File size: 6,634 Bytes
c642393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
from multiprocessing.pool import Pool

import numpy as np
from collections import OrderedDict

from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.Task043_BraTS_2019 import copy_BraTS_segmentation_and_convert_labels
from nnunet.paths import nnUNet_raw_data
import SimpleITK as sitk
import shutil


def convert_labels_back_to_BraTS(seg: np.ndarray):
    new_seg = np.zeros_like(seg)
    new_seg[seg == 1] = 2
    new_seg[seg == 3] = 4
    new_seg[seg == 2] = 1
    return new_seg


def load_convert_save(filename, input_folder, output_folder):
    a = sitk.ReadImage(join(input_folder, filename))
    b = sitk.GetArrayFromImage(a)
    c = convert_labels_back_to_BraTS(b)
    d = sitk.GetImageFromArray(c)
    d.CopyInformation(a)
    sitk.WriteImage(d, join(output_folder, filename))


def convert_labels_back_to_BraTS_2018_2019_convention(input_folder: str, output_folder: str, num_processes: int = 12):
    """
    reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the
    result in output_folder
    :param input_folder:
    :param output_folder:
    :return:
    """
    maybe_mkdir_p(output_folder)
    nii = subfiles(input_folder, suffix='.nii.gz', join=False)
    p = Pool(num_processes)
    p.starmap(load_convert_save, zip(nii, [input_folder] * len(nii), [output_folder] * len(nii)))
    p.close()
    p.join()


if __name__ == "__main__":
    """
    REMEMBER TO CONVERT LABELS BACK TO BRATS CONVENTION AFTER PREDICTION!
    """

    task_name = "Task032_BraTS2018"
    downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Training"

    target_base = join(nnUNet_raw_data, task_name)
    target_imagesTr = join(target_base, "imagesTr")
    target_imagesVal = join(target_base, "imagesVal")
    target_imagesTs = join(target_base, "imagesTs")
    target_labelsTr = join(target_base, "labelsTr")

    maybe_mkdir_p(target_imagesTr)
    maybe_mkdir_p(target_imagesVal)
    maybe_mkdir_p(target_imagesTs)
    maybe_mkdir_p(target_labelsTr)

    patient_names = []
    for tpe in ["HGG", "LGG"]:
        cur = join(downloaded_data_dir, tpe)
        for p in subdirs(cur, join=False):
            patdir = join(cur, p)
            patient_name = tpe + "__" + p
            patient_names.append(patient_name)
            t1 = join(patdir, p + "_t1.nii.gz")
            t1c = join(patdir, p + "_t1ce.nii.gz")
            t2 = join(patdir, p + "_t2.nii.gz")
            flair = join(patdir, p + "_flair.nii.gz")
            seg = join(patdir, p + "_seg.nii.gz")

            assert all([
                isfile(t1),
                isfile(t1c),
                isfile(t2),
                isfile(flair),
                isfile(seg)
            ]), "%s" % patient_name

            shutil.copy(t1, join(target_imagesTr, patient_name + "_0000.nii.gz"))
            shutil.copy(t1c, join(target_imagesTr, patient_name + "_0001.nii.gz"))
            shutil.copy(t2, join(target_imagesTr, patient_name + "_0002.nii.gz"))
            shutil.copy(flair, join(target_imagesTr, patient_name + "_0003.nii.gz"))

            copy_BraTS_segmentation_and_convert_labels(seg, join(target_labelsTr, patient_name + ".nii.gz"))

    json_dict = OrderedDict()
    json_dict['name'] = "BraTS2018"
    json_dict['description'] = "nothing"
    json_dict['tensorImageSize'] = "4D"
    json_dict['reference'] = "see BraTS2018"
    json_dict['licence'] = "see BraTS2019 license"
    json_dict['release'] = "0.0"
    json_dict['modality'] = {
        "0": "T1",
        "1": "T1ce",
        "2": "T2",
        "3": "FLAIR"
    }
    json_dict['labels'] = {
        "0": "background",
        "1": "edema",
        "2": "non-enhancing",
        "3": "enhancing",
    }
    json_dict['numTraining'] = len(patient_names)
    json_dict['numTest'] = 0
    json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
                             patient_names]
    json_dict['test'] = []

    save_json(json_dict, join(target_base, "dataset.json"))

    del tpe, cur
    downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Validation"

    for p in subdirs(downloaded_data_dir, join=False):
        patdir = join(downloaded_data_dir, p)
        patient_name = p
        t1 = join(patdir, p + "_t1.nii.gz")
        t1c = join(patdir, p + "_t1ce.nii.gz")
        t2 = join(patdir, p + "_t2.nii.gz")
        flair = join(patdir, p + "_flair.nii.gz")

        assert all([
            isfile(t1),
            isfile(t1c),
            isfile(t2),
            isfile(flair),
        ]), "%s" % patient_name

        shutil.copy(t1, join(target_imagesVal, patient_name + "_0000.nii.gz"))
        shutil.copy(t1c, join(target_imagesVal, patient_name + "_0001.nii.gz"))
        shutil.copy(t2, join(target_imagesVal, patient_name + "_0002.nii.gz"))
        shutil.copy(flair, join(target_imagesVal, patient_name + "_0003.nii.gz"))

    downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Testing_FIsensee"

    for p in subdirs(downloaded_data_dir, join=False):
        patdir = join(downloaded_data_dir, p)
        patient_name = p
        t1 = join(patdir, p + "_t1.nii.gz")
        t1c = join(patdir, p + "_t1ce.nii.gz")
        t2 = join(patdir, p + "_t2.nii.gz")
        flair = join(patdir, p + "_flair.nii.gz")

        assert all([
            isfile(t1),
            isfile(t1c),
            isfile(t2),
            isfile(flair),
        ]), "%s" % patient_name

        shutil.copy(t1, join(target_imagesTs, patient_name + "_0000.nii.gz"))
        shutil.copy(t1c, join(target_imagesTs, patient_name + "_0001.nii.gz"))
        shutil.copy(t2, join(target_imagesTs, patient_name + "_0002.nii.gz"))
        shutil.copy(flair, join(target_imagesTs, patient_name + "_0003.nii.gz"))