File size: 1,893 Bytes
d27f92f
 
 
a6d50d4
 
 
2043b3e
37beb75
f92937d
37beb75
f92937d
37beb75
f92937d
37beb75
2043b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be3002c
c4fa1e9
fc66abc
 
be3002c
f92937d
be3002c
8eca765
 
be3002c
f92937d
 
 
 
 
be3002c
f92937d
 
 
 
 
 
 
 
fc66abc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
---

### Model Description

This model is a mixture of experts merge consisting of 3 mistral based models:

base model, **openchat/openchat-3.5-0106**

code expert, **beowolx/CodeNinja-1.0-OpenChat-7B**

math expert, **meta-math/MetaMath-Mistral-7B**

This is the config used in the merging process:
``` yaml
base_model: openchat/openchat-3.5-0106
experts:
  - source_model: openchat/openchat-3.5-0106
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "I want"
  - source_model: beowolx/CodeNinja-1.0-OpenChat-7B
    positive_prompts:
    - "code"
    - "python"
    - "javascript"
    - "programming"
    - "algorithm"
    - "C#"
    - "C++"
    - "debug"
    - "runtime"
    - "html"
    - "command"
    - "nodejs"
  - source_model: meta-math/MetaMath-Mistral-7B
    positive_prompts:
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
    - "calculate"
    - "arithmetic"
    - "algebra"
```
### Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Chickaboo/Chicka-Mistral-4x7b")
tokenizer = AutoTokenizer.from_pretrained("Chickaboo/Chicka-Mistral-4x7b")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```