transformer.to(DEVICE)\n",
|
766 |
+
"loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)\n",
|
767 |
+
"optimizer = torch.optim.Adam(transformer.parameters(), lr=0.004, betas = (0.99, 0.99), eps = 1e-9)\n",
|
768 |
+
"from timeit import default_timer as timer\n",
|
769 |
+
"NUM_EPOCHS = num_epochs\n",
|
770 |
+
"for epoch in range(1, NUM_EPOCHS+1):\n",
|
771 |
+
" print(\"==================Training started==================\",epoch)\n",
|
772 |
+
" start_time = timer()\n",
|
773 |
+
" split_value_train = 'train'\n",
|
774 |
+
" split_value_validate = 'val'\n",
|
775 |
+
" train_loss = train_epoch(batch_size,device,transformer, dataset, split_value_train, optimizer, PAD_IDX, loss_fn)\n",
|
776 |
+
" end_time = timer()\n",
|
777 |
+
" torch.save(transformer,'epoch'+str(epoch)+'_APE_2_new.pt')\n",
|
778 |
+
"#torch.save(transformer, save_dir+\"/\"+saved_model_path+\"_epoch\")\n",
|
779 |
+
" #val_loss = evaluate(batch_size,device,transformer, dataset, split_value_validate, PAD_IDX, loss_fn)\n",
|
780 |
+
"torch.save(transformer, save_dir+\"/\"+saved_model_path)\n"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"cell_type": "code",
|
785 |
+
"execution_count": null,
|
786 |
+
"id": "37a50cf7-d754-4c19-aaa5-4e094cfd87e6",
|
787 |
+
"metadata": {},
|
788 |
+
"outputs": [],
|
789 |
+
"source": []
|
790 |
+
}
|
791 |
+
],
|
792 |
+
"metadata": {
|
793 |
+
"kernelspec": {
|
794 |
+
"display_name": "Python 3 (ipykernel)",
|
795 |
+
"language": "python",
|
796 |
+
"name": "python3"
|
797 |
+
},
|
798 |
+
"language_info": {
|
799 |
+
"codemirror_mode": {
|
800 |
+
"name": "ipython",
|
801 |
+
"version": 3
|
802 |
+
},
|
803 |
+
"file_extension": ".py",
|
804 |
+
"mimetype": "text/x-python",
|
805 |
+
"name": "python",
|
806 |
+
"nbconvert_exporter": "python",
|
807 |
+
"pygments_lexer": "ipython3",
|
808 |
+
"version": "3.11.9"
|
809 |
+
}
|
810 |
+
},
|
811 |
+
"nbformat": 4,
|
812 |
+
"nbformat_minor": 5
|
813 |
+
}
|
APR_tr2_2.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
digital_green_process_data.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import Dataset, DatasetDict, Audio
|
4 |
+
import soundfile as sf
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
|
8 |
+
# Paths
|
9 |
+
audio_folder = '/home/azureuser/data2/dg_16/' # Path where your audio files are stored
|
10 |
+
csv_file = 'digital_green_recordings.csv' # Path to the CSV that contains audio paths and transcripts
|
11 |
+
|
12 |
+
# Read your CSV file (assumes it has columns: 'path' and 'transcript')
|
13 |
+
df = pd.read_csv(csv_file, sep="$")
|
14 |
+
|
15 |
+
# Create a new column for client_id (random or default if you don’t have speaker info)
|
16 |
+
df['client_id'] = ['speaker_' + str(i) for i in range(len(df))]
|
17 |
+
|
18 |
+
# If your CSV has relative paths, ensure the paths are correct
|
19 |
+
df['path'] = df['path'].apply(lambda x: os.path.join(audio_folder, x))
|
20 |
+
|
21 |
+
# Add additional columns needed for the Common Voice format (can be optional)
|
22 |
+
df['up_votes'] = 0
|
23 |
+
df['down_votes'] = 0
|
24 |
+
df['age'] = None
|
25 |
+
df['gender'] = None
|
26 |
+
df['accent'] = None
|
27 |
+
|
28 |
+
# Function to load and possibly convert audio to mono
|
29 |
+
def load_audio(file_path):
|
30 |
+
# Load audio file
|
31 |
+
audio, sr = sf.read(file_path)
|
32 |
+
# Convert to mono if stereo
|
33 |
+
if len(audio.shape) > 1:
|
34 |
+
audio = np.mean(audio, axis=1)
|
35 |
+
return {'audio': {'array': audio, 'sampling_rate': sr}}
|
36 |
+
|
37 |
+
# Apply audio loading function to DataFrame
|
38 |
+
df['audio'] = df['path'].apply(lambda x: load_audio(x))
|
39 |
+
|
40 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) # Adjust test_size as needed
|
41 |
+
|
42 |
+
# Convert DataFrames to Hugging Face Datasets
|
43 |
+
train_dataset = Dataset.from_pandas(train_df)
|
44 |
+
test_dataset = Dataset.from_pandas(test_df)
|
45 |
+
|
46 |
+
# Cast the 'audio' column to the 'audio' type
|
47 |
+
train_dataset = train_dataset.cast_column('audio', Audio())
|
48 |
+
test_dataset = test_dataset.cast_column('audio', Audio())
|
49 |
+
|
50 |
+
# Create a DatasetDict to simulate train/test/validation splits if needed
|
51 |
+
dataset_dict = DatasetDict({
|
52 |
+
'train': train_dataset,
|
53 |
+
'test': test_dataset # If you have separate splits, add them here (e.g., 'train', 'test', 'validation')
|
54 |
+
})
|
55 |
+
|
56 |
+
# Save the dataset (optional) for future use
|
57 |
+
dataset_dict.save_to_disk('data2/digital_green_data')
|
58 |
+
|
59 |
+
# Print a sample from the dataset
|
60 |
+
print(dataset_dict['train'][0])
|
61 |
+
|
62 |
+
print(dataset_dict['test'][0])
|