CQSB
/

GianLMB commited on
Commit
2f3e606
·
verified ·
1 Parent(s): 6e45479

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +65 -172
README.md CHANGED
@@ -1,199 +1,92 @@
 
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
194
 
195
- [More Information Needed]
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+
2
  ---
3
+ tags:
4
+ - LoRA
5
+ - protein language model
6
+ datasets:
7
+ - SoftDis
8
  ---
9
 
10
+ # LoRA-DR-suite
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ ## Model details
13
 
14
+ LoRA-DR-suite is a family of models for the identification of disordered regions (DR) in proteins, built upon state-of-the-art Protein Language Models (PLMs) trained on protein sequences only. They leverage Low-Rank Adaptation (LoRA) fine-tuning for binary classification of intrinsic and soft disorder.
15
+ Intrinsically-disordered residues are experimentally detected through circular dichroism and X-ray cristallography, while soft disorder is characterized by high B-factor, or intermittently
16
+ missing residues across different X-ray crystal structures of the same sequence.
17
 
18
+ Models for intrinsic disorder are trained on DisProt 7.0 data only (DisProt7 suffix) or on additional data from the first and second edition of the Critical Assesment of Intrinsic Disorder (CAID), indicated with the ID suffix.
19
 
20
+ Models for soft disorder classification are trained instead on the SoftDis dataset, derived from an extensive analysis of clusters of alternative structures for the same protein
21
+ sequence in the Protein Data Bank (PDB). For each position in the represantitive sequence of each cluster, it provides the frequency of closely-related homologs for which the corresponding residue is higly flexible or missing.
22
 
 
23
 
24
+ ## Model checkpoints
25
 
26
+ We provide different model checkpoints, based on training data and pre-trained PLM.
27
 
28
+ | Checkpoint name | Training dataset | Pre-trained checkpoint |
29
+ |-----------------|------------------|------------------------|
30
+ | [esm2_650M-LoRA-DisProt7](https://huggingface.co/CQSB/esm2_650M-LoRA-DisProt7) | DisProt 7.0 | [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) |
31
+ | [esm2_35M-LoRA-DisProt7](https://huggingface.co/CQSB/esm2_35M-LoRA-DisProt7) | DisProt 7.0 | [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) |
32
+ | [Ankh-LoRA-DisProt7](https://huggingface.co/CQSB/Ankh-LoRA-DisProt7) | DisProt 7.0 | [ankh-large](https://huggingface.co/ElnaggarLab/ankh-large) |
33
+ | [PortT5-LoRA-DisProt7](https://huggingface.co/CQSB/ProtT5-LoRA-DisProt7) | DisProt 7.0 | [prot_t5_xl_uniref5](Rostlab/prot_t5_xl_uniref50) |
34
+ | [esm2_650M-LoRA-ID](https://huggingface.co/CQSB/esm2_650M-LoRA-ID) | Intrinsic dis.* | [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) |
35
+ | [esm2_35M-LoRA-ID](https://huggingface.co/CQSB/esm2_35M-LoRA-ID) | Intrinsic dis.* | [esm2_t12_35M_UR50D](https://huggingface.co/facebook//esm2_t12_35M_UR50D) |
36
+ | [Ankh-LoRA-ID](https://huggingface.co/CQSB/Ankh-LoRA-ID) | Intrinsic dis.* | [ankh-large](https://huggingface.co/ElnaggarLab/ankh-large) |
37
+ | [PortT5-LoRA-ID](https://huggingface.co/CQSB/ProtT5-LoRA-ID) | Intrinsic dis.* | [prot_t5_xl_uniref5](Rostlab/prot_t5_xl_uniref50) |
38
+ | [esm2_650M-LoRA-SD](https://huggingface.co/CQSB/esm2_650M-LoRA-SD) | SoftDis | [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) |
39
+ | [esm2_35M-LoRA-SD](https://huggingface.co/CQSB/esm2_35M-LoRA-SD) | SoftDis | [esm2_t12_35M_UR50D](https://huggingface.co/facebook//esm2_t12_35M_UR50D) |
40
+ | [Ankh-LoRA-SD](https://huggingface.co/CQSB/Ankh-LoRA-SD) | SoftDis | [ankh-large](https://huggingface.co/ElnaggarLab/ankh-large) |
41
+ | [PortT5-LoRA-SD](https://huggingface.co/CQSB/ProtT5-LoRA-SD) | SoftDis | [prot_t5_xl_uniref5](Rostlab/prot_t5_xl_uniref50) |
42
 
43
+ \* DisProt7, CAID1 and CAID2 data
44
 
45
+ ## Intended uses & limitations
46
 
47
+ The models are intended to be used for classification of different disorder types.
48
+ Models for intrinsic disorder trained on DisProt 7.0 were evaluated on CAID1 and CAID2 challenge, but we suggest to use "ID" models for classification of new sequences, as they show better generalization.
49
 
50
+ In addition to its relation to flexibility and assembly pathways, soft disorder can be used to infer confidence score for structure prediciton tools, as we found high negative Spearman correlation between soft disorder probabilities and pLDDT from AlphaFold2 predicitons.
51
 
52
+ ### Model usage
53
 
54
+ All models can be loaded as PyTorch Modules, together with their associated tokenizer, with the following code:
55
 
56
+ ```python
57
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
58
 
59
+ model_id = "CQSB/esm2_35M-LoRA-ID-DisProt7" # model_id for selected model
60
+ model = AutoModelForTokenClassification.from_pretrained(model_id)
61
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
62
+ ```
63
 
64
+ Once the model is loadded, disorder profile for all residues in a sequence can be obtained as follow:
65
 
66
+ ```python
67
+ import torch
68
+ import torch.nn.functional as F
69
 
70
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
71
+ model = model.to(device)
72
 
73
+ # example sequence (DP02948)
74
+ sequence = "METLTLLWRASSSCLLVVLSHSLLRLLGVRCLEKSGAQPNKLFRPPCCQKGPSFARHSRCVYYTQSRE"
75
 
76
+ # each pre-trained model adds its own special tokens to the tokenized sequence,
77
+ # special_tokens_mask allows to deal with them (padding included, for batched inputs)
78
+ # without changing the code
79
+ inputs = tokenizer([sequence], return_tensors="pt", return_special_tokens_mask=True)
80
+ input_ids = inputs['input_ids'].to(device)
81
+ attention_mask = inputs['attention_mask'].to(device)
82
+ special_tokens_mask = inputs['special_tokens_mask'].bool()
83
 
84
+ # extract predicted disorder probability
85
+ with torch.inference_mode():
86
+ output = model(input_ids=input_ids,attention_mask=attention_mask).squeeze(0).cpu()
87
+ disorder_proba = F.softmax(output[~special_tokens_mask], dim=-1)[:, 1]
88
+ ```
89
 
90
+ ## How to cite
91
 
92
+ Coming soon...