jiminHuang
commited on
Commit
·
429f23d
1
Parent(s):
74660be
Upload folder using huggingface_hub
Browse files- config.json +24 -0
- generation_config.json +7 -0
- global_step3639/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step3639/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- global_step3639/zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- trainer_state.json +2218 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/scratch/ace14856qn/finllm/weights/vicuna-7b",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 1,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"max_sequence_length": 2048,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"pad_token_id": -1,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.29.2",
|
22 |
+
"use_cache": false,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.29.2"
|
7 |
+
}
|
global_step3639/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00b03898cdd9f6dfd5a25172d6b1a59216396c5cadd8df564b402f191a02e312
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03df8e22a4c413dc584f686b04542fe2a60f136c24ed945e29d79d3017704504
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d94cf7316f596e4de4c49cf79a5ac7642c5b220d7664f54ad0beace3fe97fc8
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcc119a3938eb92d256d95c08d408c8e8556fcf10a8f771aa567ac42b56c4a9a
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbfc3a858a6c1d6da9c68767928220efa9f7806cf357eb56d277a55650d179ba
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b010db939a59b1eb80d553539d581589c9dd3066b1799410f75774bb877751a1
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7144ab90a39d68984bd0afc781c1aed3971815f744acf46bb76e23ca1c8e6e0
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e3826a7991563a7a3fd5406075a47695c48840c3119ad95ea2a4d1b43b9dd0f
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b483ace6acbaf9afae274369ea879ebbff802b037ca6f91fffaed30900b0960b
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c73df25ad3243114efaee856ac7334a6bf66413c6da50141d4f7dc15d5ad148b
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d548c30c216cd78db737ba16d8df715a43bae2477163f11007a184fdf9d0eb
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bce9cdebe47cd06b7065fd17c8b8ba6b79cefffc41471d94a3e11c2f125441d4
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:724292452affe5ff8d98db96ebb9f356bd72324f32e2c281e23b608ddc3f245f
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ed58c2e3cf103ce762ac8dba241d0946025d71b96874710e43af964df801f7a
|
3 |
+
size 10107627001
|
global_step3639/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd7630f212570e2624b64ae629c046edc7747508e61846faff7da6c3c22dd3ce
|
3 |
+
size 168022
|
global_step3639/zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ead37ef4a3a2c87d53960d04995431d06eae49d3fa01838b42dd2954f5217320
|
3 |
+
size 10107627001
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step3639
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7087bfca003c9e2f7295a6a1550795848770f88af5c034ae6876ce06be9216
|
3 |
+
size 26953778121
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5539dd7b259c1dd70b24a442cd0db654de172851dc9ad592c00bd0873776a675
|
3 |
+
size 21687
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae401ae645379434caffc0185c738039f26685db09ba0aba7a187a8ff97810a9
|
3 |
+
size 21687
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89a43885840bc17c1afdbf25def2d1f36021795ec85893c0d9b1fe1c5b8540d
|
3 |
+
size 21687
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47edb967b5d8d4551ccb3bda2bf617d308d0981d37333b4a8839054f68577695
|
3 |
+
size 21687
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fef2af776d8df77a340254ef61a2b8d0fcf40ee1ddfaeca625988e0165237db3
|
3 |
+
size 21687
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1d3372a72c3e55207954229dad35b30e29127caffc546802c219fbbecc37247
|
3 |
+
size 21687
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5903aacbc3201df025352bcb75c398360d0239d5813369122cc0785e94aa68dc
|
3 |
+
size 21687
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0102f09cbe2f6f8f4be258e9801fe1495308691ad96ede2d8c503f2d48b5d4e
|
3 |
+
size 21687
|
trainer_state.json
ADDED
@@ -0,0 +1,2218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.8001484046500122,
|
5 |
+
"global_step": 3639,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 2.253431117230021e-06,
|
13 |
+
"loss": 3.9812,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 3.7916371566987085e-06,
|
19 |
+
"loss": 0.5473,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 4.506862234460042e-06,
|
25 |
+
"loss": 0.3243,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 4.977968949561282e-06,
|
31 |
+
"loss": 0.3058,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.02,
|
36 |
+
"learning_rate": 5.3298431961673955e-06,
|
37 |
+
"loss": 0.2495,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 5.610809355829126e-06,
|
43 |
+
"loss": 0.3345,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03,
|
48 |
+
"learning_rate": 5.844707706136422e-06,
|
49 |
+
"loss": 0.2784,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 6.04506827392873e-06,
|
55 |
+
"loss": 0.2421,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 6.220313630636092e-06,
|
61 |
+
"loss": 0.2661,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 6.376044588167711e-06,
|
67 |
+
"loss": 0.2831,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.05,
|
72 |
+
"learning_rate": 6.516174989029968e-06,
|
73 |
+
"loss": 0.2793,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 6.643547802988659e-06,
|
79 |
+
"loss": 0.2488,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.06,
|
84 |
+
"learning_rate": 6.7602933516900655e-06,
|
85 |
+
"loss": 0.2379,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.868049235636083e-06,
|
91 |
+
"loss": 0.2388,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 6.968101466168447e-06,
|
97 |
+
"loss": 0.2273,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.061478425531149e-06,
|
103 |
+
"loss": 0.2571,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.08,
|
108 |
+
"learning_rate": 7.149015395297812e-06,
|
109 |
+
"loss": 0.2466,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 7.231400066791303e-06,
|
115 |
+
"loss": 0.2315,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.09,
|
120 |
+
"learning_rate": 7.309205386775784e-06,
|
121 |
+
"loss": 0.2101,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 7.375715089769526e-06,
|
127 |
+
"loss": 0.2425,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 7.44608846772297e-06,
|
133 |
+
"loss": 0.243,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 7.513093380702437e-06,
|
139 |
+
"loss": 0.2521,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.11,
|
144 |
+
"learning_rate": 7.57703761945179e-06,
|
145 |
+
"loss": 0.2401,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 7.638188625267883e-06,
|
151 |
+
"loss": 0.2342,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 7.696780248446552e-06,
|
157 |
+
"loss": 0.2439,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 7.753018148386997e-06,
|
163 |
+
"loss": 0.2553,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.13,
|
168 |
+
"learning_rate": 7.80708415034011e-06,
|
169 |
+
"loss": 0.2547,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 7.859139791732239e-06,
|
175 |
+
"loss": 0.2316,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 7.909329232496527e-06,
|
181 |
+
"loss": 0.2227,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 7.957781661555314e-06,
|
187 |
+
"loss": 0.21,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 8e-06,
|
193 |
+
"loss": 0.2145,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 7.98611111111111e-06,
|
199 |
+
"loss": 0.2101,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.16,
|
204 |
+
"learning_rate": 7.972222222222223e-06,
|
205 |
+
"loss": 0.1999,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 7.958333333333333e-06,
|
211 |
+
"loss": 0.2254,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 7.944444444444444e-06,
|
217 |
+
"loss": 0.2597,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 7.930555555555554e-06,
|
223 |
+
"loss": 0.1814,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 7.916666666666667e-06,
|
229 |
+
"loss": 0.2173,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 7.902777777777777e-06,
|
235 |
+
"loss": 0.2136,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.19,
|
240 |
+
"learning_rate": 7.88888888888889e-06,
|
241 |
+
"loss": 0.2015,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 7.875e-06,
|
247 |
+
"loss": 0.2059,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"learning_rate": 7.86111111111111e-06,
|
253 |
+
"loss": 0.23,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.21,
|
258 |
+
"learning_rate": 7.847222222222221e-06,
|
259 |
+
"loss": 0.166,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.21,
|
264 |
+
"learning_rate": 7.833333333333333e-06,
|
265 |
+
"loss": 0.2403,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.22,
|
270 |
+
"learning_rate": 7.819444444444444e-06,
|
271 |
+
"loss": 0.2111,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.22,
|
276 |
+
"learning_rate": 7.805555555555555e-06,
|
277 |
+
"loss": 0.2309,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.23,
|
282 |
+
"learning_rate": 7.791666666666667e-06,
|
283 |
+
"loss": 0.2117,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.23,
|
288 |
+
"learning_rate": 7.777777777777777e-06,
|
289 |
+
"loss": 0.2085,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.24,
|
294 |
+
"learning_rate": 7.76388888888889e-06,
|
295 |
+
"loss": 0.1904,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.24,
|
300 |
+
"learning_rate": 7.75e-06,
|
301 |
+
"loss": 0.1954,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.25,
|
306 |
+
"learning_rate": 7.736111111111111e-06,
|
307 |
+
"loss": 0.2056,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.25,
|
312 |
+
"learning_rate": 7.722222222222222e-06,
|
313 |
+
"loss": 0.169,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.26,
|
318 |
+
"learning_rate": 7.708333333333332e-06,
|
319 |
+
"loss": 0.1814,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.26,
|
324 |
+
"learning_rate": 7.694444444444444e-06,
|
325 |
+
"loss": 0.21,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.27,
|
330 |
+
"learning_rate": 7.680555555555555e-06,
|
331 |
+
"loss": 0.2285,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.27,
|
336 |
+
"learning_rate": 7.666666666666667e-06,
|
337 |
+
"loss": 0.2074,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.28,
|
342 |
+
"learning_rate": 7.652777777777778e-06,
|
343 |
+
"loss": 0.173,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.28,
|
348 |
+
"learning_rate": 7.638888888888888e-06,
|
349 |
+
"loss": 0.187,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.29,
|
354 |
+
"learning_rate": 7.625e-06,
|
355 |
+
"loss": 0.2002,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.29,
|
360 |
+
"learning_rate": 7.6111111111111104e-06,
|
361 |
+
"loss": 0.2257,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.3,
|
366 |
+
"learning_rate": 7.597222222222222e-06,
|
367 |
+
"loss": 0.2068,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.3,
|
372 |
+
"learning_rate": 7.5833333333333324e-06,
|
373 |
+
"loss": 0.1968,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.31,
|
378 |
+
"learning_rate": 7.569444444444445e-06,
|
379 |
+
"loss": 0.2122,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.31,
|
384 |
+
"learning_rate": 7.555555555555555e-06,
|
385 |
+
"loss": 0.2306,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.32,
|
390 |
+
"learning_rate": 7.541666666666667e-06,
|
391 |
+
"loss": 0.2108,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.32,
|
396 |
+
"learning_rate": 7.527777777777777e-06,
|
397 |
+
"loss": 0.1923,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.33,
|
402 |
+
"learning_rate": 7.513888888888889e-06,
|
403 |
+
"loss": 0.1989,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.33,
|
408 |
+
"learning_rate": 7.499999999999999e-06,
|
409 |
+
"loss": 0.2179,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.34,
|
414 |
+
"learning_rate": 7.486111111111111e-06,
|
415 |
+
"loss": 0.1915,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.34,
|
420 |
+
"learning_rate": 7.472222222222222e-06,
|
421 |
+
"loss": 0.1965,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.35,
|
426 |
+
"learning_rate": 7.458333333333333e-06,
|
427 |
+
"loss": 0.2425,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.35,
|
432 |
+
"learning_rate": 7.444444444444444e-06,
|
433 |
+
"loss": 0.1933,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.36,
|
438 |
+
"learning_rate": 7.430555555555555e-06,
|
439 |
+
"loss": 0.2314,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.36,
|
444 |
+
"learning_rate": 7.416666666666666e-06,
|
445 |
+
"loss": 0.1901,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.37,
|
450 |
+
"learning_rate": 7.402777777777778e-06,
|
451 |
+
"loss": 0.1852,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.37,
|
456 |
+
"learning_rate": 7.388888888888889e-06,
|
457 |
+
"loss": 0.201,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.38,
|
462 |
+
"learning_rate": 7.375e-06,
|
463 |
+
"loss": 0.1636,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.38,
|
468 |
+
"learning_rate": 7.36111111111111e-06,
|
469 |
+
"loss": 0.184,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.39,
|
474 |
+
"learning_rate": 7.347222222222222e-06,
|
475 |
+
"loss": 0.1618,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.39,
|
480 |
+
"learning_rate": 7.333333333333332e-06,
|
481 |
+
"loss": 0.1867,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.4,
|
486 |
+
"learning_rate": 7.3194444444444446e-06,
|
487 |
+
"loss": 0.1877,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.4,
|
492 |
+
"learning_rate": 7.305555555555555e-06,
|
493 |
+
"loss": 0.1569,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.41,
|
498 |
+
"learning_rate": 7.291666666666667e-06,
|
499 |
+
"loss": 0.1651,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.41,
|
504 |
+
"learning_rate": 7.277777777777777e-06,
|
505 |
+
"loss": 0.215,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.42,
|
510 |
+
"learning_rate": 7.263888888888889e-06,
|
511 |
+
"loss": 0.1609,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.42,
|
516 |
+
"learning_rate": 7.25e-06,
|
517 |
+
"loss": 0.1935,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.43,
|
522 |
+
"learning_rate": 7.236111111111111e-06,
|
523 |
+
"loss": 0.1688,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.43,
|
528 |
+
"learning_rate": 7.222222222222222e-06,
|
529 |
+
"loss": 0.1645,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.44,
|
534 |
+
"learning_rate": 7.208333333333333e-06,
|
535 |
+
"loss": 0.162,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.44,
|
540 |
+
"learning_rate": 7.194444444444444e-06,
|
541 |
+
"loss": 0.1467,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.45,
|
546 |
+
"learning_rate": 7.180555555555555e-06,
|
547 |
+
"loss": 0.1579,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.45,
|
552 |
+
"learning_rate": 7.166666666666667e-06,
|
553 |
+
"loss": 0.1774,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.46,
|
558 |
+
"learning_rate": 7.1527777777777775e-06,
|
559 |
+
"loss": 0.1931,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.46,
|
564 |
+
"learning_rate": 7.138888888888889e-06,
|
565 |
+
"loss": 0.1505,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.47,
|
570 |
+
"learning_rate": 7.1249999999999995e-06,
|
571 |
+
"loss": 0.1632,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.47,
|
576 |
+
"learning_rate": 7.11111111111111e-06,
|
577 |
+
"loss": 0.169,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.47,
|
582 |
+
"learning_rate": 7.097222222222222e-06,
|
583 |
+
"loss": 0.1762,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.48,
|
588 |
+
"learning_rate": 7.083333333333333e-06,
|
589 |
+
"loss": 0.1838,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.48,
|
594 |
+
"learning_rate": 7.0694444444444444e-06,
|
595 |
+
"loss": 0.1622,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.49,
|
600 |
+
"learning_rate": 7.055555555555555e-06,
|
601 |
+
"loss": 0.1562,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.49,
|
606 |
+
"learning_rate": 7.0416666666666664e-06,
|
607 |
+
"loss": 0.1475,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.5,
|
612 |
+
"learning_rate": 7.027777777777777e-06,
|
613 |
+
"loss": 0.1557,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.5,
|
618 |
+
"learning_rate": 7.013888888888889e-06,
|
619 |
+
"loss": 0.1851,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.51,
|
624 |
+
"learning_rate": 7e-06,
|
625 |
+
"loss": 0.1607,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.51,
|
630 |
+
"learning_rate": 6.9861111111111105e-06,
|
631 |
+
"loss": 0.1541,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.52,
|
636 |
+
"learning_rate": 6.972222222222222e-06,
|
637 |
+
"loss": 0.1509,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.52,
|
642 |
+
"learning_rate": 6.9583333333333325e-06,
|
643 |
+
"loss": 0.1754,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.53,
|
648 |
+
"learning_rate": 6.944444444444444e-06,
|
649 |
+
"loss": 0.205,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.53,
|
654 |
+
"learning_rate": 6.930555555555555e-06,
|
655 |
+
"loss": 0.2037,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.54,
|
660 |
+
"learning_rate": 6.916666666666667e-06,
|
661 |
+
"loss": 0.1424,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.54,
|
666 |
+
"learning_rate": 6.902777777777777e-06,
|
667 |
+
"loss": 0.1594,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.55,
|
672 |
+
"learning_rate": 6.888888888888889e-06,
|
673 |
+
"loss": 0.1838,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.55,
|
678 |
+
"learning_rate": 6.874999999999999e-06,
|
679 |
+
"loss": 0.1626,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.56,
|
684 |
+
"learning_rate": 6.86111111111111e-06,
|
685 |
+
"loss": 0.1689,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.56,
|
690 |
+
"learning_rate": 6.847222222222222e-06,
|
691 |
+
"loss": 0.1548,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.57,
|
696 |
+
"learning_rate": 6.833333333333333e-06,
|
697 |
+
"loss": 0.1435,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.57,
|
702 |
+
"learning_rate": 6.819444444444444e-06,
|
703 |
+
"loss": 0.1939,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.58,
|
708 |
+
"learning_rate": 6.805555555555555e-06,
|
709 |
+
"loss": 0.1802,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.58,
|
714 |
+
"learning_rate": 6.791666666666666e-06,
|
715 |
+
"loss": 0.1865,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.59,
|
720 |
+
"learning_rate": 6.777777777777778e-06,
|
721 |
+
"loss": 0.18,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.59,
|
726 |
+
"learning_rate": 6.763888888888889e-06,
|
727 |
+
"loss": 0.1862,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.6,
|
732 |
+
"learning_rate": 6.75e-06,
|
733 |
+
"loss": 0.183,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.6,
|
738 |
+
"eval_loss": 0.234619140625,
|
739 |
+
"eval_runtime": 601.4014,
|
740 |
+
"eval_samples_per_second": 39.832,
|
741 |
+
"eval_steps_per_second": 4.98,
|
742 |
+
"step": 1213
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 0.6,
|
746 |
+
"learning_rate": 6.73611111111111e-06,
|
747 |
+
"loss": 0.1954,
|
748 |
+
"step": 1220
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.61,
|
752 |
+
"learning_rate": 6.722222222222222e-06,
|
753 |
+
"loss": 0.1433,
|
754 |
+
"step": 1230
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.61,
|
758 |
+
"learning_rate": 6.708333333333332e-06,
|
759 |
+
"loss": 0.1732,
|
760 |
+
"step": 1240
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.62,
|
764 |
+
"learning_rate": 6.694444444444445e-06,
|
765 |
+
"loss": 0.1985,
|
766 |
+
"step": 1250
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.62,
|
770 |
+
"learning_rate": 6.680555555555555e-06,
|
771 |
+
"loss": 0.1786,
|
772 |
+
"step": 1260
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.63,
|
776 |
+
"learning_rate": 6.666666666666667e-06,
|
777 |
+
"loss": 0.167,
|
778 |
+
"step": 1270
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 0.63,
|
782 |
+
"learning_rate": 6.652777777777777e-06,
|
783 |
+
"loss": 0.1548,
|
784 |
+
"step": 1280
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 0.64,
|
788 |
+
"learning_rate": 6.638888888888889e-06,
|
789 |
+
"loss": 0.1559,
|
790 |
+
"step": 1290
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.64,
|
794 |
+
"learning_rate": 6.625e-06,
|
795 |
+
"loss": 0.176,
|
796 |
+
"step": 1300
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.65,
|
800 |
+
"learning_rate": 6.611111111111111e-06,
|
801 |
+
"loss": 0.1687,
|
802 |
+
"step": 1310
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.65,
|
806 |
+
"learning_rate": 6.597222222222222e-06,
|
807 |
+
"loss": 0.1497,
|
808 |
+
"step": 1320
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.66,
|
812 |
+
"learning_rate": 6.583333333333333e-06,
|
813 |
+
"loss": 0.1891,
|
814 |
+
"step": 1330
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.66,
|
818 |
+
"learning_rate": 6.569444444444444e-06,
|
819 |
+
"loss": 0.1783,
|
820 |
+
"step": 1340
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 0.67,
|
824 |
+
"learning_rate": 6.555555555555555e-06,
|
825 |
+
"loss": 0.168,
|
826 |
+
"step": 1350
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.67,
|
830 |
+
"learning_rate": 6.541666666666667e-06,
|
831 |
+
"loss": 0.1871,
|
832 |
+
"step": 1360
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.68,
|
836 |
+
"learning_rate": 6.527777777777778e-06,
|
837 |
+
"loss": 0.1601,
|
838 |
+
"step": 1370
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.68,
|
842 |
+
"learning_rate": 6.513888888888889e-06,
|
843 |
+
"loss": 0.1466,
|
844 |
+
"step": 1380
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.69,
|
848 |
+
"learning_rate": 6.5e-06,
|
849 |
+
"loss": 0.1799,
|
850 |
+
"step": 1390
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.69,
|
854 |
+
"learning_rate": 6.48611111111111e-06,
|
855 |
+
"loss": 0.1448,
|
856 |
+
"step": 1400
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.7,
|
860 |
+
"learning_rate": 6.472222222222222e-06,
|
861 |
+
"loss": 0.1459,
|
862 |
+
"step": 1410
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 0.7,
|
866 |
+
"learning_rate": 6.458333333333333e-06,
|
867 |
+
"loss": 0.1677,
|
868 |
+
"step": 1420
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 0.71,
|
872 |
+
"learning_rate": 6.4444444444444445e-06,
|
873 |
+
"loss": 0.1878,
|
874 |
+
"step": 1430
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.71,
|
878 |
+
"learning_rate": 6.430555555555555e-06,
|
879 |
+
"loss": 0.1494,
|
880 |
+
"step": 1440
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.72,
|
884 |
+
"learning_rate": 6.4166666666666665e-06,
|
885 |
+
"loss": 0.1406,
|
886 |
+
"step": 1450
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.72,
|
890 |
+
"learning_rate": 6.402777777777777e-06,
|
891 |
+
"loss": 0.1538,
|
892 |
+
"step": 1460
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.73,
|
896 |
+
"learning_rate": 6.390277777777778e-06,
|
897 |
+
"loss": 0.169,
|
898 |
+
"step": 1470
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.73,
|
902 |
+
"learning_rate": 6.376388888888889e-06,
|
903 |
+
"loss": 0.1444,
|
904 |
+
"step": 1480
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 0.74,
|
908 |
+
"learning_rate": 6.3625e-06,
|
909 |
+
"loss": 0.1561,
|
910 |
+
"step": 1490
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.74,
|
914 |
+
"learning_rate": 6.348611111111111e-06,
|
915 |
+
"loss": 0.1493,
|
916 |
+
"step": 1500
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 0.75,
|
920 |
+
"learning_rate": 6.334722222222222e-06,
|
921 |
+
"loss": 0.1547,
|
922 |
+
"step": 1510
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.75,
|
926 |
+
"learning_rate": 6.320833333333333e-06,
|
927 |
+
"loss": 0.1749,
|
928 |
+
"step": 1520
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.76,
|
932 |
+
"learning_rate": 6.3069444444444445e-06,
|
933 |
+
"loss": 0.1903,
|
934 |
+
"step": 1530
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.76,
|
938 |
+
"learning_rate": 6.293055555555555e-06,
|
939 |
+
"loss": 0.18,
|
940 |
+
"step": 1540
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.77,
|
944 |
+
"learning_rate": 6.2791666666666665e-06,
|
945 |
+
"loss": 0.1491,
|
946 |
+
"step": 1550
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.77,
|
950 |
+
"learning_rate": 6.265277777777777e-06,
|
951 |
+
"loss": 0.1777,
|
952 |
+
"step": 1560
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 0.78,
|
956 |
+
"learning_rate": 6.2513888888888886e-06,
|
957 |
+
"loss": 0.1226,
|
958 |
+
"step": 1570
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 0.78,
|
962 |
+
"learning_rate": 6.237499999999999e-06,
|
963 |
+
"loss": 0.1822,
|
964 |
+
"step": 1580
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.79,
|
968 |
+
"learning_rate": 6.2236111111111114e-06,
|
969 |
+
"loss": 0.143,
|
970 |
+
"step": 1590
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.79,
|
974 |
+
"learning_rate": 6.209722222222222e-06,
|
975 |
+
"loss": 0.1411,
|
976 |
+
"step": 1600
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.8,
|
980 |
+
"learning_rate": 6.1958333333333334e-06,
|
981 |
+
"loss": 0.1452,
|
982 |
+
"step": 1610
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.8,
|
986 |
+
"learning_rate": 6.181944444444444e-06,
|
987 |
+
"loss": 0.1673,
|
988 |
+
"step": 1620
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 0.81,
|
992 |
+
"learning_rate": 6.169444444444444e-06,
|
993 |
+
"loss": 0.1706,
|
994 |
+
"step": 1630
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.81,
|
998 |
+
"learning_rate": 6.155555555555556e-06,
|
999 |
+
"loss": 0.1755,
|
1000 |
+
"step": 1640
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 0.82,
|
1004 |
+
"learning_rate": 6.141666666666667e-06,
|
1005 |
+
"loss": 0.1831,
|
1006 |
+
"step": 1650
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.82,
|
1010 |
+
"learning_rate": 6.127777777777778e-06,
|
1011 |
+
"loss": 0.1402,
|
1012 |
+
"step": 1660
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.83,
|
1016 |
+
"learning_rate": 6.113888888888889e-06,
|
1017 |
+
"loss": 0.1434,
|
1018 |
+
"step": 1670
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.83,
|
1022 |
+
"learning_rate": 6.099999999999999e-06,
|
1023 |
+
"loss": 0.1347,
|
1024 |
+
"step": 1680
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.84,
|
1028 |
+
"learning_rate": 6.086111111111111e-06,
|
1029 |
+
"loss": 0.1614,
|
1030 |
+
"step": 1690
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 0.84,
|
1034 |
+
"learning_rate": 6.072222222222222e-06,
|
1035 |
+
"loss": 0.1533,
|
1036 |
+
"step": 1700
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.85,
|
1040 |
+
"learning_rate": 6.0583333333333335e-06,
|
1041 |
+
"loss": 0.1666,
|
1042 |
+
"step": 1710
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 0.85,
|
1046 |
+
"learning_rate": 6.044444444444444e-06,
|
1047 |
+
"loss": 0.1725,
|
1048 |
+
"step": 1720
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.86,
|
1052 |
+
"learning_rate": 6.0305555555555555e-06,
|
1053 |
+
"loss": 0.1819,
|
1054 |
+
"step": 1730
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.86,
|
1058 |
+
"learning_rate": 6.016666666666666e-06,
|
1059 |
+
"loss": 0.1739,
|
1060 |
+
"step": 1740
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.87,
|
1064 |
+
"learning_rate": 6.0027777777777775e-06,
|
1065 |
+
"loss": 0.1573,
|
1066 |
+
"step": 1750
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.87,
|
1070 |
+
"learning_rate": 5.988888888888889e-06,
|
1071 |
+
"loss": 0.1458,
|
1072 |
+
"step": 1760
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 0.88,
|
1076 |
+
"learning_rate": 5.9749999999999995e-06,
|
1077 |
+
"loss": 0.1243,
|
1078 |
+
"step": 1770
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 0.88,
|
1082 |
+
"learning_rate": 5.961111111111111e-06,
|
1083 |
+
"loss": 0.1657,
|
1084 |
+
"step": 1780
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 0.89,
|
1088 |
+
"learning_rate": 5.9472222222222216e-06,
|
1089 |
+
"loss": 0.1871,
|
1090 |
+
"step": 1790
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.89,
|
1094 |
+
"learning_rate": 5.933333333333333e-06,
|
1095 |
+
"loss": 0.1365,
|
1096 |
+
"step": 1800
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.9,
|
1100 |
+
"learning_rate": 5.9194444444444444e-06,
|
1101 |
+
"loss": 0.0987,
|
1102 |
+
"step": 1810
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.9,
|
1106 |
+
"learning_rate": 5.905555555555556e-06,
|
1107 |
+
"loss": 0.1396,
|
1108 |
+
"step": 1820
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.91,
|
1112 |
+
"learning_rate": 5.8916666666666664e-06,
|
1113 |
+
"loss": 0.1693,
|
1114 |
+
"step": 1830
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.91,
|
1118 |
+
"learning_rate": 5.877777777777778e-06,
|
1119 |
+
"loss": 0.1391,
|
1120 |
+
"step": 1840
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 0.92,
|
1124 |
+
"learning_rate": 5.8638888888888885e-06,
|
1125 |
+
"loss": 0.1439,
|
1126 |
+
"step": 1850
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 0.92,
|
1130 |
+
"learning_rate": 5.849999999999999e-06,
|
1131 |
+
"loss": 0.1503,
|
1132 |
+
"step": 1860
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.93,
|
1136 |
+
"learning_rate": 5.836111111111111e-06,
|
1137 |
+
"loss": 0.1359,
|
1138 |
+
"step": 1870
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.93,
|
1142 |
+
"learning_rate": 5.822222222222222e-06,
|
1143 |
+
"loss": 0.1423,
|
1144 |
+
"step": 1880
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.93,
|
1148 |
+
"learning_rate": 5.808333333333333e-06,
|
1149 |
+
"loss": 0.1317,
|
1150 |
+
"step": 1890
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.94,
|
1154 |
+
"learning_rate": 5.794444444444444e-06,
|
1155 |
+
"loss": 0.1431,
|
1156 |
+
"step": 1900
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.94,
|
1160 |
+
"learning_rate": 5.780555555555555e-06,
|
1161 |
+
"loss": 0.1235,
|
1162 |
+
"step": 1910
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 0.95,
|
1166 |
+
"learning_rate": 5.766666666666666e-06,
|
1167 |
+
"loss": 0.1397,
|
1168 |
+
"step": 1920
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 0.95,
|
1172 |
+
"learning_rate": 5.752777777777778e-06,
|
1173 |
+
"loss": 0.1375,
|
1174 |
+
"step": 1930
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.96,
|
1178 |
+
"learning_rate": 5.738888888888889e-06,
|
1179 |
+
"loss": 0.1341,
|
1180 |
+
"step": 1940
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.96,
|
1184 |
+
"learning_rate": 5.724999999999999e-06,
|
1185 |
+
"loss": 0.1408,
|
1186 |
+
"step": 1950
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.97,
|
1190 |
+
"learning_rate": 5.711111111111111e-06,
|
1191 |
+
"loss": 0.1766,
|
1192 |
+
"step": 1960
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.97,
|
1196 |
+
"learning_rate": 5.697222222222221e-06,
|
1197 |
+
"loss": 0.177,
|
1198 |
+
"step": 1970
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 0.98,
|
1202 |
+
"learning_rate": 5.683333333333334e-06,
|
1203 |
+
"loss": 0.1586,
|
1204 |
+
"step": 1980
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 0.98,
|
1208 |
+
"learning_rate": 5.669444444444444e-06,
|
1209 |
+
"loss": 0.1447,
|
1210 |
+
"step": 1990
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.99,
|
1214 |
+
"learning_rate": 5.655555555555556e-06,
|
1215 |
+
"loss": 0.1452,
|
1216 |
+
"step": 2000
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.99,
|
1220 |
+
"learning_rate": 5.641666666666666e-06,
|
1221 |
+
"loss": 0.1078,
|
1222 |
+
"step": 2010
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 1.0,
|
1226 |
+
"learning_rate": 5.627777777777778e-06,
|
1227 |
+
"loss": 0.1133,
|
1228 |
+
"step": 2020
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.0,
|
1232 |
+
"learning_rate": 5.613888888888888e-06,
|
1233 |
+
"loss": 0.1288,
|
1234 |
+
"step": 2030
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.01,
|
1238 |
+
"learning_rate": 5.6e-06,
|
1239 |
+
"loss": 0.1128,
|
1240 |
+
"step": 2040
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"epoch": 1.01,
|
1244 |
+
"learning_rate": 5.586111111111111e-06,
|
1245 |
+
"loss": 0.1298,
|
1246 |
+
"step": 2050
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 1.02,
|
1250 |
+
"learning_rate": 5.572222222222222e-06,
|
1251 |
+
"loss": 0.1189,
|
1252 |
+
"step": 2060
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 1.02,
|
1256 |
+
"learning_rate": 5.558333333333333e-06,
|
1257 |
+
"loss": 0.1478,
|
1258 |
+
"step": 2070
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 1.03,
|
1262 |
+
"learning_rate": 5.544444444444444e-06,
|
1263 |
+
"loss": 0.1179,
|
1264 |
+
"step": 2080
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 1.03,
|
1268 |
+
"learning_rate": 5.530555555555556e-06,
|
1269 |
+
"loss": 0.1119,
|
1270 |
+
"step": 2090
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.04,
|
1274 |
+
"learning_rate": 5.516666666666667e-06,
|
1275 |
+
"loss": 0.1355,
|
1276 |
+
"step": 2100
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.04,
|
1280 |
+
"learning_rate": 5.502777777777778e-06,
|
1281 |
+
"loss": 0.1105,
|
1282 |
+
"step": 2110
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 1.05,
|
1286 |
+
"learning_rate": 5.488888888888889e-06,
|
1287 |
+
"loss": 0.1289,
|
1288 |
+
"step": 2120
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.05,
|
1292 |
+
"learning_rate": 5.474999999999999e-06,
|
1293 |
+
"loss": 0.1127,
|
1294 |
+
"step": 2130
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 1.06,
|
1298 |
+
"learning_rate": 5.461111111111111e-06,
|
1299 |
+
"loss": 0.1814,
|
1300 |
+
"step": 2140
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 1.06,
|
1304 |
+
"learning_rate": 5.447222222222222e-06,
|
1305 |
+
"loss": 0.1554,
|
1306 |
+
"step": 2150
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 1.07,
|
1310 |
+
"learning_rate": 5.4333333333333335e-06,
|
1311 |
+
"loss": 0.1038,
|
1312 |
+
"step": 2160
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.07,
|
1316 |
+
"learning_rate": 5.419444444444444e-06,
|
1317 |
+
"loss": 0.1085,
|
1318 |
+
"step": 2170
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.08,
|
1322 |
+
"learning_rate": 5.4055555555555556e-06,
|
1323 |
+
"loss": 0.1364,
|
1324 |
+
"step": 2180
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 1.08,
|
1328 |
+
"learning_rate": 5.391666666666666e-06,
|
1329 |
+
"loss": 0.1089,
|
1330 |
+
"step": 2190
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 1.09,
|
1334 |
+
"learning_rate": 5.377777777777778e-06,
|
1335 |
+
"loss": 0.1484,
|
1336 |
+
"step": 2200
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 1.09,
|
1340 |
+
"learning_rate": 5.363888888888889e-06,
|
1341 |
+
"loss": 0.1254,
|
1342 |
+
"step": 2210
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 1.1,
|
1346 |
+
"learning_rate": 5.35e-06,
|
1347 |
+
"loss": 0.1228,
|
1348 |
+
"step": 2220
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 1.1,
|
1352 |
+
"learning_rate": 5.336111111111111e-06,
|
1353 |
+
"loss": 0.154,
|
1354 |
+
"step": 2230
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.11,
|
1358 |
+
"learning_rate": 5.322222222222222e-06,
|
1359 |
+
"loss": 0.1745,
|
1360 |
+
"step": 2240
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.11,
|
1364 |
+
"learning_rate": 5.308333333333333e-06,
|
1365 |
+
"loss": 0.1031,
|
1366 |
+
"step": 2250
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 1.12,
|
1370 |
+
"learning_rate": 5.294444444444444e-06,
|
1371 |
+
"loss": 0.1359,
|
1372 |
+
"step": 2260
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 1.12,
|
1376 |
+
"learning_rate": 5.280555555555556e-06,
|
1377 |
+
"loss": 0.1194,
|
1378 |
+
"step": 2270
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 1.13,
|
1382 |
+
"learning_rate": 5.2666666666666665e-06,
|
1383 |
+
"loss": 0.1398,
|
1384 |
+
"step": 2280
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 1.13,
|
1388 |
+
"learning_rate": 5.252777777777778e-06,
|
1389 |
+
"loss": 0.1277,
|
1390 |
+
"step": 2290
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"epoch": 1.14,
|
1394 |
+
"learning_rate": 5.2388888888888885e-06,
|
1395 |
+
"loss": 0.1121,
|
1396 |
+
"step": 2300
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 1.14,
|
1400 |
+
"learning_rate": 5.224999999999999e-06,
|
1401 |
+
"loss": 0.1067,
|
1402 |
+
"step": 2310
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.15,
|
1406 |
+
"learning_rate": 5.211111111111111e-06,
|
1407 |
+
"loss": 0.1101,
|
1408 |
+
"step": 2320
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 1.15,
|
1412 |
+
"learning_rate": 5.197222222222222e-06,
|
1413 |
+
"loss": 0.1192,
|
1414 |
+
"step": 2330
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 1.16,
|
1418 |
+
"learning_rate": 5.183333333333333e-06,
|
1419 |
+
"loss": 0.1055,
|
1420 |
+
"step": 2340
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 1.16,
|
1424 |
+
"learning_rate": 5.169444444444444e-06,
|
1425 |
+
"loss": 0.1232,
|
1426 |
+
"step": 2350
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 1.17,
|
1430 |
+
"learning_rate": 5.155555555555555e-06,
|
1431 |
+
"loss": 0.1096,
|
1432 |
+
"step": 2360
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 1.17,
|
1436 |
+
"learning_rate": 5.141666666666666e-06,
|
1437 |
+
"loss": 0.0831,
|
1438 |
+
"step": 2370
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 1.18,
|
1442 |
+
"learning_rate": 5.127777777777778e-06,
|
1443 |
+
"loss": 0.149,
|
1444 |
+
"step": 2380
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.18,
|
1448 |
+
"learning_rate": 5.113888888888889e-06,
|
1449 |
+
"loss": 0.1328,
|
1450 |
+
"step": 2390
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"epoch": 1.19,
|
1454 |
+
"learning_rate": 5.0999999999999995e-06,
|
1455 |
+
"loss": 0.1193,
|
1456 |
+
"step": 2400
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 1.19,
|
1460 |
+
"learning_rate": 5.086111111111111e-06,
|
1461 |
+
"loss": 0.1222,
|
1462 |
+
"step": 2410
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 1.2,
|
1466 |
+
"learning_rate": 5.0722222222222215e-06,
|
1467 |
+
"loss": 0.1395,
|
1468 |
+
"step": 2420
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 1.2,
|
1472 |
+
"eval_loss": 0.26611328125,
|
1473 |
+
"eval_runtime": 595.4698,
|
1474 |
+
"eval_samples_per_second": 40.229,
|
1475 |
+
"eval_steps_per_second": 5.03,
|
1476 |
+
"step": 2426
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 1.2,
|
1480 |
+
"learning_rate": 5.058333333333334e-06,
|
1481 |
+
"loss": 0.1261,
|
1482 |
+
"step": 2430
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 1.21,
|
1486 |
+
"learning_rate": 5.044444444444444e-06,
|
1487 |
+
"loss": 0.1416,
|
1488 |
+
"step": 2440
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 1.21,
|
1492 |
+
"learning_rate": 5.030555555555556e-06,
|
1493 |
+
"loss": 0.1453,
|
1494 |
+
"step": 2450
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.22,
|
1498 |
+
"learning_rate": 5.016666666666666e-06,
|
1499 |
+
"loss": 0.114,
|
1500 |
+
"step": 2460
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.22,
|
1504 |
+
"learning_rate": 5.002777777777778e-06,
|
1505 |
+
"loss": 0.133,
|
1506 |
+
"step": 2470
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.23,
|
1510 |
+
"learning_rate": 4.988888888888888e-06,
|
1511 |
+
"loss": 0.1207,
|
1512 |
+
"step": 2480
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 1.23,
|
1516 |
+
"learning_rate": 4.975e-06,
|
1517 |
+
"loss": 0.1123,
|
1518 |
+
"step": 2490
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 1.24,
|
1522 |
+
"learning_rate": 4.961111111111111e-06,
|
1523 |
+
"loss": 0.1039,
|
1524 |
+
"step": 2500
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 1.24,
|
1528 |
+
"learning_rate": 4.947222222222222e-06,
|
1529 |
+
"loss": 0.091,
|
1530 |
+
"step": 2510
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 1.25,
|
1534 |
+
"learning_rate": 4.933333333333333e-06,
|
1535 |
+
"loss": 0.1588,
|
1536 |
+
"step": 2520
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.25,
|
1540 |
+
"learning_rate": 4.919444444444444e-06,
|
1541 |
+
"loss": 0.098,
|
1542 |
+
"step": 2530
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.26,
|
1546 |
+
"learning_rate": 4.905555555555555e-06,
|
1547 |
+
"loss": 0.1033,
|
1548 |
+
"step": 2540
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 1.26,
|
1552 |
+
"learning_rate": 4.891666666666667e-06,
|
1553 |
+
"loss": 0.1473,
|
1554 |
+
"step": 2550
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 1.27,
|
1558 |
+
"learning_rate": 4.877777777777778e-06,
|
1559 |
+
"loss": 0.1331,
|
1560 |
+
"step": 2560
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 1.27,
|
1564 |
+
"learning_rate": 4.863888888888889e-06,
|
1565 |
+
"loss": 0.1196,
|
1566 |
+
"step": 2570
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 1.28,
|
1570 |
+
"learning_rate": 4.849999999999999e-06,
|
1571 |
+
"loss": 0.1379,
|
1572 |
+
"step": 2580
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 1.28,
|
1576 |
+
"learning_rate": 4.836111111111111e-06,
|
1577 |
+
"loss": 0.124,
|
1578 |
+
"step": 2590
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 1.29,
|
1582 |
+
"learning_rate": 4.822222222222222e-06,
|
1583 |
+
"loss": 0.1058,
|
1584 |
+
"step": 2600
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.29,
|
1588 |
+
"learning_rate": 4.808333333333334e-06,
|
1589 |
+
"loss": 0.1132,
|
1590 |
+
"step": 2610
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 1.3,
|
1594 |
+
"learning_rate": 4.794444444444444e-06,
|
1595 |
+
"loss": 0.1077,
|
1596 |
+
"step": 2620
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 1.3,
|
1600 |
+
"learning_rate": 4.780555555555556e-06,
|
1601 |
+
"loss": 0.1266,
|
1602 |
+
"step": 2630
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 1.31,
|
1606 |
+
"learning_rate": 4.766666666666666e-06,
|
1607 |
+
"loss": 0.1292,
|
1608 |
+
"step": 2640
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 1.31,
|
1612 |
+
"learning_rate": 4.752777777777778e-06,
|
1613 |
+
"loss": 0.0969,
|
1614 |
+
"step": 2650
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 1.32,
|
1618 |
+
"learning_rate": 4.738888888888889e-06,
|
1619 |
+
"loss": 0.0946,
|
1620 |
+
"step": 2660
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.32,
|
1624 |
+
"learning_rate": 4.725e-06,
|
1625 |
+
"loss": 0.1479,
|
1626 |
+
"step": 2670
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.33,
|
1630 |
+
"learning_rate": 4.711111111111111e-06,
|
1631 |
+
"loss": 0.133,
|
1632 |
+
"step": 2680
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 1.33,
|
1636 |
+
"learning_rate": 4.697222222222222e-06,
|
1637 |
+
"loss": 0.1118,
|
1638 |
+
"step": 2690
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 1.34,
|
1642 |
+
"learning_rate": 4.683333333333333e-06,
|
1643 |
+
"loss": 0.1362,
|
1644 |
+
"step": 2700
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 1.34,
|
1648 |
+
"learning_rate": 4.669444444444444e-06,
|
1649 |
+
"loss": 0.1384,
|
1650 |
+
"step": 2710
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 1.35,
|
1654 |
+
"learning_rate": 4.655555555555556e-06,
|
1655 |
+
"loss": 0.1275,
|
1656 |
+
"step": 2720
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 1.35,
|
1660 |
+
"learning_rate": 4.6416666666666666e-06,
|
1661 |
+
"loss": 0.1416,
|
1662 |
+
"step": 2730
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 1.36,
|
1666 |
+
"learning_rate": 4.627777777777778e-06,
|
1667 |
+
"loss": 0.1119,
|
1668 |
+
"step": 2740
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.36,
|
1672 |
+
"learning_rate": 4.6138888888888886e-06,
|
1673 |
+
"loss": 0.1079,
|
1674 |
+
"step": 2750
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 1.37,
|
1678 |
+
"learning_rate": 4.599999999999999e-06,
|
1679 |
+
"loss": 0.1197,
|
1680 |
+
"step": 2760
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 1.37,
|
1684 |
+
"learning_rate": 4.5861111111111114e-06,
|
1685 |
+
"loss": 0.1115,
|
1686 |
+
"step": 2770
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 1.38,
|
1690 |
+
"learning_rate": 4.572222222222222e-06,
|
1691 |
+
"loss": 0.1023,
|
1692 |
+
"step": 2780
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 1.38,
|
1696 |
+
"learning_rate": 4.5583333333333335e-06,
|
1697 |
+
"loss": 0.1109,
|
1698 |
+
"step": 2790
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 1.39,
|
1702 |
+
"learning_rate": 4.544444444444444e-06,
|
1703 |
+
"loss": 0.1184,
|
1704 |
+
"step": 2800
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 1.39,
|
1708 |
+
"learning_rate": 4.5305555555555555e-06,
|
1709 |
+
"loss": 0.1103,
|
1710 |
+
"step": 2810
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.4,
|
1714 |
+
"learning_rate": 4.516666666666666e-06,
|
1715 |
+
"loss": 0.1074,
|
1716 |
+
"step": 2820
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"epoch": 1.4,
|
1720 |
+
"learning_rate": 4.502777777777778e-06,
|
1721 |
+
"loss": 0.1139,
|
1722 |
+
"step": 2830
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 1.4,
|
1726 |
+
"learning_rate": 4.488888888888889e-06,
|
1727 |
+
"loss": 0.1107,
|
1728 |
+
"step": 2840
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 1.41,
|
1732 |
+
"learning_rate": 4.4749999999999995e-06,
|
1733 |
+
"loss": 0.0777,
|
1734 |
+
"step": 2850
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 1.41,
|
1738 |
+
"learning_rate": 4.461111111111111e-06,
|
1739 |
+
"loss": 0.1348,
|
1740 |
+
"step": 2860
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 1.42,
|
1744 |
+
"learning_rate": 4.4472222222222215e-06,
|
1745 |
+
"loss": 0.1362,
|
1746 |
+
"step": 2870
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 1.42,
|
1750 |
+
"learning_rate": 4.433333333333333e-06,
|
1751 |
+
"loss": 0.1374,
|
1752 |
+
"step": 2880
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.43,
|
1756 |
+
"learning_rate": 4.419444444444444e-06,
|
1757 |
+
"loss": 0.1135,
|
1758 |
+
"step": 2890
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 1.43,
|
1762 |
+
"learning_rate": 4.405555555555556e-06,
|
1763 |
+
"loss": 0.1166,
|
1764 |
+
"step": 2900
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 1.44,
|
1768 |
+
"learning_rate": 4.391666666666666e-06,
|
1769 |
+
"loss": 0.1202,
|
1770 |
+
"step": 2910
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 1.44,
|
1774 |
+
"learning_rate": 4.377777777777778e-06,
|
1775 |
+
"loss": 0.1455,
|
1776 |
+
"step": 2920
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"epoch": 1.45,
|
1780 |
+
"learning_rate": 4.3638888888888884e-06,
|
1781 |
+
"loss": 0.0831,
|
1782 |
+
"step": 2930
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 1.45,
|
1786 |
+
"learning_rate": 4.35e-06,
|
1787 |
+
"loss": 0.1211,
|
1788 |
+
"step": 2940
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 1.46,
|
1792 |
+
"learning_rate": 4.336111111111111e-06,
|
1793 |
+
"loss": 0.1194,
|
1794 |
+
"step": 2950
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.46,
|
1798 |
+
"learning_rate": 4.322222222222222e-06,
|
1799 |
+
"loss": 0.1124,
|
1800 |
+
"step": 2960
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 1.47,
|
1804 |
+
"learning_rate": 4.308333333333333e-06,
|
1805 |
+
"loss": 0.0947,
|
1806 |
+
"step": 2970
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 1.47,
|
1810 |
+
"learning_rate": 4.294444444444444e-06,
|
1811 |
+
"loss": 0.1152,
|
1812 |
+
"step": 2980
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 1.48,
|
1816 |
+
"learning_rate": 4.280555555555555e-06,
|
1817 |
+
"loss": 0.0858,
|
1818 |
+
"step": 2990
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 1.48,
|
1822 |
+
"learning_rate": 4.266666666666667e-06,
|
1823 |
+
"loss": 0.087,
|
1824 |
+
"step": 3000
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 1.49,
|
1828 |
+
"learning_rate": 4.252777777777778e-06,
|
1829 |
+
"loss": 0.1237,
|
1830 |
+
"step": 3010
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 1.49,
|
1834 |
+
"learning_rate": 4.238888888888889e-06,
|
1835 |
+
"loss": 0.0809,
|
1836 |
+
"step": 3020
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.5,
|
1840 |
+
"learning_rate": 4.224999999999999e-06,
|
1841 |
+
"loss": 0.1022,
|
1842 |
+
"step": 3030
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"epoch": 1.5,
|
1846 |
+
"learning_rate": 4.211111111111111e-06,
|
1847 |
+
"loss": 0.101,
|
1848 |
+
"step": 3040
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 1.51,
|
1852 |
+
"learning_rate": 4.197222222222221e-06,
|
1853 |
+
"loss": 0.1327,
|
1854 |
+
"step": 3050
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 1.51,
|
1858 |
+
"learning_rate": 4.183333333333334e-06,
|
1859 |
+
"loss": 0.1056,
|
1860 |
+
"step": 3060
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 1.52,
|
1864 |
+
"learning_rate": 4.169444444444444e-06,
|
1865 |
+
"loss": 0.1129,
|
1866 |
+
"step": 3070
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 1.52,
|
1870 |
+
"learning_rate": 4.155555555555556e-06,
|
1871 |
+
"loss": 0.1119,
|
1872 |
+
"step": 3080
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 1.53,
|
1876 |
+
"learning_rate": 4.141666666666666e-06,
|
1877 |
+
"loss": 0.1287,
|
1878 |
+
"step": 3090
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.53,
|
1882 |
+
"learning_rate": 4.127777777777778e-06,
|
1883 |
+
"loss": 0.1179,
|
1884 |
+
"step": 3100
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 1.54,
|
1888 |
+
"learning_rate": 4.113888888888889e-06,
|
1889 |
+
"loss": 0.1152,
|
1890 |
+
"step": 3110
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 1.54,
|
1894 |
+
"learning_rate": 4.1e-06,
|
1895 |
+
"loss": 0.0833,
|
1896 |
+
"step": 3120
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 1.55,
|
1900 |
+
"learning_rate": 4.086111111111111e-06,
|
1901 |
+
"loss": 0.1304,
|
1902 |
+
"step": 3130
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 1.55,
|
1906 |
+
"learning_rate": 4.072222222222222e-06,
|
1907 |
+
"loss": 0.0813,
|
1908 |
+
"step": 3140
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 1.56,
|
1912 |
+
"learning_rate": 4.058333333333333e-06,
|
1913 |
+
"loss": 0.1068,
|
1914 |
+
"step": 3150
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 1.56,
|
1918 |
+
"learning_rate": 4.044444444444444e-06,
|
1919 |
+
"loss": 0.0998,
|
1920 |
+
"step": 3160
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.57,
|
1924 |
+
"learning_rate": 4.030555555555556e-06,
|
1925 |
+
"loss": 0.1109,
|
1926 |
+
"step": 3170
|
1927 |
+
},
|
1928 |
+
{
|
1929 |
+
"epoch": 1.57,
|
1930 |
+
"learning_rate": 4.016666666666667e-06,
|
1931 |
+
"loss": 0.1193,
|
1932 |
+
"step": 3180
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 1.58,
|
1936 |
+
"learning_rate": 4.002777777777778e-06,
|
1937 |
+
"loss": 0.1234,
|
1938 |
+
"step": 3190
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.58,
|
1942 |
+
"learning_rate": 3.988888888888889e-06,
|
1943 |
+
"loss": 0.1049,
|
1944 |
+
"step": 3200
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 1.59,
|
1948 |
+
"learning_rate": 3.975e-06,
|
1949 |
+
"loss": 0.1017,
|
1950 |
+
"step": 3210
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 1.59,
|
1954 |
+
"learning_rate": 3.9611111111111115e-06,
|
1955 |
+
"loss": 0.1044,
|
1956 |
+
"step": 3220
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 1.6,
|
1960 |
+
"learning_rate": 3.947222222222222e-06,
|
1961 |
+
"loss": 0.1263,
|
1962 |
+
"step": 3230
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.6,
|
1966 |
+
"learning_rate": 3.933333333333333e-06,
|
1967 |
+
"loss": 0.1419,
|
1968 |
+
"step": 3240
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"epoch": 1.61,
|
1972 |
+
"learning_rate": 3.919444444444444e-06,
|
1973 |
+
"loss": 0.1294,
|
1974 |
+
"step": 3250
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 1.61,
|
1978 |
+
"learning_rate": 3.9055555555555555e-06,
|
1979 |
+
"loss": 0.0939,
|
1980 |
+
"step": 3260
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 1.62,
|
1984 |
+
"learning_rate": 3.891666666666666e-06,
|
1985 |
+
"loss": 0.1374,
|
1986 |
+
"step": 3270
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 1.62,
|
1990 |
+
"learning_rate": 3.8777777777777775e-06,
|
1991 |
+
"loss": 0.0959,
|
1992 |
+
"step": 3280
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"epoch": 1.63,
|
1996 |
+
"learning_rate": 3.863888888888889e-06,
|
1997 |
+
"loss": 0.1009,
|
1998 |
+
"step": 3290
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 1.63,
|
2002 |
+
"learning_rate": 3.8499999999999996e-06,
|
2003 |
+
"loss": 0.1305,
|
2004 |
+
"step": 3300
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 1.64,
|
2008 |
+
"learning_rate": 3.836111111111111e-06,
|
2009 |
+
"loss": 0.1303,
|
2010 |
+
"step": 3310
|
2011 |
+
},
|
2012 |
+
{
|
2013 |
+
"epoch": 1.64,
|
2014 |
+
"learning_rate": 3.8222222222222224e-06,
|
2015 |
+
"loss": 0.1282,
|
2016 |
+
"step": 3320
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 1.65,
|
2020 |
+
"learning_rate": 3.808333333333333e-06,
|
2021 |
+
"loss": 0.1053,
|
2022 |
+
"step": 3330
|
2023 |
+
},
|
2024 |
+
{
|
2025 |
+
"epoch": 1.65,
|
2026 |
+
"learning_rate": 3.794444444444444e-06,
|
2027 |
+
"loss": 0.1042,
|
2028 |
+
"step": 3340
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 1.66,
|
2032 |
+
"learning_rate": 3.7805555555555555e-06,
|
2033 |
+
"loss": 0.0849,
|
2034 |
+
"step": 3350
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 1.66,
|
2038 |
+
"learning_rate": 3.7666666666666665e-06,
|
2039 |
+
"loss": 0.1274,
|
2040 |
+
"step": 3360
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 1.67,
|
2044 |
+
"learning_rate": 3.7527777777777775e-06,
|
2045 |
+
"loss": 0.1228,
|
2046 |
+
"step": 3370
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.67,
|
2050 |
+
"learning_rate": 3.738888888888889e-06,
|
2051 |
+
"loss": 0.1129,
|
2052 |
+
"step": 3380
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 1.68,
|
2056 |
+
"learning_rate": 3.725e-06,
|
2057 |
+
"loss": 0.1128,
|
2058 |
+
"step": 3390
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 1.68,
|
2062 |
+
"learning_rate": 3.711111111111111e-06,
|
2063 |
+
"loss": 0.1317,
|
2064 |
+
"step": 3400
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 1.69,
|
2068 |
+
"learning_rate": 3.6972222222222224e-06,
|
2069 |
+
"loss": 0.1246,
|
2070 |
+
"step": 3410
|
2071 |
+
},
|
2072 |
+
{
|
2073 |
+
"epoch": 1.69,
|
2074 |
+
"learning_rate": 3.683333333333333e-06,
|
2075 |
+
"loss": 0.0806,
|
2076 |
+
"step": 3420
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"epoch": 1.7,
|
2080 |
+
"learning_rate": 3.669444444444444e-06,
|
2081 |
+
"loss": 0.119,
|
2082 |
+
"step": 3430
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 1.7,
|
2086 |
+
"learning_rate": 3.6555555555555554e-06,
|
2087 |
+
"loss": 0.0893,
|
2088 |
+
"step": 3440
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.71,
|
2092 |
+
"learning_rate": 3.6416666666666664e-06,
|
2093 |
+
"loss": 0.1058,
|
2094 |
+
"step": 3450
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 1.71,
|
2098 |
+
"learning_rate": 3.6277777777777774e-06,
|
2099 |
+
"loss": 0.0944,
|
2100 |
+
"step": 3460
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 1.72,
|
2104 |
+
"learning_rate": 3.613888888888889e-06,
|
2105 |
+
"loss": 0.126,
|
2106 |
+
"step": 3470
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 1.72,
|
2110 |
+
"learning_rate": 3.6e-06,
|
2111 |
+
"loss": 0.1104,
|
2112 |
+
"step": 3480
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 1.73,
|
2116 |
+
"learning_rate": 3.5861111111111113e-06,
|
2117 |
+
"loss": 0.1108,
|
2118 |
+
"step": 3490
|
2119 |
+
},
|
2120 |
+
{
|
2121 |
+
"epoch": 1.73,
|
2122 |
+
"learning_rate": 3.5722222222222223e-06,
|
2123 |
+
"loss": 0.1197,
|
2124 |
+
"step": 3500
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 1.74,
|
2128 |
+
"learning_rate": 3.558333333333333e-06,
|
2129 |
+
"loss": 0.1182,
|
2130 |
+
"step": 3510
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.74,
|
2134 |
+
"learning_rate": 3.5444444444444443e-06,
|
2135 |
+
"loss": 0.0988,
|
2136 |
+
"step": 3520
|
2137 |
+
},
|
2138 |
+
{
|
2139 |
+
"epoch": 1.75,
|
2140 |
+
"learning_rate": 3.5305555555555553e-06,
|
2141 |
+
"loss": 0.0949,
|
2142 |
+
"step": 3530
|
2143 |
+
},
|
2144 |
+
{
|
2145 |
+
"epoch": 1.75,
|
2146 |
+
"learning_rate": 3.5166666666666663e-06,
|
2147 |
+
"loss": 0.1102,
|
2148 |
+
"step": 3540
|
2149 |
+
},
|
2150 |
+
{
|
2151 |
+
"epoch": 1.76,
|
2152 |
+
"learning_rate": 3.5027777777777777e-06,
|
2153 |
+
"loss": 0.1203,
|
2154 |
+
"step": 3550
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 1.76,
|
2158 |
+
"learning_rate": 3.4888888888888888e-06,
|
2159 |
+
"loss": 0.1343,
|
2160 |
+
"step": 3560
|
2161 |
+
},
|
2162 |
+
{
|
2163 |
+
"epoch": 1.77,
|
2164 |
+
"learning_rate": 3.4749999999999998e-06,
|
2165 |
+
"loss": 0.0851,
|
2166 |
+
"step": 3570
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 1.77,
|
2170 |
+
"learning_rate": 3.461111111111111e-06,
|
2171 |
+
"loss": 0.1181,
|
2172 |
+
"step": 3580
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.78,
|
2176 |
+
"learning_rate": 3.447222222222222e-06,
|
2177 |
+
"loss": 0.0931,
|
2178 |
+
"step": 3590
|
2179 |
+
},
|
2180 |
+
{
|
2181 |
+
"epoch": 1.78,
|
2182 |
+
"learning_rate": 3.433333333333333e-06,
|
2183 |
+
"loss": 0.1068,
|
2184 |
+
"step": 3600
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 1.79,
|
2188 |
+
"learning_rate": 3.4194444444444442e-06,
|
2189 |
+
"loss": 0.0884,
|
2190 |
+
"step": 3610
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 1.79,
|
2194 |
+
"learning_rate": 3.4055555555555552e-06,
|
2195 |
+
"loss": 0.1326,
|
2196 |
+
"step": 3620
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 1.8,
|
2200 |
+
"learning_rate": 3.3916666666666667e-06,
|
2201 |
+
"loss": 0.1307,
|
2202 |
+
"step": 3630
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 1.8,
|
2206 |
+
"eval_loss": 0.249267578125,
|
2207 |
+
"eval_runtime": 590.255,
|
2208 |
+
"eval_samples_per_second": 40.584,
|
2209 |
+
"eval_steps_per_second": 5.074,
|
2210 |
+
"step": 3639
|
2211 |
+
}
|
2212 |
+
],
|
2213 |
+
"max_steps": 6063,
|
2214 |
+
"num_train_epochs": 3,
|
2215 |
+
"total_flos": 134441240494080.0,
|
2216 |
+
"trial_name": null,
|
2217 |
+
"trial_params": null
|
2218 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c42f106339a0328c004e4952494046976bb21234b5589de38804b01f680386c0
|
3 |
+
size 5115
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage == 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage == 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|