Text Generation
Transformers
PyTorch
English
llama
finance
llms
text-generation-inference
jiminHuang commited on
Commit
429f23d
·
1 Parent(s): 74660be

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/scratch/ace14856qn/finllm/weights/vicuna-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "pad_token_id": -1,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.29.2",
22
+ "use_cache": false,
23
+ "vocab_size": 32000
24
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.29.2"
7
+ }
global_step3639/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00b03898cdd9f6dfd5a25172d6b1a59216396c5cadd8df564b402f191a02e312
3
+ size 168022
global_step3639/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03df8e22a4c413dc584f686b04542fe2a60f136c24ed945e29d79d3017704504
3
+ size 10107627001
global_step3639/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d94cf7316f596e4de4c49cf79a5ac7642c5b220d7664f54ad0beace3fe97fc8
3
+ size 168022
global_step3639/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcc119a3938eb92d256d95c08d408c8e8556fcf10a8f771aa567ac42b56c4a9a
3
+ size 10107627001
global_step3639/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbfc3a858a6c1d6da9c68767928220efa9f7806cf357eb56d277a55650d179ba
3
+ size 168022
global_step3639/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b010db939a59b1eb80d553539d581589c9dd3066b1799410f75774bb877751a1
3
+ size 10107627001
global_step3639/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7144ab90a39d68984bd0afc781c1aed3971815f744acf46bb76e23ca1c8e6e0
3
+ size 168022
global_step3639/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e3826a7991563a7a3fd5406075a47695c48840c3119ad95ea2a4d1b43b9dd0f
3
+ size 10107627001
global_step3639/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b483ace6acbaf9afae274369ea879ebbff802b037ca6f91fffaed30900b0960b
3
+ size 168022
global_step3639/zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c73df25ad3243114efaee856ac7334a6bf66413c6da50141d4f7dc15d5ad148b
3
+ size 10107627001
global_step3639/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8d548c30c216cd78db737ba16d8df715a43bae2477163f11007a184fdf9d0eb
3
+ size 168022
global_step3639/zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bce9cdebe47cd06b7065fd17c8b8ba6b79cefffc41471d94a3e11c2f125441d4
3
+ size 10107627001
global_step3639/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:724292452affe5ff8d98db96ebb9f356bd72324f32e2c281e23b608ddc3f245f
3
+ size 168022
global_step3639/zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ed58c2e3cf103ce762ac8dba241d0946025d71b96874710e43af964df801f7a
3
+ size 10107627001
global_step3639/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd7630f212570e2624b64ae629c046edc7747508e61846faff7da6c3c22dd3ce
3
+ size 168022
global_step3639/zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead37ef4a3a2c87d53960d04995431d06eae49d3fa01838b42dd2954f5217320
3
+ size 10107627001
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3639
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d7087bfca003c9e2f7295a6a1550795848770f88af5c034ae6876ce06be9216
3
+ size 26953778121
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5539dd7b259c1dd70b24a442cd0db654de172851dc9ad592c00bd0873776a675
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae401ae645379434caffc0185c738039f26685db09ba0aba7a187a8ff97810a9
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89a43885840bc17c1afdbf25def2d1f36021795ec85893c0d9b1fe1c5b8540d
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47edb967b5d8d4551ccb3bda2bf617d308d0981d37333b4a8839054f68577695
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fef2af776d8df77a340254ef61a2b8d0fcf40ee1ddfaeca625988e0165237db3
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d3372a72c3e55207954229dad35b30e29127caffc546802c219fbbecc37247
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5903aacbc3201df025352bcb75c398360d0239d5813369122cc0785e94aa68dc
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0102f09cbe2f6f8f4be258e9801fe1495308691ad96ede2d8c503f2d48b5d4e
3
+ size 21687
trainer_state.json ADDED
@@ -0,0 +1,2218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.8001484046500122,
5
+ "global_step": 3639,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 2.253431117230021e-06,
13
+ "loss": 3.9812,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 3.7916371566987085e-06,
19
+ "loss": 0.5473,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 4.506862234460042e-06,
25
+ "loss": 0.3243,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 4.977968949561282e-06,
31
+ "loss": 0.3058,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 5.3298431961673955e-06,
37
+ "loss": 0.2495,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 5.610809355829126e-06,
43
+ "loss": 0.3345,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 5.844707706136422e-06,
49
+ "loss": 0.2784,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 6.04506827392873e-06,
55
+ "loss": 0.2421,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 6.220313630636092e-06,
61
+ "loss": 0.2661,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 6.376044588167711e-06,
67
+ "loss": 0.2831,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.05,
72
+ "learning_rate": 6.516174989029968e-06,
73
+ "loss": 0.2793,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 6.643547802988659e-06,
79
+ "loss": 0.2488,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.06,
84
+ "learning_rate": 6.7602933516900655e-06,
85
+ "loss": 0.2379,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "learning_rate": 6.868049235636083e-06,
91
+ "loss": 0.2388,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.07,
96
+ "learning_rate": 6.968101466168447e-06,
97
+ "loss": 0.2273,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.08,
102
+ "learning_rate": 7.061478425531149e-06,
103
+ "loss": 0.2571,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.08,
108
+ "learning_rate": 7.149015395297812e-06,
109
+ "loss": 0.2466,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.09,
114
+ "learning_rate": 7.231400066791303e-06,
115
+ "loss": 0.2315,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.09,
120
+ "learning_rate": 7.309205386775784e-06,
121
+ "loss": 0.2101,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.1,
126
+ "learning_rate": 7.375715089769526e-06,
127
+ "loss": 0.2425,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "learning_rate": 7.44608846772297e-06,
133
+ "loss": 0.243,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.11,
138
+ "learning_rate": 7.513093380702437e-06,
139
+ "loss": 0.2521,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.11,
144
+ "learning_rate": 7.57703761945179e-06,
145
+ "loss": 0.2401,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.12,
150
+ "learning_rate": 7.638188625267883e-06,
151
+ "loss": 0.2342,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.12,
156
+ "learning_rate": 7.696780248446552e-06,
157
+ "loss": 0.2439,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.13,
162
+ "learning_rate": 7.753018148386997e-06,
163
+ "loss": 0.2553,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.13,
168
+ "learning_rate": 7.80708415034011e-06,
169
+ "loss": 0.2547,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.14,
174
+ "learning_rate": 7.859139791732239e-06,
175
+ "loss": 0.2316,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.14,
180
+ "learning_rate": 7.909329232496527e-06,
181
+ "loss": 0.2227,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.15,
186
+ "learning_rate": 7.957781661555314e-06,
187
+ "loss": 0.21,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.15,
192
+ "learning_rate": 8e-06,
193
+ "loss": 0.2145,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.16,
198
+ "learning_rate": 7.98611111111111e-06,
199
+ "loss": 0.2101,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.16,
204
+ "learning_rate": 7.972222222222223e-06,
205
+ "loss": 0.1999,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.17,
210
+ "learning_rate": 7.958333333333333e-06,
211
+ "loss": 0.2254,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.17,
216
+ "learning_rate": 7.944444444444444e-06,
217
+ "loss": 0.2597,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.18,
222
+ "learning_rate": 7.930555555555554e-06,
223
+ "loss": 0.1814,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.18,
228
+ "learning_rate": 7.916666666666667e-06,
229
+ "loss": 0.2173,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.19,
234
+ "learning_rate": 7.902777777777777e-06,
235
+ "loss": 0.2136,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.19,
240
+ "learning_rate": 7.88888888888889e-06,
241
+ "loss": 0.2015,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.2,
246
+ "learning_rate": 7.875e-06,
247
+ "loss": 0.2059,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.2,
252
+ "learning_rate": 7.86111111111111e-06,
253
+ "loss": 0.23,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.21,
258
+ "learning_rate": 7.847222222222221e-06,
259
+ "loss": 0.166,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.21,
264
+ "learning_rate": 7.833333333333333e-06,
265
+ "loss": 0.2403,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.22,
270
+ "learning_rate": 7.819444444444444e-06,
271
+ "loss": 0.2111,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.22,
276
+ "learning_rate": 7.805555555555555e-06,
277
+ "loss": 0.2309,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.23,
282
+ "learning_rate": 7.791666666666667e-06,
283
+ "loss": 0.2117,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.23,
288
+ "learning_rate": 7.777777777777777e-06,
289
+ "loss": 0.2085,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 0.24,
294
+ "learning_rate": 7.76388888888889e-06,
295
+ "loss": 0.1904,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 0.24,
300
+ "learning_rate": 7.75e-06,
301
+ "loss": 0.1954,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 0.25,
306
+ "learning_rate": 7.736111111111111e-06,
307
+ "loss": 0.2056,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 0.25,
312
+ "learning_rate": 7.722222222222222e-06,
313
+ "loss": 0.169,
314
+ "step": 510
315
+ },
316
+ {
317
+ "epoch": 0.26,
318
+ "learning_rate": 7.708333333333332e-06,
319
+ "loss": 0.1814,
320
+ "step": 520
321
+ },
322
+ {
323
+ "epoch": 0.26,
324
+ "learning_rate": 7.694444444444444e-06,
325
+ "loss": 0.21,
326
+ "step": 530
327
+ },
328
+ {
329
+ "epoch": 0.27,
330
+ "learning_rate": 7.680555555555555e-06,
331
+ "loss": 0.2285,
332
+ "step": 540
333
+ },
334
+ {
335
+ "epoch": 0.27,
336
+ "learning_rate": 7.666666666666667e-06,
337
+ "loss": 0.2074,
338
+ "step": 550
339
+ },
340
+ {
341
+ "epoch": 0.28,
342
+ "learning_rate": 7.652777777777778e-06,
343
+ "loss": 0.173,
344
+ "step": 560
345
+ },
346
+ {
347
+ "epoch": 0.28,
348
+ "learning_rate": 7.638888888888888e-06,
349
+ "loss": 0.187,
350
+ "step": 570
351
+ },
352
+ {
353
+ "epoch": 0.29,
354
+ "learning_rate": 7.625e-06,
355
+ "loss": 0.2002,
356
+ "step": 580
357
+ },
358
+ {
359
+ "epoch": 0.29,
360
+ "learning_rate": 7.6111111111111104e-06,
361
+ "loss": 0.2257,
362
+ "step": 590
363
+ },
364
+ {
365
+ "epoch": 0.3,
366
+ "learning_rate": 7.597222222222222e-06,
367
+ "loss": 0.2068,
368
+ "step": 600
369
+ },
370
+ {
371
+ "epoch": 0.3,
372
+ "learning_rate": 7.5833333333333324e-06,
373
+ "loss": 0.1968,
374
+ "step": 610
375
+ },
376
+ {
377
+ "epoch": 0.31,
378
+ "learning_rate": 7.569444444444445e-06,
379
+ "loss": 0.2122,
380
+ "step": 620
381
+ },
382
+ {
383
+ "epoch": 0.31,
384
+ "learning_rate": 7.555555555555555e-06,
385
+ "loss": 0.2306,
386
+ "step": 630
387
+ },
388
+ {
389
+ "epoch": 0.32,
390
+ "learning_rate": 7.541666666666667e-06,
391
+ "loss": 0.2108,
392
+ "step": 640
393
+ },
394
+ {
395
+ "epoch": 0.32,
396
+ "learning_rate": 7.527777777777777e-06,
397
+ "loss": 0.1923,
398
+ "step": 650
399
+ },
400
+ {
401
+ "epoch": 0.33,
402
+ "learning_rate": 7.513888888888889e-06,
403
+ "loss": 0.1989,
404
+ "step": 660
405
+ },
406
+ {
407
+ "epoch": 0.33,
408
+ "learning_rate": 7.499999999999999e-06,
409
+ "loss": 0.2179,
410
+ "step": 670
411
+ },
412
+ {
413
+ "epoch": 0.34,
414
+ "learning_rate": 7.486111111111111e-06,
415
+ "loss": 0.1915,
416
+ "step": 680
417
+ },
418
+ {
419
+ "epoch": 0.34,
420
+ "learning_rate": 7.472222222222222e-06,
421
+ "loss": 0.1965,
422
+ "step": 690
423
+ },
424
+ {
425
+ "epoch": 0.35,
426
+ "learning_rate": 7.458333333333333e-06,
427
+ "loss": 0.2425,
428
+ "step": 700
429
+ },
430
+ {
431
+ "epoch": 0.35,
432
+ "learning_rate": 7.444444444444444e-06,
433
+ "loss": 0.1933,
434
+ "step": 710
435
+ },
436
+ {
437
+ "epoch": 0.36,
438
+ "learning_rate": 7.430555555555555e-06,
439
+ "loss": 0.2314,
440
+ "step": 720
441
+ },
442
+ {
443
+ "epoch": 0.36,
444
+ "learning_rate": 7.416666666666666e-06,
445
+ "loss": 0.1901,
446
+ "step": 730
447
+ },
448
+ {
449
+ "epoch": 0.37,
450
+ "learning_rate": 7.402777777777778e-06,
451
+ "loss": 0.1852,
452
+ "step": 740
453
+ },
454
+ {
455
+ "epoch": 0.37,
456
+ "learning_rate": 7.388888888888889e-06,
457
+ "loss": 0.201,
458
+ "step": 750
459
+ },
460
+ {
461
+ "epoch": 0.38,
462
+ "learning_rate": 7.375e-06,
463
+ "loss": 0.1636,
464
+ "step": 760
465
+ },
466
+ {
467
+ "epoch": 0.38,
468
+ "learning_rate": 7.36111111111111e-06,
469
+ "loss": 0.184,
470
+ "step": 770
471
+ },
472
+ {
473
+ "epoch": 0.39,
474
+ "learning_rate": 7.347222222222222e-06,
475
+ "loss": 0.1618,
476
+ "step": 780
477
+ },
478
+ {
479
+ "epoch": 0.39,
480
+ "learning_rate": 7.333333333333332e-06,
481
+ "loss": 0.1867,
482
+ "step": 790
483
+ },
484
+ {
485
+ "epoch": 0.4,
486
+ "learning_rate": 7.3194444444444446e-06,
487
+ "loss": 0.1877,
488
+ "step": 800
489
+ },
490
+ {
491
+ "epoch": 0.4,
492
+ "learning_rate": 7.305555555555555e-06,
493
+ "loss": 0.1569,
494
+ "step": 810
495
+ },
496
+ {
497
+ "epoch": 0.41,
498
+ "learning_rate": 7.291666666666667e-06,
499
+ "loss": 0.1651,
500
+ "step": 820
501
+ },
502
+ {
503
+ "epoch": 0.41,
504
+ "learning_rate": 7.277777777777777e-06,
505
+ "loss": 0.215,
506
+ "step": 830
507
+ },
508
+ {
509
+ "epoch": 0.42,
510
+ "learning_rate": 7.263888888888889e-06,
511
+ "loss": 0.1609,
512
+ "step": 840
513
+ },
514
+ {
515
+ "epoch": 0.42,
516
+ "learning_rate": 7.25e-06,
517
+ "loss": 0.1935,
518
+ "step": 850
519
+ },
520
+ {
521
+ "epoch": 0.43,
522
+ "learning_rate": 7.236111111111111e-06,
523
+ "loss": 0.1688,
524
+ "step": 860
525
+ },
526
+ {
527
+ "epoch": 0.43,
528
+ "learning_rate": 7.222222222222222e-06,
529
+ "loss": 0.1645,
530
+ "step": 870
531
+ },
532
+ {
533
+ "epoch": 0.44,
534
+ "learning_rate": 7.208333333333333e-06,
535
+ "loss": 0.162,
536
+ "step": 880
537
+ },
538
+ {
539
+ "epoch": 0.44,
540
+ "learning_rate": 7.194444444444444e-06,
541
+ "loss": 0.1467,
542
+ "step": 890
543
+ },
544
+ {
545
+ "epoch": 0.45,
546
+ "learning_rate": 7.180555555555555e-06,
547
+ "loss": 0.1579,
548
+ "step": 900
549
+ },
550
+ {
551
+ "epoch": 0.45,
552
+ "learning_rate": 7.166666666666667e-06,
553
+ "loss": 0.1774,
554
+ "step": 910
555
+ },
556
+ {
557
+ "epoch": 0.46,
558
+ "learning_rate": 7.1527777777777775e-06,
559
+ "loss": 0.1931,
560
+ "step": 920
561
+ },
562
+ {
563
+ "epoch": 0.46,
564
+ "learning_rate": 7.138888888888889e-06,
565
+ "loss": 0.1505,
566
+ "step": 930
567
+ },
568
+ {
569
+ "epoch": 0.47,
570
+ "learning_rate": 7.1249999999999995e-06,
571
+ "loss": 0.1632,
572
+ "step": 940
573
+ },
574
+ {
575
+ "epoch": 0.47,
576
+ "learning_rate": 7.11111111111111e-06,
577
+ "loss": 0.169,
578
+ "step": 950
579
+ },
580
+ {
581
+ "epoch": 0.47,
582
+ "learning_rate": 7.097222222222222e-06,
583
+ "loss": 0.1762,
584
+ "step": 960
585
+ },
586
+ {
587
+ "epoch": 0.48,
588
+ "learning_rate": 7.083333333333333e-06,
589
+ "loss": 0.1838,
590
+ "step": 970
591
+ },
592
+ {
593
+ "epoch": 0.48,
594
+ "learning_rate": 7.0694444444444444e-06,
595
+ "loss": 0.1622,
596
+ "step": 980
597
+ },
598
+ {
599
+ "epoch": 0.49,
600
+ "learning_rate": 7.055555555555555e-06,
601
+ "loss": 0.1562,
602
+ "step": 990
603
+ },
604
+ {
605
+ "epoch": 0.49,
606
+ "learning_rate": 7.0416666666666664e-06,
607
+ "loss": 0.1475,
608
+ "step": 1000
609
+ },
610
+ {
611
+ "epoch": 0.5,
612
+ "learning_rate": 7.027777777777777e-06,
613
+ "loss": 0.1557,
614
+ "step": 1010
615
+ },
616
+ {
617
+ "epoch": 0.5,
618
+ "learning_rate": 7.013888888888889e-06,
619
+ "loss": 0.1851,
620
+ "step": 1020
621
+ },
622
+ {
623
+ "epoch": 0.51,
624
+ "learning_rate": 7e-06,
625
+ "loss": 0.1607,
626
+ "step": 1030
627
+ },
628
+ {
629
+ "epoch": 0.51,
630
+ "learning_rate": 6.9861111111111105e-06,
631
+ "loss": 0.1541,
632
+ "step": 1040
633
+ },
634
+ {
635
+ "epoch": 0.52,
636
+ "learning_rate": 6.972222222222222e-06,
637
+ "loss": 0.1509,
638
+ "step": 1050
639
+ },
640
+ {
641
+ "epoch": 0.52,
642
+ "learning_rate": 6.9583333333333325e-06,
643
+ "loss": 0.1754,
644
+ "step": 1060
645
+ },
646
+ {
647
+ "epoch": 0.53,
648
+ "learning_rate": 6.944444444444444e-06,
649
+ "loss": 0.205,
650
+ "step": 1070
651
+ },
652
+ {
653
+ "epoch": 0.53,
654
+ "learning_rate": 6.930555555555555e-06,
655
+ "loss": 0.2037,
656
+ "step": 1080
657
+ },
658
+ {
659
+ "epoch": 0.54,
660
+ "learning_rate": 6.916666666666667e-06,
661
+ "loss": 0.1424,
662
+ "step": 1090
663
+ },
664
+ {
665
+ "epoch": 0.54,
666
+ "learning_rate": 6.902777777777777e-06,
667
+ "loss": 0.1594,
668
+ "step": 1100
669
+ },
670
+ {
671
+ "epoch": 0.55,
672
+ "learning_rate": 6.888888888888889e-06,
673
+ "loss": 0.1838,
674
+ "step": 1110
675
+ },
676
+ {
677
+ "epoch": 0.55,
678
+ "learning_rate": 6.874999999999999e-06,
679
+ "loss": 0.1626,
680
+ "step": 1120
681
+ },
682
+ {
683
+ "epoch": 0.56,
684
+ "learning_rate": 6.86111111111111e-06,
685
+ "loss": 0.1689,
686
+ "step": 1130
687
+ },
688
+ {
689
+ "epoch": 0.56,
690
+ "learning_rate": 6.847222222222222e-06,
691
+ "loss": 0.1548,
692
+ "step": 1140
693
+ },
694
+ {
695
+ "epoch": 0.57,
696
+ "learning_rate": 6.833333333333333e-06,
697
+ "loss": 0.1435,
698
+ "step": 1150
699
+ },
700
+ {
701
+ "epoch": 0.57,
702
+ "learning_rate": 6.819444444444444e-06,
703
+ "loss": 0.1939,
704
+ "step": 1160
705
+ },
706
+ {
707
+ "epoch": 0.58,
708
+ "learning_rate": 6.805555555555555e-06,
709
+ "loss": 0.1802,
710
+ "step": 1170
711
+ },
712
+ {
713
+ "epoch": 0.58,
714
+ "learning_rate": 6.791666666666666e-06,
715
+ "loss": 0.1865,
716
+ "step": 1180
717
+ },
718
+ {
719
+ "epoch": 0.59,
720
+ "learning_rate": 6.777777777777778e-06,
721
+ "loss": 0.18,
722
+ "step": 1190
723
+ },
724
+ {
725
+ "epoch": 0.59,
726
+ "learning_rate": 6.763888888888889e-06,
727
+ "loss": 0.1862,
728
+ "step": 1200
729
+ },
730
+ {
731
+ "epoch": 0.6,
732
+ "learning_rate": 6.75e-06,
733
+ "loss": 0.183,
734
+ "step": 1210
735
+ },
736
+ {
737
+ "epoch": 0.6,
738
+ "eval_loss": 0.234619140625,
739
+ "eval_runtime": 601.4014,
740
+ "eval_samples_per_second": 39.832,
741
+ "eval_steps_per_second": 4.98,
742
+ "step": 1213
743
+ },
744
+ {
745
+ "epoch": 0.6,
746
+ "learning_rate": 6.73611111111111e-06,
747
+ "loss": 0.1954,
748
+ "step": 1220
749
+ },
750
+ {
751
+ "epoch": 0.61,
752
+ "learning_rate": 6.722222222222222e-06,
753
+ "loss": 0.1433,
754
+ "step": 1230
755
+ },
756
+ {
757
+ "epoch": 0.61,
758
+ "learning_rate": 6.708333333333332e-06,
759
+ "loss": 0.1732,
760
+ "step": 1240
761
+ },
762
+ {
763
+ "epoch": 0.62,
764
+ "learning_rate": 6.694444444444445e-06,
765
+ "loss": 0.1985,
766
+ "step": 1250
767
+ },
768
+ {
769
+ "epoch": 0.62,
770
+ "learning_rate": 6.680555555555555e-06,
771
+ "loss": 0.1786,
772
+ "step": 1260
773
+ },
774
+ {
775
+ "epoch": 0.63,
776
+ "learning_rate": 6.666666666666667e-06,
777
+ "loss": 0.167,
778
+ "step": 1270
779
+ },
780
+ {
781
+ "epoch": 0.63,
782
+ "learning_rate": 6.652777777777777e-06,
783
+ "loss": 0.1548,
784
+ "step": 1280
785
+ },
786
+ {
787
+ "epoch": 0.64,
788
+ "learning_rate": 6.638888888888889e-06,
789
+ "loss": 0.1559,
790
+ "step": 1290
791
+ },
792
+ {
793
+ "epoch": 0.64,
794
+ "learning_rate": 6.625e-06,
795
+ "loss": 0.176,
796
+ "step": 1300
797
+ },
798
+ {
799
+ "epoch": 0.65,
800
+ "learning_rate": 6.611111111111111e-06,
801
+ "loss": 0.1687,
802
+ "step": 1310
803
+ },
804
+ {
805
+ "epoch": 0.65,
806
+ "learning_rate": 6.597222222222222e-06,
807
+ "loss": 0.1497,
808
+ "step": 1320
809
+ },
810
+ {
811
+ "epoch": 0.66,
812
+ "learning_rate": 6.583333333333333e-06,
813
+ "loss": 0.1891,
814
+ "step": 1330
815
+ },
816
+ {
817
+ "epoch": 0.66,
818
+ "learning_rate": 6.569444444444444e-06,
819
+ "loss": 0.1783,
820
+ "step": 1340
821
+ },
822
+ {
823
+ "epoch": 0.67,
824
+ "learning_rate": 6.555555555555555e-06,
825
+ "loss": 0.168,
826
+ "step": 1350
827
+ },
828
+ {
829
+ "epoch": 0.67,
830
+ "learning_rate": 6.541666666666667e-06,
831
+ "loss": 0.1871,
832
+ "step": 1360
833
+ },
834
+ {
835
+ "epoch": 0.68,
836
+ "learning_rate": 6.527777777777778e-06,
837
+ "loss": 0.1601,
838
+ "step": 1370
839
+ },
840
+ {
841
+ "epoch": 0.68,
842
+ "learning_rate": 6.513888888888889e-06,
843
+ "loss": 0.1466,
844
+ "step": 1380
845
+ },
846
+ {
847
+ "epoch": 0.69,
848
+ "learning_rate": 6.5e-06,
849
+ "loss": 0.1799,
850
+ "step": 1390
851
+ },
852
+ {
853
+ "epoch": 0.69,
854
+ "learning_rate": 6.48611111111111e-06,
855
+ "loss": 0.1448,
856
+ "step": 1400
857
+ },
858
+ {
859
+ "epoch": 0.7,
860
+ "learning_rate": 6.472222222222222e-06,
861
+ "loss": 0.1459,
862
+ "step": 1410
863
+ },
864
+ {
865
+ "epoch": 0.7,
866
+ "learning_rate": 6.458333333333333e-06,
867
+ "loss": 0.1677,
868
+ "step": 1420
869
+ },
870
+ {
871
+ "epoch": 0.71,
872
+ "learning_rate": 6.4444444444444445e-06,
873
+ "loss": 0.1878,
874
+ "step": 1430
875
+ },
876
+ {
877
+ "epoch": 0.71,
878
+ "learning_rate": 6.430555555555555e-06,
879
+ "loss": 0.1494,
880
+ "step": 1440
881
+ },
882
+ {
883
+ "epoch": 0.72,
884
+ "learning_rate": 6.4166666666666665e-06,
885
+ "loss": 0.1406,
886
+ "step": 1450
887
+ },
888
+ {
889
+ "epoch": 0.72,
890
+ "learning_rate": 6.402777777777777e-06,
891
+ "loss": 0.1538,
892
+ "step": 1460
893
+ },
894
+ {
895
+ "epoch": 0.73,
896
+ "learning_rate": 6.390277777777778e-06,
897
+ "loss": 0.169,
898
+ "step": 1470
899
+ },
900
+ {
901
+ "epoch": 0.73,
902
+ "learning_rate": 6.376388888888889e-06,
903
+ "loss": 0.1444,
904
+ "step": 1480
905
+ },
906
+ {
907
+ "epoch": 0.74,
908
+ "learning_rate": 6.3625e-06,
909
+ "loss": 0.1561,
910
+ "step": 1490
911
+ },
912
+ {
913
+ "epoch": 0.74,
914
+ "learning_rate": 6.348611111111111e-06,
915
+ "loss": 0.1493,
916
+ "step": 1500
917
+ },
918
+ {
919
+ "epoch": 0.75,
920
+ "learning_rate": 6.334722222222222e-06,
921
+ "loss": 0.1547,
922
+ "step": 1510
923
+ },
924
+ {
925
+ "epoch": 0.75,
926
+ "learning_rate": 6.320833333333333e-06,
927
+ "loss": 0.1749,
928
+ "step": 1520
929
+ },
930
+ {
931
+ "epoch": 0.76,
932
+ "learning_rate": 6.3069444444444445e-06,
933
+ "loss": 0.1903,
934
+ "step": 1530
935
+ },
936
+ {
937
+ "epoch": 0.76,
938
+ "learning_rate": 6.293055555555555e-06,
939
+ "loss": 0.18,
940
+ "step": 1540
941
+ },
942
+ {
943
+ "epoch": 0.77,
944
+ "learning_rate": 6.2791666666666665e-06,
945
+ "loss": 0.1491,
946
+ "step": 1550
947
+ },
948
+ {
949
+ "epoch": 0.77,
950
+ "learning_rate": 6.265277777777777e-06,
951
+ "loss": 0.1777,
952
+ "step": 1560
953
+ },
954
+ {
955
+ "epoch": 0.78,
956
+ "learning_rate": 6.2513888888888886e-06,
957
+ "loss": 0.1226,
958
+ "step": 1570
959
+ },
960
+ {
961
+ "epoch": 0.78,
962
+ "learning_rate": 6.237499999999999e-06,
963
+ "loss": 0.1822,
964
+ "step": 1580
965
+ },
966
+ {
967
+ "epoch": 0.79,
968
+ "learning_rate": 6.2236111111111114e-06,
969
+ "loss": 0.143,
970
+ "step": 1590
971
+ },
972
+ {
973
+ "epoch": 0.79,
974
+ "learning_rate": 6.209722222222222e-06,
975
+ "loss": 0.1411,
976
+ "step": 1600
977
+ },
978
+ {
979
+ "epoch": 0.8,
980
+ "learning_rate": 6.1958333333333334e-06,
981
+ "loss": 0.1452,
982
+ "step": 1610
983
+ },
984
+ {
985
+ "epoch": 0.8,
986
+ "learning_rate": 6.181944444444444e-06,
987
+ "loss": 0.1673,
988
+ "step": 1620
989
+ },
990
+ {
991
+ "epoch": 0.81,
992
+ "learning_rate": 6.169444444444444e-06,
993
+ "loss": 0.1706,
994
+ "step": 1630
995
+ },
996
+ {
997
+ "epoch": 0.81,
998
+ "learning_rate": 6.155555555555556e-06,
999
+ "loss": 0.1755,
1000
+ "step": 1640
1001
+ },
1002
+ {
1003
+ "epoch": 0.82,
1004
+ "learning_rate": 6.141666666666667e-06,
1005
+ "loss": 0.1831,
1006
+ "step": 1650
1007
+ },
1008
+ {
1009
+ "epoch": 0.82,
1010
+ "learning_rate": 6.127777777777778e-06,
1011
+ "loss": 0.1402,
1012
+ "step": 1660
1013
+ },
1014
+ {
1015
+ "epoch": 0.83,
1016
+ "learning_rate": 6.113888888888889e-06,
1017
+ "loss": 0.1434,
1018
+ "step": 1670
1019
+ },
1020
+ {
1021
+ "epoch": 0.83,
1022
+ "learning_rate": 6.099999999999999e-06,
1023
+ "loss": 0.1347,
1024
+ "step": 1680
1025
+ },
1026
+ {
1027
+ "epoch": 0.84,
1028
+ "learning_rate": 6.086111111111111e-06,
1029
+ "loss": 0.1614,
1030
+ "step": 1690
1031
+ },
1032
+ {
1033
+ "epoch": 0.84,
1034
+ "learning_rate": 6.072222222222222e-06,
1035
+ "loss": 0.1533,
1036
+ "step": 1700
1037
+ },
1038
+ {
1039
+ "epoch": 0.85,
1040
+ "learning_rate": 6.0583333333333335e-06,
1041
+ "loss": 0.1666,
1042
+ "step": 1710
1043
+ },
1044
+ {
1045
+ "epoch": 0.85,
1046
+ "learning_rate": 6.044444444444444e-06,
1047
+ "loss": 0.1725,
1048
+ "step": 1720
1049
+ },
1050
+ {
1051
+ "epoch": 0.86,
1052
+ "learning_rate": 6.0305555555555555e-06,
1053
+ "loss": 0.1819,
1054
+ "step": 1730
1055
+ },
1056
+ {
1057
+ "epoch": 0.86,
1058
+ "learning_rate": 6.016666666666666e-06,
1059
+ "loss": 0.1739,
1060
+ "step": 1740
1061
+ },
1062
+ {
1063
+ "epoch": 0.87,
1064
+ "learning_rate": 6.0027777777777775e-06,
1065
+ "loss": 0.1573,
1066
+ "step": 1750
1067
+ },
1068
+ {
1069
+ "epoch": 0.87,
1070
+ "learning_rate": 5.988888888888889e-06,
1071
+ "loss": 0.1458,
1072
+ "step": 1760
1073
+ },
1074
+ {
1075
+ "epoch": 0.88,
1076
+ "learning_rate": 5.9749999999999995e-06,
1077
+ "loss": 0.1243,
1078
+ "step": 1770
1079
+ },
1080
+ {
1081
+ "epoch": 0.88,
1082
+ "learning_rate": 5.961111111111111e-06,
1083
+ "loss": 0.1657,
1084
+ "step": 1780
1085
+ },
1086
+ {
1087
+ "epoch": 0.89,
1088
+ "learning_rate": 5.9472222222222216e-06,
1089
+ "loss": 0.1871,
1090
+ "step": 1790
1091
+ },
1092
+ {
1093
+ "epoch": 0.89,
1094
+ "learning_rate": 5.933333333333333e-06,
1095
+ "loss": 0.1365,
1096
+ "step": 1800
1097
+ },
1098
+ {
1099
+ "epoch": 0.9,
1100
+ "learning_rate": 5.9194444444444444e-06,
1101
+ "loss": 0.0987,
1102
+ "step": 1810
1103
+ },
1104
+ {
1105
+ "epoch": 0.9,
1106
+ "learning_rate": 5.905555555555556e-06,
1107
+ "loss": 0.1396,
1108
+ "step": 1820
1109
+ },
1110
+ {
1111
+ "epoch": 0.91,
1112
+ "learning_rate": 5.8916666666666664e-06,
1113
+ "loss": 0.1693,
1114
+ "step": 1830
1115
+ },
1116
+ {
1117
+ "epoch": 0.91,
1118
+ "learning_rate": 5.877777777777778e-06,
1119
+ "loss": 0.1391,
1120
+ "step": 1840
1121
+ },
1122
+ {
1123
+ "epoch": 0.92,
1124
+ "learning_rate": 5.8638888888888885e-06,
1125
+ "loss": 0.1439,
1126
+ "step": 1850
1127
+ },
1128
+ {
1129
+ "epoch": 0.92,
1130
+ "learning_rate": 5.849999999999999e-06,
1131
+ "loss": 0.1503,
1132
+ "step": 1860
1133
+ },
1134
+ {
1135
+ "epoch": 0.93,
1136
+ "learning_rate": 5.836111111111111e-06,
1137
+ "loss": 0.1359,
1138
+ "step": 1870
1139
+ },
1140
+ {
1141
+ "epoch": 0.93,
1142
+ "learning_rate": 5.822222222222222e-06,
1143
+ "loss": 0.1423,
1144
+ "step": 1880
1145
+ },
1146
+ {
1147
+ "epoch": 0.93,
1148
+ "learning_rate": 5.808333333333333e-06,
1149
+ "loss": 0.1317,
1150
+ "step": 1890
1151
+ },
1152
+ {
1153
+ "epoch": 0.94,
1154
+ "learning_rate": 5.794444444444444e-06,
1155
+ "loss": 0.1431,
1156
+ "step": 1900
1157
+ },
1158
+ {
1159
+ "epoch": 0.94,
1160
+ "learning_rate": 5.780555555555555e-06,
1161
+ "loss": 0.1235,
1162
+ "step": 1910
1163
+ },
1164
+ {
1165
+ "epoch": 0.95,
1166
+ "learning_rate": 5.766666666666666e-06,
1167
+ "loss": 0.1397,
1168
+ "step": 1920
1169
+ },
1170
+ {
1171
+ "epoch": 0.95,
1172
+ "learning_rate": 5.752777777777778e-06,
1173
+ "loss": 0.1375,
1174
+ "step": 1930
1175
+ },
1176
+ {
1177
+ "epoch": 0.96,
1178
+ "learning_rate": 5.738888888888889e-06,
1179
+ "loss": 0.1341,
1180
+ "step": 1940
1181
+ },
1182
+ {
1183
+ "epoch": 0.96,
1184
+ "learning_rate": 5.724999999999999e-06,
1185
+ "loss": 0.1408,
1186
+ "step": 1950
1187
+ },
1188
+ {
1189
+ "epoch": 0.97,
1190
+ "learning_rate": 5.711111111111111e-06,
1191
+ "loss": 0.1766,
1192
+ "step": 1960
1193
+ },
1194
+ {
1195
+ "epoch": 0.97,
1196
+ "learning_rate": 5.697222222222221e-06,
1197
+ "loss": 0.177,
1198
+ "step": 1970
1199
+ },
1200
+ {
1201
+ "epoch": 0.98,
1202
+ "learning_rate": 5.683333333333334e-06,
1203
+ "loss": 0.1586,
1204
+ "step": 1980
1205
+ },
1206
+ {
1207
+ "epoch": 0.98,
1208
+ "learning_rate": 5.669444444444444e-06,
1209
+ "loss": 0.1447,
1210
+ "step": 1990
1211
+ },
1212
+ {
1213
+ "epoch": 0.99,
1214
+ "learning_rate": 5.655555555555556e-06,
1215
+ "loss": 0.1452,
1216
+ "step": 2000
1217
+ },
1218
+ {
1219
+ "epoch": 0.99,
1220
+ "learning_rate": 5.641666666666666e-06,
1221
+ "loss": 0.1078,
1222
+ "step": 2010
1223
+ },
1224
+ {
1225
+ "epoch": 1.0,
1226
+ "learning_rate": 5.627777777777778e-06,
1227
+ "loss": 0.1133,
1228
+ "step": 2020
1229
+ },
1230
+ {
1231
+ "epoch": 1.0,
1232
+ "learning_rate": 5.613888888888888e-06,
1233
+ "loss": 0.1288,
1234
+ "step": 2030
1235
+ },
1236
+ {
1237
+ "epoch": 1.01,
1238
+ "learning_rate": 5.6e-06,
1239
+ "loss": 0.1128,
1240
+ "step": 2040
1241
+ },
1242
+ {
1243
+ "epoch": 1.01,
1244
+ "learning_rate": 5.586111111111111e-06,
1245
+ "loss": 0.1298,
1246
+ "step": 2050
1247
+ },
1248
+ {
1249
+ "epoch": 1.02,
1250
+ "learning_rate": 5.572222222222222e-06,
1251
+ "loss": 0.1189,
1252
+ "step": 2060
1253
+ },
1254
+ {
1255
+ "epoch": 1.02,
1256
+ "learning_rate": 5.558333333333333e-06,
1257
+ "loss": 0.1478,
1258
+ "step": 2070
1259
+ },
1260
+ {
1261
+ "epoch": 1.03,
1262
+ "learning_rate": 5.544444444444444e-06,
1263
+ "loss": 0.1179,
1264
+ "step": 2080
1265
+ },
1266
+ {
1267
+ "epoch": 1.03,
1268
+ "learning_rate": 5.530555555555556e-06,
1269
+ "loss": 0.1119,
1270
+ "step": 2090
1271
+ },
1272
+ {
1273
+ "epoch": 1.04,
1274
+ "learning_rate": 5.516666666666667e-06,
1275
+ "loss": 0.1355,
1276
+ "step": 2100
1277
+ },
1278
+ {
1279
+ "epoch": 1.04,
1280
+ "learning_rate": 5.502777777777778e-06,
1281
+ "loss": 0.1105,
1282
+ "step": 2110
1283
+ },
1284
+ {
1285
+ "epoch": 1.05,
1286
+ "learning_rate": 5.488888888888889e-06,
1287
+ "loss": 0.1289,
1288
+ "step": 2120
1289
+ },
1290
+ {
1291
+ "epoch": 1.05,
1292
+ "learning_rate": 5.474999999999999e-06,
1293
+ "loss": 0.1127,
1294
+ "step": 2130
1295
+ },
1296
+ {
1297
+ "epoch": 1.06,
1298
+ "learning_rate": 5.461111111111111e-06,
1299
+ "loss": 0.1814,
1300
+ "step": 2140
1301
+ },
1302
+ {
1303
+ "epoch": 1.06,
1304
+ "learning_rate": 5.447222222222222e-06,
1305
+ "loss": 0.1554,
1306
+ "step": 2150
1307
+ },
1308
+ {
1309
+ "epoch": 1.07,
1310
+ "learning_rate": 5.4333333333333335e-06,
1311
+ "loss": 0.1038,
1312
+ "step": 2160
1313
+ },
1314
+ {
1315
+ "epoch": 1.07,
1316
+ "learning_rate": 5.419444444444444e-06,
1317
+ "loss": 0.1085,
1318
+ "step": 2170
1319
+ },
1320
+ {
1321
+ "epoch": 1.08,
1322
+ "learning_rate": 5.4055555555555556e-06,
1323
+ "loss": 0.1364,
1324
+ "step": 2180
1325
+ },
1326
+ {
1327
+ "epoch": 1.08,
1328
+ "learning_rate": 5.391666666666666e-06,
1329
+ "loss": 0.1089,
1330
+ "step": 2190
1331
+ },
1332
+ {
1333
+ "epoch": 1.09,
1334
+ "learning_rate": 5.377777777777778e-06,
1335
+ "loss": 0.1484,
1336
+ "step": 2200
1337
+ },
1338
+ {
1339
+ "epoch": 1.09,
1340
+ "learning_rate": 5.363888888888889e-06,
1341
+ "loss": 0.1254,
1342
+ "step": 2210
1343
+ },
1344
+ {
1345
+ "epoch": 1.1,
1346
+ "learning_rate": 5.35e-06,
1347
+ "loss": 0.1228,
1348
+ "step": 2220
1349
+ },
1350
+ {
1351
+ "epoch": 1.1,
1352
+ "learning_rate": 5.336111111111111e-06,
1353
+ "loss": 0.154,
1354
+ "step": 2230
1355
+ },
1356
+ {
1357
+ "epoch": 1.11,
1358
+ "learning_rate": 5.322222222222222e-06,
1359
+ "loss": 0.1745,
1360
+ "step": 2240
1361
+ },
1362
+ {
1363
+ "epoch": 1.11,
1364
+ "learning_rate": 5.308333333333333e-06,
1365
+ "loss": 0.1031,
1366
+ "step": 2250
1367
+ },
1368
+ {
1369
+ "epoch": 1.12,
1370
+ "learning_rate": 5.294444444444444e-06,
1371
+ "loss": 0.1359,
1372
+ "step": 2260
1373
+ },
1374
+ {
1375
+ "epoch": 1.12,
1376
+ "learning_rate": 5.280555555555556e-06,
1377
+ "loss": 0.1194,
1378
+ "step": 2270
1379
+ },
1380
+ {
1381
+ "epoch": 1.13,
1382
+ "learning_rate": 5.2666666666666665e-06,
1383
+ "loss": 0.1398,
1384
+ "step": 2280
1385
+ },
1386
+ {
1387
+ "epoch": 1.13,
1388
+ "learning_rate": 5.252777777777778e-06,
1389
+ "loss": 0.1277,
1390
+ "step": 2290
1391
+ },
1392
+ {
1393
+ "epoch": 1.14,
1394
+ "learning_rate": 5.2388888888888885e-06,
1395
+ "loss": 0.1121,
1396
+ "step": 2300
1397
+ },
1398
+ {
1399
+ "epoch": 1.14,
1400
+ "learning_rate": 5.224999999999999e-06,
1401
+ "loss": 0.1067,
1402
+ "step": 2310
1403
+ },
1404
+ {
1405
+ "epoch": 1.15,
1406
+ "learning_rate": 5.211111111111111e-06,
1407
+ "loss": 0.1101,
1408
+ "step": 2320
1409
+ },
1410
+ {
1411
+ "epoch": 1.15,
1412
+ "learning_rate": 5.197222222222222e-06,
1413
+ "loss": 0.1192,
1414
+ "step": 2330
1415
+ },
1416
+ {
1417
+ "epoch": 1.16,
1418
+ "learning_rate": 5.183333333333333e-06,
1419
+ "loss": 0.1055,
1420
+ "step": 2340
1421
+ },
1422
+ {
1423
+ "epoch": 1.16,
1424
+ "learning_rate": 5.169444444444444e-06,
1425
+ "loss": 0.1232,
1426
+ "step": 2350
1427
+ },
1428
+ {
1429
+ "epoch": 1.17,
1430
+ "learning_rate": 5.155555555555555e-06,
1431
+ "loss": 0.1096,
1432
+ "step": 2360
1433
+ },
1434
+ {
1435
+ "epoch": 1.17,
1436
+ "learning_rate": 5.141666666666666e-06,
1437
+ "loss": 0.0831,
1438
+ "step": 2370
1439
+ },
1440
+ {
1441
+ "epoch": 1.18,
1442
+ "learning_rate": 5.127777777777778e-06,
1443
+ "loss": 0.149,
1444
+ "step": 2380
1445
+ },
1446
+ {
1447
+ "epoch": 1.18,
1448
+ "learning_rate": 5.113888888888889e-06,
1449
+ "loss": 0.1328,
1450
+ "step": 2390
1451
+ },
1452
+ {
1453
+ "epoch": 1.19,
1454
+ "learning_rate": 5.0999999999999995e-06,
1455
+ "loss": 0.1193,
1456
+ "step": 2400
1457
+ },
1458
+ {
1459
+ "epoch": 1.19,
1460
+ "learning_rate": 5.086111111111111e-06,
1461
+ "loss": 0.1222,
1462
+ "step": 2410
1463
+ },
1464
+ {
1465
+ "epoch": 1.2,
1466
+ "learning_rate": 5.0722222222222215e-06,
1467
+ "loss": 0.1395,
1468
+ "step": 2420
1469
+ },
1470
+ {
1471
+ "epoch": 1.2,
1472
+ "eval_loss": 0.26611328125,
1473
+ "eval_runtime": 595.4698,
1474
+ "eval_samples_per_second": 40.229,
1475
+ "eval_steps_per_second": 5.03,
1476
+ "step": 2426
1477
+ },
1478
+ {
1479
+ "epoch": 1.2,
1480
+ "learning_rate": 5.058333333333334e-06,
1481
+ "loss": 0.1261,
1482
+ "step": 2430
1483
+ },
1484
+ {
1485
+ "epoch": 1.21,
1486
+ "learning_rate": 5.044444444444444e-06,
1487
+ "loss": 0.1416,
1488
+ "step": 2440
1489
+ },
1490
+ {
1491
+ "epoch": 1.21,
1492
+ "learning_rate": 5.030555555555556e-06,
1493
+ "loss": 0.1453,
1494
+ "step": 2450
1495
+ },
1496
+ {
1497
+ "epoch": 1.22,
1498
+ "learning_rate": 5.016666666666666e-06,
1499
+ "loss": 0.114,
1500
+ "step": 2460
1501
+ },
1502
+ {
1503
+ "epoch": 1.22,
1504
+ "learning_rate": 5.002777777777778e-06,
1505
+ "loss": 0.133,
1506
+ "step": 2470
1507
+ },
1508
+ {
1509
+ "epoch": 1.23,
1510
+ "learning_rate": 4.988888888888888e-06,
1511
+ "loss": 0.1207,
1512
+ "step": 2480
1513
+ },
1514
+ {
1515
+ "epoch": 1.23,
1516
+ "learning_rate": 4.975e-06,
1517
+ "loss": 0.1123,
1518
+ "step": 2490
1519
+ },
1520
+ {
1521
+ "epoch": 1.24,
1522
+ "learning_rate": 4.961111111111111e-06,
1523
+ "loss": 0.1039,
1524
+ "step": 2500
1525
+ },
1526
+ {
1527
+ "epoch": 1.24,
1528
+ "learning_rate": 4.947222222222222e-06,
1529
+ "loss": 0.091,
1530
+ "step": 2510
1531
+ },
1532
+ {
1533
+ "epoch": 1.25,
1534
+ "learning_rate": 4.933333333333333e-06,
1535
+ "loss": 0.1588,
1536
+ "step": 2520
1537
+ },
1538
+ {
1539
+ "epoch": 1.25,
1540
+ "learning_rate": 4.919444444444444e-06,
1541
+ "loss": 0.098,
1542
+ "step": 2530
1543
+ },
1544
+ {
1545
+ "epoch": 1.26,
1546
+ "learning_rate": 4.905555555555555e-06,
1547
+ "loss": 0.1033,
1548
+ "step": 2540
1549
+ },
1550
+ {
1551
+ "epoch": 1.26,
1552
+ "learning_rate": 4.891666666666667e-06,
1553
+ "loss": 0.1473,
1554
+ "step": 2550
1555
+ },
1556
+ {
1557
+ "epoch": 1.27,
1558
+ "learning_rate": 4.877777777777778e-06,
1559
+ "loss": 0.1331,
1560
+ "step": 2560
1561
+ },
1562
+ {
1563
+ "epoch": 1.27,
1564
+ "learning_rate": 4.863888888888889e-06,
1565
+ "loss": 0.1196,
1566
+ "step": 2570
1567
+ },
1568
+ {
1569
+ "epoch": 1.28,
1570
+ "learning_rate": 4.849999999999999e-06,
1571
+ "loss": 0.1379,
1572
+ "step": 2580
1573
+ },
1574
+ {
1575
+ "epoch": 1.28,
1576
+ "learning_rate": 4.836111111111111e-06,
1577
+ "loss": 0.124,
1578
+ "step": 2590
1579
+ },
1580
+ {
1581
+ "epoch": 1.29,
1582
+ "learning_rate": 4.822222222222222e-06,
1583
+ "loss": 0.1058,
1584
+ "step": 2600
1585
+ },
1586
+ {
1587
+ "epoch": 1.29,
1588
+ "learning_rate": 4.808333333333334e-06,
1589
+ "loss": 0.1132,
1590
+ "step": 2610
1591
+ },
1592
+ {
1593
+ "epoch": 1.3,
1594
+ "learning_rate": 4.794444444444444e-06,
1595
+ "loss": 0.1077,
1596
+ "step": 2620
1597
+ },
1598
+ {
1599
+ "epoch": 1.3,
1600
+ "learning_rate": 4.780555555555556e-06,
1601
+ "loss": 0.1266,
1602
+ "step": 2630
1603
+ },
1604
+ {
1605
+ "epoch": 1.31,
1606
+ "learning_rate": 4.766666666666666e-06,
1607
+ "loss": 0.1292,
1608
+ "step": 2640
1609
+ },
1610
+ {
1611
+ "epoch": 1.31,
1612
+ "learning_rate": 4.752777777777778e-06,
1613
+ "loss": 0.0969,
1614
+ "step": 2650
1615
+ },
1616
+ {
1617
+ "epoch": 1.32,
1618
+ "learning_rate": 4.738888888888889e-06,
1619
+ "loss": 0.0946,
1620
+ "step": 2660
1621
+ },
1622
+ {
1623
+ "epoch": 1.32,
1624
+ "learning_rate": 4.725e-06,
1625
+ "loss": 0.1479,
1626
+ "step": 2670
1627
+ },
1628
+ {
1629
+ "epoch": 1.33,
1630
+ "learning_rate": 4.711111111111111e-06,
1631
+ "loss": 0.133,
1632
+ "step": 2680
1633
+ },
1634
+ {
1635
+ "epoch": 1.33,
1636
+ "learning_rate": 4.697222222222222e-06,
1637
+ "loss": 0.1118,
1638
+ "step": 2690
1639
+ },
1640
+ {
1641
+ "epoch": 1.34,
1642
+ "learning_rate": 4.683333333333333e-06,
1643
+ "loss": 0.1362,
1644
+ "step": 2700
1645
+ },
1646
+ {
1647
+ "epoch": 1.34,
1648
+ "learning_rate": 4.669444444444444e-06,
1649
+ "loss": 0.1384,
1650
+ "step": 2710
1651
+ },
1652
+ {
1653
+ "epoch": 1.35,
1654
+ "learning_rate": 4.655555555555556e-06,
1655
+ "loss": 0.1275,
1656
+ "step": 2720
1657
+ },
1658
+ {
1659
+ "epoch": 1.35,
1660
+ "learning_rate": 4.6416666666666666e-06,
1661
+ "loss": 0.1416,
1662
+ "step": 2730
1663
+ },
1664
+ {
1665
+ "epoch": 1.36,
1666
+ "learning_rate": 4.627777777777778e-06,
1667
+ "loss": 0.1119,
1668
+ "step": 2740
1669
+ },
1670
+ {
1671
+ "epoch": 1.36,
1672
+ "learning_rate": 4.6138888888888886e-06,
1673
+ "loss": 0.1079,
1674
+ "step": 2750
1675
+ },
1676
+ {
1677
+ "epoch": 1.37,
1678
+ "learning_rate": 4.599999999999999e-06,
1679
+ "loss": 0.1197,
1680
+ "step": 2760
1681
+ },
1682
+ {
1683
+ "epoch": 1.37,
1684
+ "learning_rate": 4.5861111111111114e-06,
1685
+ "loss": 0.1115,
1686
+ "step": 2770
1687
+ },
1688
+ {
1689
+ "epoch": 1.38,
1690
+ "learning_rate": 4.572222222222222e-06,
1691
+ "loss": 0.1023,
1692
+ "step": 2780
1693
+ },
1694
+ {
1695
+ "epoch": 1.38,
1696
+ "learning_rate": 4.5583333333333335e-06,
1697
+ "loss": 0.1109,
1698
+ "step": 2790
1699
+ },
1700
+ {
1701
+ "epoch": 1.39,
1702
+ "learning_rate": 4.544444444444444e-06,
1703
+ "loss": 0.1184,
1704
+ "step": 2800
1705
+ },
1706
+ {
1707
+ "epoch": 1.39,
1708
+ "learning_rate": 4.5305555555555555e-06,
1709
+ "loss": 0.1103,
1710
+ "step": 2810
1711
+ },
1712
+ {
1713
+ "epoch": 1.4,
1714
+ "learning_rate": 4.516666666666666e-06,
1715
+ "loss": 0.1074,
1716
+ "step": 2820
1717
+ },
1718
+ {
1719
+ "epoch": 1.4,
1720
+ "learning_rate": 4.502777777777778e-06,
1721
+ "loss": 0.1139,
1722
+ "step": 2830
1723
+ },
1724
+ {
1725
+ "epoch": 1.4,
1726
+ "learning_rate": 4.488888888888889e-06,
1727
+ "loss": 0.1107,
1728
+ "step": 2840
1729
+ },
1730
+ {
1731
+ "epoch": 1.41,
1732
+ "learning_rate": 4.4749999999999995e-06,
1733
+ "loss": 0.0777,
1734
+ "step": 2850
1735
+ },
1736
+ {
1737
+ "epoch": 1.41,
1738
+ "learning_rate": 4.461111111111111e-06,
1739
+ "loss": 0.1348,
1740
+ "step": 2860
1741
+ },
1742
+ {
1743
+ "epoch": 1.42,
1744
+ "learning_rate": 4.4472222222222215e-06,
1745
+ "loss": 0.1362,
1746
+ "step": 2870
1747
+ },
1748
+ {
1749
+ "epoch": 1.42,
1750
+ "learning_rate": 4.433333333333333e-06,
1751
+ "loss": 0.1374,
1752
+ "step": 2880
1753
+ },
1754
+ {
1755
+ "epoch": 1.43,
1756
+ "learning_rate": 4.419444444444444e-06,
1757
+ "loss": 0.1135,
1758
+ "step": 2890
1759
+ },
1760
+ {
1761
+ "epoch": 1.43,
1762
+ "learning_rate": 4.405555555555556e-06,
1763
+ "loss": 0.1166,
1764
+ "step": 2900
1765
+ },
1766
+ {
1767
+ "epoch": 1.44,
1768
+ "learning_rate": 4.391666666666666e-06,
1769
+ "loss": 0.1202,
1770
+ "step": 2910
1771
+ },
1772
+ {
1773
+ "epoch": 1.44,
1774
+ "learning_rate": 4.377777777777778e-06,
1775
+ "loss": 0.1455,
1776
+ "step": 2920
1777
+ },
1778
+ {
1779
+ "epoch": 1.45,
1780
+ "learning_rate": 4.3638888888888884e-06,
1781
+ "loss": 0.0831,
1782
+ "step": 2930
1783
+ },
1784
+ {
1785
+ "epoch": 1.45,
1786
+ "learning_rate": 4.35e-06,
1787
+ "loss": 0.1211,
1788
+ "step": 2940
1789
+ },
1790
+ {
1791
+ "epoch": 1.46,
1792
+ "learning_rate": 4.336111111111111e-06,
1793
+ "loss": 0.1194,
1794
+ "step": 2950
1795
+ },
1796
+ {
1797
+ "epoch": 1.46,
1798
+ "learning_rate": 4.322222222222222e-06,
1799
+ "loss": 0.1124,
1800
+ "step": 2960
1801
+ },
1802
+ {
1803
+ "epoch": 1.47,
1804
+ "learning_rate": 4.308333333333333e-06,
1805
+ "loss": 0.0947,
1806
+ "step": 2970
1807
+ },
1808
+ {
1809
+ "epoch": 1.47,
1810
+ "learning_rate": 4.294444444444444e-06,
1811
+ "loss": 0.1152,
1812
+ "step": 2980
1813
+ },
1814
+ {
1815
+ "epoch": 1.48,
1816
+ "learning_rate": 4.280555555555555e-06,
1817
+ "loss": 0.0858,
1818
+ "step": 2990
1819
+ },
1820
+ {
1821
+ "epoch": 1.48,
1822
+ "learning_rate": 4.266666666666667e-06,
1823
+ "loss": 0.087,
1824
+ "step": 3000
1825
+ },
1826
+ {
1827
+ "epoch": 1.49,
1828
+ "learning_rate": 4.252777777777778e-06,
1829
+ "loss": 0.1237,
1830
+ "step": 3010
1831
+ },
1832
+ {
1833
+ "epoch": 1.49,
1834
+ "learning_rate": 4.238888888888889e-06,
1835
+ "loss": 0.0809,
1836
+ "step": 3020
1837
+ },
1838
+ {
1839
+ "epoch": 1.5,
1840
+ "learning_rate": 4.224999999999999e-06,
1841
+ "loss": 0.1022,
1842
+ "step": 3030
1843
+ },
1844
+ {
1845
+ "epoch": 1.5,
1846
+ "learning_rate": 4.211111111111111e-06,
1847
+ "loss": 0.101,
1848
+ "step": 3040
1849
+ },
1850
+ {
1851
+ "epoch": 1.51,
1852
+ "learning_rate": 4.197222222222221e-06,
1853
+ "loss": 0.1327,
1854
+ "step": 3050
1855
+ },
1856
+ {
1857
+ "epoch": 1.51,
1858
+ "learning_rate": 4.183333333333334e-06,
1859
+ "loss": 0.1056,
1860
+ "step": 3060
1861
+ },
1862
+ {
1863
+ "epoch": 1.52,
1864
+ "learning_rate": 4.169444444444444e-06,
1865
+ "loss": 0.1129,
1866
+ "step": 3070
1867
+ },
1868
+ {
1869
+ "epoch": 1.52,
1870
+ "learning_rate": 4.155555555555556e-06,
1871
+ "loss": 0.1119,
1872
+ "step": 3080
1873
+ },
1874
+ {
1875
+ "epoch": 1.53,
1876
+ "learning_rate": 4.141666666666666e-06,
1877
+ "loss": 0.1287,
1878
+ "step": 3090
1879
+ },
1880
+ {
1881
+ "epoch": 1.53,
1882
+ "learning_rate": 4.127777777777778e-06,
1883
+ "loss": 0.1179,
1884
+ "step": 3100
1885
+ },
1886
+ {
1887
+ "epoch": 1.54,
1888
+ "learning_rate": 4.113888888888889e-06,
1889
+ "loss": 0.1152,
1890
+ "step": 3110
1891
+ },
1892
+ {
1893
+ "epoch": 1.54,
1894
+ "learning_rate": 4.1e-06,
1895
+ "loss": 0.0833,
1896
+ "step": 3120
1897
+ },
1898
+ {
1899
+ "epoch": 1.55,
1900
+ "learning_rate": 4.086111111111111e-06,
1901
+ "loss": 0.1304,
1902
+ "step": 3130
1903
+ },
1904
+ {
1905
+ "epoch": 1.55,
1906
+ "learning_rate": 4.072222222222222e-06,
1907
+ "loss": 0.0813,
1908
+ "step": 3140
1909
+ },
1910
+ {
1911
+ "epoch": 1.56,
1912
+ "learning_rate": 4.058333333333333e-06,
1913
+ "loss": 0.1068,
1914
+ "step": 3150
1915
+ },
1916
+ {
1917
+ "epoch": 1.56,
1918
+ "learning_rate": 4.044444444444444e-06,
1919
+ "loss": 0.0998,
1920
+ "step": 3160
1921
+ },
1922
+ {
1923
+ "epoch": 1.57,
1924
+ "learning_rate": 4.030555555555556e-06,
1925
+ "loss": 0.1109,
1926
+ "step": 3170
1927
+ },
1928
+ {
1929
+ "epoch": 1.57,
1930
+ "learning_rate": 4.016666666666667e-06,
1931
+ "loss": 0.1193,
1932
+ "step": 3180
1933
+ },
1934
+ {
1935
+ "epoch": 1.58,
1936
+ "learning_rate": 4.002777777777778e-06,
1937
+ "loss": 0.1234,
1938
+ "step": 3190
1939
+ },
1940
+ {
1941
+ "epoch": 1.58,
1942
+ "learning_rate": 3.988888888888889e-06,
1943
+ "loss": 0.1049,
1944
+ "step": 3200
1945
+ },
1946
+ {
1947
+ "epoch": 1.59,
1948
+ "learning_rate": 3.975e-06,
1949
+ "loss": 0.1017,
1950
+ "step": 3210
1951
+ },
1952
+ {
1953
+ "epoch": 1.59,
1954
+ "learning_rate": 3.9611111111111115e-06,
1955
+ "loss": 0.1044,
1956
+ "step": 3220
1957
+ },
1958
+ {
1959
+ "epoch": 1.6,
1960
+ "learning_rate": 3.947222222222222e-06,
1961
+ "loss": 0.1263,
1962
+ "step": 3230
1963
+ },
1964
+ {
1965
+ "epoch": 1.6,
1966
+ "learning_rate": 3.933333333333333e-06,
1967
+ "loss": 0.1419,
1968
+ "step": 3240
1969
+ },
1970
+ {
1971
+ "epoch": 1.61,
1972
+ "learning_rate": 3.919444444444444e-06,
1973
+ "loss": 0.1294,
1974
+ "step": 3250
1975
+ },
1976
+ {
1977
+ "epoch": 1.61,
1978
+ "learning_rate": 3.9055555555555555e-06,
1979
+ "loss": 0.0939,
1980
+ "step": 3260
1981
+ },
1982
+ {
1983
+ "epoch": 1.62,
1984
+ "learning_rate": 3.891666666666666e-06,
1985
+ "loss": 0.1374,
1986
+ "step": 3270
1987
+ },
1988
+ {
1989
+ "epoch": 1.62,
1990
+ "learning_rate": 3.8777777777777775e-06,
1991
+ "loss": 0.0959,
1992
+ "step": 3280
1993
+ },
1994
+ {
1995
+ "epoch": 1.63,
1996
+ "learning_rate": 3.863888888888889e-06,
1997
+ "loss": 0.1009,
1998
+ "step": 3290
1999
+ },
2000
+ {
2001
+ "epoch": 1.63,
2002
+ "learning_rate": 3.8499999999999996e-06,
2003
+ "loss": 0.1305,
2004
+ "step": 3300
2005
+ },
2006
+ {
2007
+ "epoch": 1.64,
2008
+ "learning_rate": 3.836111111111111e-06,
2009
+ "loss": 0.1303,
2010
+ "step": 3310
2011
+ },
2012
+ {
2013
+ "epoch": 1.64,
2014
+ "learning_rate": 3.8222222222222224e-06,
2015
+ "loss": 0.1282,
2016
+ "step": 3320
2017
+ },
2018
+ {
2019
+ "epoch": 1.65,
2020
+ "learning_rate": 3.808333333333333e-06,
2021
+ "loss": 0.1053,
2022
+ "step": 3330
2023
+ },
2024
+ {
2025
+ "epoch": 1.65,
2026
+ "learning_rate": 3.794444444444444e-06,
2027
+ "loss": 0.1042,
2028
+ "step": 3340
2029
+ },
2030
+ {
2031
+ "epoch": 1.66,
2032
+ "learning_rate": 3.7805555555555555e-06,
2033
+ "loss": 0.0849,
2034
+ "step": 3350
2035
+ },
2036
+ {
2037
+ "epoch": 1.66,
2038
+ "learning_rate": 3.7666666666666665e-06,
2039
+ "loss": 0.1274,
2040
+ "step": 3360
2041
+ },
2042
+ {
2043
+ "epoch": 1.67,
2044
+ "learning_rate": 3.7527777777777775e-06,
2045
+ "loss": 0.1228,
2046
+ "step": 3370
2047
+ },
2048
+ {
2049
+ "epoch": 1.67,
2050
+ "learning_rate": 3.738888888888889e-06,
2051
+ "loss": 0.1129,
2052
+ "step": 3380
2053
+ },
2054
+ {
2055
+ "epoch": 1.68,
2056
+ "learning_rate": 3.725e-06,
2057
+ "loss": 0.1128,
2058
+ "step": 3390
2059
+ },
2060
+ {
2061
+ "epoch": 1.68,
2062
+ "learning_rate": 3.711111111111111e-06,
2063
+ "loss": 0.1317,
2064
+ "step": 3400
2065
+ },
2066
+ {
2067
+ "epoch": 1.69,
2068
+ "learning_rate": 3.6972222222222224e-06,
2069
+ "loss": 0.1246,
2070
+ "step": 3410
2071
+ },
2072
+ {
2073
+ "epoch": 1.69,
2074
+ "learning_rate": 3.683333333333333e-06,
2075
+ "loss": 0.0806,
2076
+ "step": 3420
2077
+ },
2078
+ {
2079
+ "epoch": 1.7,
2080
+ "learning_rate": 3.669444444444444e-06,
2081
+ "loss": 0.119,
2082
+ "step": 3430
2083
+ },
2084
+ {
2085
+ "epoch": 1.7,
2086
+ "learning_rate": 3.6555555555555554e-06,
2087
+ "loss": 0.0893,
2088
+ "step": 3440
2089
+ },
2090
+ {
2091
+ "epoch": 1.71,
2092
+ "learning_rate": 3.6416666666666664e-06,
2093
+ "loss": 0.1058,
2094
+ "step": 3450
2095
+ },
2096
+ {
2097
+ "epoch": 1.71,
2098
+ "learning_rate": 3.6277777777777774e-06,
2099
+ "loss": 0.0944,
2100
+ "step": 3460
2101
+ },
2102
+ {
2103
+ "epoch": 1.72,
2104
+ "learning_rate": 3.613888888888889e-06,
2105
+ "loss": 0.126,
2106
+ "step": 3470
2107
+ },
2108
+ {
2109
+ "epoch": 1.72,
2110
+ "learning_rate": 3.6e-06,
2111
+ "loss": 0.1104,
2112
+ "step": 3480
2113
+ },
2114
+ {
2115
+ "epoch": 1.73,
2116
+ "learning_rate": 3.5861111111111113e-06,
2117
+ "loss": 0.1108,
2118
+ "step": 3490
2119
+ },
2120
+ {
2121
+ "epoch": 1.73,
2122
+ "learning_rate": 3.5722222222222223e-06,
2123
+ "loss": 0.1197,
2124
+ "step": 3500
2125
+ },
2126
+ {
2127
+ "epoch": 1.74,
2128
+ "learning_rate": 3.558333333333333e-06,
2129
+ "loss": 0.1182,
2130
+ "step": 3510
2131
+ },
2132
+ {
2133
+ "epoch": 1.74,
2134
+ "learning_rate": 3.5444444444444443e-06,
2135
+ "loss": 0.0988,
2136
+ "step": 3520
2137
+ },
2138
+ {
2139
+ "epoch": 1.75,
2140
+ "learning_rate": 3.5305555555555553e-06,
2141
+ "loss": 0.0949,
2142
+ "step": 3530
2143
+ },
2144
+ {
2145
+ "epoch": 1.75,
2146
+ "learning_rate": 3.5166666666666663e-06,
2147
+ "loss": 0.1102,
2148
+ "step": 3540
2149
+ },
2150
+ {
2151
+ "epoch": 1.76,
2152
+ "learning_rate": 3.5027777777777777e-06,
2153
+ "loss": 0.1203,
2154
+ "step": 3550
2155
+ },
2156
+ {
2157
+ "epoch": 1.76,
2158
+ "learning_rate": 3.4888888888888888e-06,
2159
+ "loss": 0.1343,
2160
+ "step": 3560
2161
+ },
2162
+ {
2163
+ "epoch": 1.77,
2164
+ "learning_rate": 3.4749999999999998e-06,
2165
+ "loss": 0.0851,
2166
+ "step": 3570
2167
+ },
2168
+ {
2169
+ "epoch": 1.77,
2170
+ "learning_rate": 3.461111111111111e-06,
2171
+ "loss": 0.1181,
2172
+ "step": 3580
2173
+ },
2174
+ {
2175
+ "epoch": 1.78,
2176
+ "learning_rate": 3.447222222222222e-06,
2177
+ "loss": 0.0931,
2178
+ "step": 3590
2179
+ },
2180
+ {
2181
+ "epoch": 1.78,
2182
+ "learning_rate": 3.433333333333333e-06,
2183
+ "loss": 0.1068,
2184
+ "step": 3600
2185
+ },
2186
+ {
2187
+ "epoch": 1.79,
2188
+ "learning_rate": 3.4194444444444442e-06,
2189
+ "loss": 0.0884,
2190
+ "step": 3610
2191
+ },
2192
+ {
2193
+ "epoch": 1.79,
2194
+ "learning_rate": 3.4055555555555552e-06,
2195
+ "loss": 0.1326,
2196
+ "step": 3620
2197
+ },
2198
+ {
2199
+ "epoch": 1.8,
2200
+ "learning_rate": 3.3916666666666667e-06,
2201
+ "loss": 0.1307,
2202
+ "step": 3630
2203
+ },
2204
+ {
2205
+ "epoch": 1.8,
2206
+ "eval_loss": 0.249267578125,
2207
+ "eval_runtime": 590.255,
2208
+ "eval_samples_per_second": 40.584,
2209
+ "eval_steps_per_second": 5.074,
2210
+ "step": 3639
2211
+ }
2212
+ ],
2213
+ "max_steps": 6063,
2214
+ "num_train_epochs": 3,
2215
+ "total_flos": 134441240494080.0,
2216
+ "trial_name": null,
2217
+ "trial_params": null
2218
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42f106339a0328c004e4952494046976bb21234b5589de38804b01f680386c0
3
+ size 5115
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)