Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<h2>PrimeDepth: Efficient Monocular Depth Estimation with a Stable Diffusion Preimage</h2>
|
3 |
+
|
4 |
+
[**Denis Zavadski**](https://scholar.google.com/citations?user=S7mDg00AAAAJ)<sup>\*</sup> 路 [**Damjan Kal拧an**](https://scholar.google.com/citations?user=6NAxnFUAAAAJ)<sup>\*</sup> 路 [**Carsten Rother**](https://scholar.google.com/citations?user=N_YNMIMAAAAJ)
|
5 |
+
|
6 |
+
Computer Vision and Learning Lab,<br/>
|
7 |
+
IWR, Heidelberg University
|
8 |
+
|
9 |
+
<sup>*</sup>equal contribution
|
10 |
+
|
11 |
+
<strong>ACCV 2024</strong>
|
12 |
+
|
13 |
+
<a href='https://vislearn.github.io/PrimeDepth/'><img src='https://img.shields.io/badge/Project_Page-PrimeDepth-green' alt='Project Page'></a>
|
14 |
+
<a href="https://arxiv.org/abs/2409.09144"><img src='https://img.shields.io/badge/arXiv-PDF-red' alt='Paper PDF'></a> <a href="https://github.com/vislearn/PrimeDepth"><img src='https://img.shields.io/badge/Github-Code-blue' alt='Github Code'></a>
|
15 |
+
|
16 |
+
PrimeDepth is a diffusion-based monocular depth estimator which leverages the rich representation of the visual world stored within Stable Diffusion. The representation, termed <q>preimage</q>, is extracted in a single diffusion step from frozen Stable Diffusion 2.1 and adjusted towards depth prediction. PrimeDepth yields detailed predictions while simulatenously being fast at inference time due to the single-step approach.
|
17 |
+
|
18 |
+
</div>
|
19 |
+
|
20 |
+
![teaser](images/teaser.png)
|
21 |
+
|
22 |
+
## Introduction
|
23 |
+
These are the weights for the inference codebase for [PrimeDepth](https://arxiv.org/abs/2409.09144) based on <a href="https://github.com/Stability-AI/stablediffusion">Stable Diffusion 2.1</a>. Further details and visual examples can be found on the [project page](https://vislearn.github.io/PrimeDepth/).
|
24 |
+
|
25 |
+
## Installation
|
26 |
+
|
27 |
+
1. Create and activate a virtual environment:
|
28 |
+
```
|
29 |
+
conda create -n PrimeDepth python=3.9
|
30 |
+
conda activate PrimeDepth
|
31 |
+
```
|
32 |
+
|
33 |
+
2. Install dependencies:
|
34 |
+
```
|
35 |
+
pip3 install -r requirements.txt
|
36 |
+
```
|
37 |
+
|
38 |
+
3. Download the [weights](https://huggingface.co/CVL-Heidelberg/PrimeDepth)
|
39 |
+
|
40 |
+
4. Adjust the attribute `ckpt_path` in `configs/inference.yaml` to point to the downloaded weights from the previous step
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
```
|
45 |
+
from scripts.utils import InferenceEngine
|
46 |
+
|
47 |
+
|
48 |
+
config_path = "./configs/inference.yaml"
|
49 |
+
image_path = "./goodBoy.png"
|
50 |
+
|
51 |
+
ie = InferenceEngine(pd_config_path=config_path, device="cuda")
|
52 |
+
|
53 |
+
depth_ssi, depth_color = ie.predict(image_path)
|
54 |
+
```
|
55 |
+
|
56 |
+
PrimeDepth predicts in inverse space. The raw model predictions are stored in `depth_ssi`, while a colorized prediction `depth_color` is precomputed for visualization convenience:
|
57 |
+
|
58 |
+
```
|
59 |
+
depth_color.save("goodBoy_primedepth.png")
|
60 |
+
```
|
61 |
+
|
62 |
+
## Citation
|
63 |
+
```bibtex
|
64 |
+
@misc{zavadski2024primedepth,
|
65 |
+
title={PrimeDepth: Efficient Monocular Depth Estimation with a Stable Diffusion Preimage},
|
66 |
+
author={Denis Zavadski and Damjan Kal拧an and Carsten Rother},
|
67 |
+
year={2024},
|
68 |
+
eprint={2409.09144},
|
69 |
+
archivePrefix={arXiv},
|
70 |
+
primaryClass={cs.CV},
|
71 |
+
url={https://arxiv.org/abs/2409.09144},
|
72 |
+
}
|
73 |
+
```
|