update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- image_folder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: resnet-50-finetuned-FER2013-0.003
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: image_folder
|
17 |
+
type: image_folder
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.6971301198105322
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# resnet-50-finetuned-FER2013-0.003
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the image_folder dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.9036
|
33 |
+
- Accuracy: 0.6971
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 0.003
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 4
|
57 |
+
- total_train_batch_size: 128
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 15
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 1.4393 | 1.0 | 224 | 1.2746 | 0.5173 |
|
68 |
+
| 1.2564 | 2.0 | 448 | 1.1456 | 0.5542 |
|
69 |
+
| 1.218 | 3.0 | 672 | 1.1102 | 0.5816 |
|
70 |
+
| 1.1919 | 4.0 | 896 | 1.0255 | 0.6151 |
|
71 |
+
| 1.1222 | 5.0 | 1120 | 1.0257 | 0.6167 |
|
72 |
+
| 1.0925 | 6.0 | 1344 | 0.9676 | 0.6317 |
|
73 |
+
| 1.0241 | 7.0 | 1568 | 0.9406 | 0.6510 |
|
74 |
+
| 1.0015 | 8.0 | 1792 | 0.9465 | 0.6532 |
|
75 |
+
| 0.987 | 9.0 | 2016 | 0.9002 | 0.6748 |
|
76 |
+
| 0.9768 | 10.0 | 2240 | 0.9086 | 0.6737 |
|
77 |
+
| 0.9408 | 11.0 | 2464 | 0.8975 | 0.6793 |
|
78 |
+
| 0.8907 | 12.0 | 2688 | 0.8966 | 0.6769 |
|
79 |
+
| 0.8051 | 13.0 | 2912 | 0.9142 | 0.6826 |
|
80 |
+
| 0.8169 | 14.0 | 3136 | 0.9082 | 0.6870 |
|
81 |
+
| 0.7729 | 15.0 | 3360 | 0.9036 | 0.6971 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.20.1
|
87 |
+
- Pytorch 1.11.0
|
88 |
+
- Datasets 2.1.0
|
89 |
+
- Tokenizers 0.12.1
|