adarshxs commited on
Commit
0d35334
·
verified ·
1 Parent(s): cd5e90c

upload configs for inference

Browse files
configuration_capx_llama.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ # from ..deprecated._archive_maps import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
29
+
30
+
31
+ class LlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`LlamaModel`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 11008):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
62
+ Llama 2 up to 4096, CodeLlama up to 16384.
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ Padding token id.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ Beginning of stream token id.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ End of stream token id.
76
+ pretraining_tp (`int`, *optional*, defaults to 1):
77
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
78
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
79
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
94
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
95
+ attention_dropout (`float`, *optional*, defaults to 0.0):
96
+ The dropout ratio for the attention probabilities.
97
+ ```python
98
+ >>> from transformers import LlamaModel, LlamaConfig
99
+ >>> # Initializing a LLaMA llama-7b style configuration
100
+ >>> configuration = LlamaConfig()
101
+ >>> # Initializing a model from the llama-7b style configuration
102
+ >>> model = LlamaModel(configuration)
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+ ```"""
106
+
107
+ model_type = "llama"
108
+ keys_to_ignore_at_inference = ["past_key_values"]
109
+
110
+ def __init__(
111
+ self,
112
+ vocab_size=32000,
113
+ hidden_size=4096,
114
+ intermediate_size=11008,
115
+ num_hidden_layers=32,
116
+ num_attention_heads=32,
117
+ num_key_value_heads=None,
118
+ hidden_act="silu",
119
+ max_position_embeddings=2048,
120
+ initializer_range=0.02,
121
+ rms_norm_eps=1e-6,
122
+ use_cache=True,
123
+ pad_token_id=None,
124
+ bos_token_id=1,
125
+ eos_token_id=2,
126
+ pretraining_tp=1,
127
+ tie_word_embeddings=False,
128
+ rope_theta=10000.0,
129
+ rope_scaling=None,
130
+ attention_bias=False,
131
+ attention_dropout=0.0,
132
+ **kwargs,
133
+ ):
134
+ self.vocab_size = vocab_size
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.hidden_size = hidden_size
137
+ self.intermediate_size = intermediate_size
138
+ self.num_hidden_layers = num_hidden_layers
139
+ self.num_attention_heads = num_attention_heads
140
+
141
+ # for backward compatibility
142
+ if num_key_value_heads is None:
143
+ num_key_value_heads = num_attention_heads
144
+
145
+ self.num_key_value_heads = num_key_value_heads
146
+ self.hidden_act = hidden_act
147
+ self.initializer_range = initializer_range
148
+ self.rms_norm_eps = rms_norm_eps
149
+ self.pretraining_tp = pretraining_tp
150
+ self.use_cache = use_cache
151
+ self.rope_theta = rope_theta
152
+ self.rope_scaling = rope_scaling
153
+ self._rope_scaling_validation()
154
+ self.attention_bias = attention_bias
155
+ self.attention_dropout = attention_dropout
156
+
157
+ super().__init__(
158
+ pad_token_id=pad_token_id,
159
+ bos_token_id=bos_token_id,
160
+ eos_token_id=eos_token_id,
161
+ tie_word_embeddings=tie_word_embeddings,
162
+ **kwargs,
163
+ )
164
+
165
+ def _rope_scaling_validation(self):
166
+ """
167
+ Validate the `rope_scaling` configuration.
168
+ """
169
+ if self.rope_scaling is None:
170
+ return
171
+
172
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
173
+ raise ValueError(
174
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
175
+ )
176
+ rope_scaling_type = self.rope_scaling.get("type", None)
177
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
178
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
179
+ raise ValueError(
180
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
181
+ )
182
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
183
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
184
+
185
+
186
+ from typing import Union
187
+ from transformers import PretrainedConfig
188
+ import os
189
+
190
+
191
+ class SigLipVisionConfig(PretrainedConfig):
192
+ model_type = "siglip_vision_model"
193
+
194
+ def __init__(
195
+ self,
196
+ hidden_size=1152,
197
+ image_mean=(0.5, 0.5, 0.5),
198
+ intermediate_size=4304,
199
+ num_hidden_layers=27,
200
+ num_attention_heads=16,
201
+ num_channels=3,
202
+ image_size=384,
203
+ patch_size=14,
204
+ hidden_act="gelu_pytorch_tanh",
205
+ layer_norm_eps=1e-6,
206
+ attention_dropout=0.0,
207
+ **kwargs,
208
+ ):
209
+ super().__init__(**kwargs)
210
+
211
+ self.hidden_size = hidden_size
212
+ self.intermediate_size = intermediate_size
213
+ self.num_hidden_layers = num_hidden_layers
214
+ self.num_attention_heads = num_attention_heads
215
+ self.num_channels = num_channels
216
+ self.patch_size = patch_size
217
+ self.image_size = image_size
218
+ self.attention_dropout = attention_dropout
219
+ self.layer_norm_eps = layer_norm_eps
220
+ self.hidden_act = hidden_act
221
+ self.image_mean = image_mean
222
+
223
+ @classmethod
224
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
225
+ cls._set_token_in_kwargs(kwargs)
226
+
227
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
228
+
229
+ # get the vision config dict if we are loading from SigLipConfig
230
+ if config_dict.get("model_type") == "siglip":
231
+ config_dict = config_dict["vision_config"]
232
+
233
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
234
+ logger.warning(
235
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
236
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
237
+ )
238
+
239
+ return cls.from_dict(config_dict, **kwargs)
240
+
241
+
242
+ class CapxLlamaConfig(LlamaConfig):
243
+ model_type = "capx-llama"
modeling_capx_llama.py ADDED
The diff for this file is too large to render. See raw diff