ChenWu98 commited on
Commit
64b8cf0
·
verified ·
1 Parent(s): 9e56430

Model save

Browse files
Files changed (5) hide show
  1. README.md +6 -13
  2. all_results.json +9 -9
  3. eval_results.json +5 -5
  4. train_results.json +5 -5
  5. trainer_state.json +47 -89
README.md CHANGED
@@ -2,16 +2,9 @@
2
  license: mit
3
  library_name: peft
4
  tags:
5
- - alignment-handbook
6
  - trl
7
  - sft
8
  - generated_from_trainer
9
- - trl
10
- - sft
11
- - generated_from_trainer
12
- datasets:
13
- - ChenWu98/skills_metaphor_chat
14
- - ChenWu98/skills_red_herring_chat
15
  base_model: HuggingFaceH4/zephyr-7b-beta
16
  model-index:
17
  - name: skills_metaphor_chat-skills_red_herring_chat-lora
@@ -23,9 +16,9 @@ should probably proofread and complete it, then remove this comment. -->
23
 
24
  # skills_metaphor_chat-skills_red_herring_chat-lora
25
 
26
- This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the ChenWu98/skills_metaphor_chat and the ChenWu98/skills_red_herring_chat datasets.
27
  It achieves the following results on the evaluation set:
28
- - Loss: 0.2123
29
 
30
  ## Model description
31
 
@@ -49,8 +42,8 @@ The following hyperparameters were used during training:
49
  - eval_batch_size: 8
50
  - seed: 42
51
  - distributed_type: multi-GPU
52
- - gradient_accumulation_steps: 4
53
- - total_train_batch_size: 16
54
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
  - lr_scheduler_type: cosine
56
  - lr_scheduler_warmup_ratio: 0.1
@@ -60,8 +53,8 @@ The following hyperparameters were used during training:
60
 
61
  | Training Loss | Epoch | Step | Validation Loss |
62
  |:-------------:|:-----:|:----:|:---------------:|
63
- | 0.199 | 0.99 | 37 | 0.2184 |
64
- | 0.1668 | 1.97 | 74 | 0.2123 |
65
 
66
 
67
  ### Framework versions
 
2
  license: mit
3
  library_name: peft
4
  tags:
 
5
  - trl
6
  - sft
7
  - generated_from_trainer
 
 
 
 
 
 
8
  base_model: HuggingFaceH4/zephyr-7b-beta
9
  model-index:
10
  - name: skills_metaphor_chat-skills_red_herring_chat-lora
 
16
 
17
  # skills_metaphor_chat-skills_red_herring_chat-lora
18
 
19
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.2245
22
 
23
  ## Model description
24
 
 
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - distributed_type: multi-GPU
45
+ - gradient_accumulation_steps: 8
46
+ - total_train_batch_size: 32
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.1
 
53
 
54
  | Training Loss | Epoch | Step | Validation Loss |
55
  |:-------------:|:-----:|:----:|:---------------:|
56
+ | 0.2788 | 0.96 | 18 | 0.2390 |
57
+ | 0.1993 | 1.92 | 36 | 0.2245 |
58
 
59
 
60
  ### Framework versions
all_results.json CHANGED
@@ -1,13 +1,13 @@
1
  {
2
- "epoch": 1.97,
3
- "eval_loss": 0.21233995258808136,
4
- "eval_runtime": 8.1232,
5
  "eval_samples": 200,
6
- "eval_samples_per_second": 24.621,
7
- "eval_steps_per_second": 3.078,
8
- "train_loss": 0.39267757534980774,
9
- "train_runtime": 398.9638,
10
  "train_samples": 600,
11
- "train_samples_per_second": 3.008,
12
- "train_steps_per_second": 0.185
13
  }
 
1
  {
2
+ "epoch": 1.92,
3
+ "eval_loss": 0.2245262861251831,
4
+ "eval_runtime": 10.1729,
5
  "eval_samples": 200,
6
+ "eval_samples_per_second": 19.66,
7
+ "eval_steps_per_second": 2.458,
8
+ "train_loss": 0.5313632095025645,
9
+ "train_runtime": 554.6126,
10
  "train_samples": 600,
11
+ "train_samples_per_second": 2.164,
12
+ "train_steps_per_second": 0.065
13
  }
eval_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 1.97,
3
- "eval_loss": 0.21233995258808136,
4
- "eval_runtime": 8.1232,
5
  "eval_samples": 200,
6
- "eval_samples_per_second": 24.621,
7
- "eval_steps_per_second": 3.078
8
  }
 
1
  {
2
+ "epoch": 1.92,
3
+ "eval_loss": 0.2245262861251831,
4
+ "eval_runtime": 10.1729,
5
  "eval_samples": 200,
6
+ "eval_samples_per_second": 19.66,
7
+ "eval_steps_per_second": 2.458
8
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 1.97,
3
- "train_loss": 0.39267757534980774,
4
- "train_runtime": 398.9638,
5
  "train_samples": 600,
6
- "train_samples_per_second": 3.008,
7
- "train_steps_per_second": 0.185
8
  }
 
1
  {
2
+ "epoch": 1.92,
3
+ "train_loss": 0.5313632095025645,
4
+ "train_runtime": 554.6126,
5
  "train_samples": 600,
6
+ "train_samples_per_second": 2.164,
7
+ "train_steps_per_second": 0.065
8
  }
trainer_state.json CHANGED
@@ -1,135 +1,93 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 1.9733333333333334,
5
  "eval_steps": 500,
6
- "global_step": 74,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
- "epoch": 0.03,
13
- "learning_rate": 2.5e-05,
14
- "loss": 2.2275,
15
  "step": 1
16
  },
17
- {
18
- "epoch": 0.13,
19
- "learning_rate": 0.000125,
20
- "loss": 2.1443,
21
- "step": 5
22
- },
23
  {
24
  "epoch": 0.27,
25
- "learning_rate": 0.00019954719225730847,
26
- "loss": 1.0226,
27
- "step": 10
28
- },
29
- {
30
- "epoch": 0.4,
31
- "learning_rate": 0.00019450008187146684,
32
- "loss": 0.31,
33
- "step": 15
34
  },
35
  {
36
  "epoch": 0.53,
37
- "learning_rate": 0.00018412535328311814,
38
- "loss": 0.2456,
39
- "step": 20
40
- },
41
- {
42
- "epoch": 0.67,
43
- "learning_rate": 0.00016900790114821122,
44
- "loss": 0.2362,
45
- "step": 25
46
  },
47
  {
48
  "epoch": 0.8,
49
- "learning_rate": 0.00015000000000000001,
50
- "loss": 0.2269,
51
- "step": 30
52
- },
53
- {
54
- "epoch": 0.93,
55
- "learning_rate": 0.00012817325568414297,
56
- "loss": 0.199,
57
- "step": 35
58
  },
59
  {
60
- "epoch": 0.99,
61
- "eval_loss": 0.21835945546627045,
62
- "eval_runtime": 8.9027,
63
- "eval_samples_per_second": 22.465,
64
- "eval_steps_per_second": 2.808,
65
- "step": 37
66
  },
67
  {
68
  "epoch": 1.07,
69
- "learning_rate": 0.00010475819158237425,
70
- "loss": 0.1995,
71
- "step": 40
72
- },
73
- {
74
- "epoch": 1.2,
75
- "learning_rate": 8.107487556395901e-05,
76
- "loss": 0.1853,
77
- "step": 45
78
  },
79
  {
80
  "epoch": 1.33,
81
- "learning_rate": 5.845849869981137e-05,
82
- "loss": 0.1781,
83
- "step": 50
84
- },
85
- {
86
- "epoch": 1.47,
87
- "learning_rate": 3.8184101377939476e-05,
88
- "loss": 0.1821,
89
- "step": 55
90
  },
91
  {
92
  "epoch": 1.6,
93
- "learning_rate": 2.139469052572127e-05,
94
- "loss": 0.1811,
95
- "step": 60
96
- },
97
- {
98
- "epoch": 1.73,
99
- "learning_rate": 9.036800464548157e-06,
100
- "loss": 0.1728,
101
- "step": 65
102
  },
103
  {
104
  "epoch": 1.87,
105
- "learning_rate": 1.8071302737293295e-06,
106
- "loss": 0.1668,
107
- "step": 70
108
  },
109
  {
110
- "epoch": 1.97,
111
- "eval_loss": 0.21233995258808136,
112
- "eval_runtime": 8.0137,
113
- "eval_samples_per_second": 24.957,
114
- "eval_steps_per_second": 3.12,
115
- "step": 74
116
  },
117
  {
118
- "epoch": 1.97,
119
- "step": 74,
120
- "total_flos": 41279761350656.0,
121
- "train_loss": 0.39267757534980774,
122
- "train_runtime": 398.9638,
123
- "train_samples_per_second": 3.008,
124
- "train_steps_per_second": 0.185
125
  }
126
  ],
127
  "logging_steps": 5,
128
- "max_steps": 74,
129
  "num_input_tokens_seen": 0,
130
  "num_train_epochs": 2,
131
  "save_steps": 500,
132
- "total_flos": 41279761350656.0,
133
  "train_batch_size": 4,
134
  "trial_name": null,
135
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 1.92,
5
  "eval_steps": 500,
6
+ "global_step": 36,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
+ "epoch": 0.05,
13
+ "learning_rate": 5e-05,
14
+ "loss": 2.272,
15
  "step": 1
16
  },
 
 
 
 
 
 
17
  {
18
  "epoch": 0.27,
19
+ "learning_rate": 0.0001995184726672197,
20
+ "loss": 1.954,
21
+ "step": 5
 
 
 
 
 
 
22
  },
23
  {
24
  "epoch": 0.53,
25
+ "learning_rate": 0.00018314696123025454,
26
+ "loss": 0.6371,
27
+ "step": 10
 
 
 
 
 
 
28
  },
29
  {
30
  "epoch": 0.8,
31
+ "learning_rate": 0.0001471396736825998,
32
+ "loss": 0.2788,
33
+ "step": 15
 
 
 
 
 
 
34
  },
35
  {
36
+ "epoch": 0.96,
37
+ "eval_loss": 0.23904697597026825,
38
+ "eval_runtime": 11.1391,
39
+ "eval_samples_per_second": 17.955,
40
+ "eval_steps_per_second": 2.244,
41
+ "step": 18
42
  },
43
  {
44
  "epoch": 1.07,
45
+ "learning_rate": 0.0001,
46
+ "loss": 0.2252,
47
+ "step": 20
 
 
 
 
 
 
48
  },
49
  {
50
  "epoch": 1.33,
51
+ "learning_rate": 5.286032631740023e-05,
52
+ "loss": 0.2128,
53
+ "step": 25
 
 
 
 
 
 
54
  },
55
  {
56
  "epoch": 1.6,
57
+ "learning_rate": 1.6853038769745467e-05,
58
+ "loss": 0.2122,
59
+ "step": 30
 
 
 
 
 
 
60
  },
61
  {
62
  "epoch": 1.87,
63
+ "learning_rate": 4.815273327803182e-07,
64
+ "loss": 0.1993,
65
+ "step": 35
66
  },
67
  {
68
+ "epoch": 1.92,
69
+ "eval_loss": 0.2245262861251831,
70
+ "eval_runtime": 9.6856,
71
+ "eval_samples_per_second": 20.649,
72
+ "eval_steps_per_second": 2.581,
73
+ "step": 36
74
  },
75
  {
76
+ "epoch": 1.92,
77
+ "step": 36,
78
+ "total_flos": 40159503319040.0,
79
+ "train_loss": 0.5313632095025645,
80
+ "train_runtime": 554.6126,
81
+ "train_samples_per_second": 2.164,
82
+ "train_steps_per_second": 0.065
83
  }
84
  ],
85
  "logging_steps": 5,
86
+ "max_steps": 36,
87
  "num_input_tokens_seen": 0,
88
  "num_train_epochs": 2,
89
  "save_steps": 500,
90
+ "total_flos": 40159503319040.0,
91
  "train_batch_size": 4,
92
  "trial_name": null,
93
  "trial_params": null