matthieumeeus97 commited on
Commit
638c4cb
·
verified ·
1 Parent(s): c9802b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +158 -5
README.md CHANGED
@@ -4,12 +4,165 @@ language:
4
  license: llama3
5
  ---
6
 
7
- ## LLaMA-3-NL: Fine-tuned using LoRa and the original tokenizer
 
 
 
 
 
 
8
 
9
- ```
 
 
 
 
 
 
 
 
10
  from transformers import AutoModelForCausalLM, AutoTokenizer
11
 
12
- tokenizer = AutoTokenizer.from_pretrained('llama-2-nl/Llama-3-8B-lora-original')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- model = AutoModelForCausalLM.from_pretrained('llama-2-nl/Llama-3-8B-lora-original')
15
- ```
 
4
  license: llama3
5
  ---
6
 
7
+ <p align="center" style="margin:0;padding:0">
8
+ <img src="./chocollama_logo.png" alt="ChocoLlama logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
9
+ </p>
10
+ <div style="margin:auto; text-align:center">
11
+ <h1 style="margin-bottom: 0">ChocoLlama</h1>
12
+ <em>A Llama-2/3-based family of Dutch language models</em>
13
+ </div>
14
 
15
+ ## Llama-3-ChocoLlama-8B-base: Getting Started
16
+
17
+ We here present **Llama-3-ChocoLlama-8B-base**, a language-adapted version of Meta's Llama-3-8b, fine-tuned on 17B Dutch Llama-3 tokens (104GB) using LoRa.
18
+ Note that this is a base model, not optimized for conversational behavior.
19
+ If this is desired for your use-case, we recommend finetuning this model on your own Dutch data or using the instruction-finetuned version of this model, [Llama-3-ChocoLlama-instruct](https://huggingface.co/ChocoLlama/Llama-3-ChocoLlama-instruct).
20
+
21
+ Use the code below to get started with the model.
22
+
23
+ ```python
24
  from transformers import AutoModelForCausalLM, AutoTokenizer
25
 
26
+ tokenizer = AutoTokenizer.from_pretrained('ChocoLlama/Llama-3-ChocoLlama-base')
27
+ model = AutoModelForCausalLM.from_pretrained('ChocoLlama/Llama-3-ChocoLlama-base')
28
+ ```
29
+
30
+ ## Model Details
31
+
32
+ ChocoLlama is a family of open LLM's specifically adapted to Dutch, contributing to the state-of-the-art of Dutch open LLM's in their weight class.
33
+
34
+ We provide 6 variants (of which 3 base and 3 instruction-tuned models):
35
+ - **ChocoLlama-2-7B-base** ([link](https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-base)): A language-adapted version of Meta's Llama-2-7b, fine-tuned on 32B Dutch Llama-2 tokens (104GB) using LoRa.
36
+ - **ChocoLlama-2-7B-instruct** ([link](https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-instruct)): An instruction-tuned version of ChocoLlama-2-7B-base, fine-tuned on a collection of Dutch translations of instruction-tuning datasets, using SFT followed by DPO.
37
+ - **ChocoLlama-2-7B-tokentrans-base** ([link](https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-tokentrans-base)): A language-adapted version of Meta's Llama-2-7b, using a Dutch RoBERTa-based tokenizer. The token embeddings of this model were reinitialized using the token translation algorithm proposed by [Remy et al.](https://arxiv.org/pdf/2310.03477). The model was subsequently fine-tuned on the same Dutch dataset as ChocoLlama-2-7B-base, again using LoRa.
38
+ - **ChocoLlama-2-7B-tokentrans-instruct** ([link](https://huggingface.co/ChocoLlama/ChocoLlama-2-7B-tokentrans-instruct)): An instruction-tuned version of ChocoLlama-2-7B-tokentrans-base, fine-tuned on the same dataset as ChocoLlama-2-7B-instruct, again using SFT followed by DPO.
39
+ - **Llama-3-ChocoLlama-8B-base** ([link](https://huggingface.co/ChocoLlama/Llama-3-ChocoLlama-8B-base)): A language-adapted version of Meta's Llama-8-8B, fine-tuned on the same Dutch dataset as ChocoLlama-2-7B-base, again using LoRa.
40
+ - **Llama-3-ChocoLlama-instruct** ([link](https://huggingface.co/ChocoLlama/Llama-3-ChocoLlama-8B-instruct)): An instruction-tuned version of Llama-3-ChocoLlama-8B-base, fine-tuned on the same dataset as ChocoLlama-2-7B-instruct, again using SFT followed by DPO.
41
+
42
+ For benchmark results for all models, including compared to their base models and other Dutch LLMs, we refer to our paper [here](some_url).
43
+
44
+ ### Model Description
45
+
46
+ - **Developed by:** [Matthieu Meeus](https://huggingface.co/matthieumeeus97), [Anthony Rathé](https://huggingface.co/anthonyrathe)
47
+ - **Funded by:** [Vlaams Supercomputer Centrum](https://www.vscentrum.be/), through a grant of apx. 40K GPU hours (NVIDIA A100-80GB)
48
+ - **Language(s):** Dutch
49
+ - **License:** [Llama-3 Community License](https://www.llama.com/llama3/license/)
50
+ - **Finetuned from model:** [Llama-3-8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
51
+
52
+ ### Model Sources
53
+
54
+ - **Repository:** Will be released soon.
55
+ - **Paper:** Will be released soon.
56
+
57
+ ## Uses
58
+
59
+ ### Direct Use
60
+
61
+ Since this is a base model, we do not recommend using it for your use-cases directly. We instead recommend:
62
+ 1. Fine-tuning this model to your specific use-case
63
+ 2. Leveraging the instruction-tuned version of this model
64
+
65
+ ### Downstream Use
66
+
67
+ Since this model is a base model, it can easily be adapted to specific use-cases that required Dutch language understanding and generation.
68
+ We expect this model to be particularly useful for use-cases in the domains which were explicitly covered in our dataset, e.g. the analysis and/or generation of Dutch job descriptions, corporate filings and legislation.
69
+
70
+ ### Out-of-Scope Use
71
+
72
+ - Use-cases requiring a chat-style interface: since this is a base model, it cannot be used reliably for turn-based chat interaction. Please refer to the instruction-tuned version of this model instead.
73
+ - Use-cases requiring understanding or generation of text in languages other than Dutch: the dataset on which this model was fine-tuned does not contain data in languages other than Dutch, hence we expect significant catastrophic forgetting to have occured for English, which is the language Llama-2 was originally trained for.
74
+
75
+ ## Bias, Risks, and Limitations
76
+
77
+ We have taken care to include only widely used and high-quality data in our dataset. Some of this data has been filtered by the original creators.
78
+ However we did not explicitly conduct any additional filtering of this dataset with regards to biased or otherwise harmful content.
79
+
80
+ ### Recommendations
81
+
82
+ We recommend fine-tuning this model to your curated data to maximally avoid undesirable outputs.
83
+
84
+ ## Training Details
85
+
86
+ ### Training Data
87
+
88
+ We collect a diverse set of Dutch natural language.
89
+
90
+ 1. **OSCAR**
91
+ The bulk of our data comes from the Dutch portion of [OSCAR](https://oscar-corpus.com), January 2023 version, based on Common Crawl. This dataset includes **93 GB** of text (~28.6B tokens).
92
+
93
+ 2. **Open Subtitles**
94
+ We collected Dutch text from movie subtitles, focusing on unique movies either in Dutch or with Dutch subtitles. This dataset contains **5 GB** of text (~1.54B tokens) from **214k samples**.
95
+
96
+ 3. **Project Gutenberg**
97
+ We downloaded **970 full Dutch books** from [Project Gutenberg](https://www.gutenberg.org) using a public scraper. The dataset includes **0.3 GB** of text (~92M tokens) and is available on [Hugging Face](https://huggingface.co/datasets/ChocoLlama/gutenberg-dutch).
98
+
99
+ 4. **Wikipedia**
100
+ Using the March 2023 [Wikipedia dump](https://dumps.wikimedia.org), we included **2.5 GB** of text (~769M tokens). Despite some duplication with OSCAR, Wikipedia's high quality justifies its inclusion.
101
+
102
+ 5. **Job Descriptions (TechWolf)**
103
+ A sample of **750k Dutch job descriptions** collected over five years from public websites, provided by TechWolf. This dataset contains **1.5 GB** of text (~462M tokens).
104
+
105
+ 6. **Staatsblad (Bizzy)**
106
+ A sample of **80k legal filings** from [Het Belgisch Staatsblad](https://www.ejustice.just.fgov.be/cgi/welcome.pl). Documents were OCR-processed, and personal data was excluded. This dataset includes **1.4 GB** of text (~431M tokens), collected with help from Bizzy.
107
+
108
+ 7. **Legislation (ML6)**
109
+ **15k documents** from Flemish legislation accessed via the [Open Data API](https://www.vlaanderen.be/vlaams-parlement/de-vlaamse-codex). This dataset contains **0.2 GB** of text (~62M tokens), collected with support from ML6.
110
+
111
+ ### Training Procedure
112
+
113
+ This model was fine-tuned using low-rank (LoRa) adapatation with trainable embeddings, for a total of 1.07B trainable parameters.
114
+
115
+ #### Training Hyperparameters
116
+
117
+ - **Training regime:** bf16 non-mixed precision
118
+ - **Epochs:** 1
119
+ - **LoRa parameters:**
120
+ - R: 8
121
+ - Alpha: 32
122
+ - Trainable modules: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj, embed_tokens, lm_head
123
+ - LoRa dropout: 0.05
124
+ - **Learning Rate:**
125
+ - Scheduler: StepLR
126
+ - Step size: 6212
127
+ - Learning rate: 0.0003
128
+ - Gamma: 0.85
129
+ - **Other parameters:**
130
+ - Minibatch size: 16
131
+ - Gradient accumulation steps: 8
132
+ - Parallelization factor: 8
133
+ - Weight decay: 0
134
+
135
+ ## Evaluation
136
+
137
+ ### Quantitative evaluation
138
+
139
+ We have evaluated our models on several industry-standard Dutch benchmarks, translated from their original versions. The results can be found in the table below, together with results from several other prominent Dutch models.
140
+
141
+ | Model | ARC | HellaSwag | MMLU | TruthfulQA | Avg. |
142
+ |----------------------------------------------|----------------|----------------|----------------|----------------|----------------|
143
+ | **Llama-3-ChocoLlama-instruct** | **0.48** | **0.66** | **0.49** | **0.49** | **0.53** |
144
+ | llama-3-8B-rebatch | 0.44 | 0.64 | 0.46 | 0.48 | 0.51 |
145
+ | llama-3-8B-instruct | 0.47 | 0.59 | 0.47 | 0.52 | 0.51 |
146
+ | llama-3-8B | 0.44 | 0.64 | 0.47 | 0.45 | 0.5 |
147
+ | Reynaerde-7B-Chat | 0.44 | 0.62 | 0.39 | 0.52 | 0.49 |
148
+ | **Llama-3-ChocoLlama-base** | **0.45** | **0.64** | **0.44** | **0.44** | **0.49** |
149
+ | zephyr-7b-beta | 0.43 | 0.58 | 0.43 | 0.53 | 0.49 |
150
+ | geitje-7b-ultra | 0.40 | 0.66 | 0.36 | 0.49 | 0.48 |
151
+ | **ChocoLlama-2-7B-tokentrans-instruct** | **0.45** | **0.62** | **0.34** | **0.42** | **0.46** |
152
+ | mistral-7b-v0.1 | 0.43 | 0.58 | 0.37 | 0.45 | 0.46 |
153
+ | **ChocoLlama-2-7B-tokentrans-base** | **0.42** | **0.61** | **0.32** | **0.43** | **0.45** |
154
+ | **ChocoLlama-2-7B-instruct** | **0.36** | **0.57** | **0.33** | **0.45** | **0.43 |
155
+ | **ChocoLlama-2-7B-base** | **0.35** | **0.56** | **0.31** | **0.43** | **0.41** |
156
+ | llama-2-7b-chat-hf | 0.36 | 0.49 | 0.33 | 0.44 | 0.41 |
157
+ | llama-2-7b-hf | 0.36 | 0.51 | 0.32 | 0.41 | 0.40 |
158
+
159
+ On average, Llama-3-ChocoLlama-instruct surpasses the previous state-of-the-art on these benchmarks.
160
+
161
+ ### Qualitative evaluation
162
+
163
+ In our paper, we also provide an additional qualitative evaluation of all models - which we empirically find more reliable.
164
+ For details, we refer to the paper and to our benchmark [ChocoLlama-Bench](https://huggingface.co/datasets/ChocoLlama/ChocoLlama-Bench).
165
+
166
+ ### Compute Infrastructure
167
 
168
+ All ChocoLlama models have been trained on the compute cluster provided by the [Flemish Supercomputer Center (VSC)](https://www.vscentrum.be/). We used 8 to 16 NVIDIA A100 GPU's with 80 GB of VRAM.