File size: 6,987 Bytes
c642393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from collections import OrderedDict
import numpy as np
import SimpleITK as sitk
import multiprocessing
from batchgenerators.utilities.file_and_folder_operations import *
def convert_to_nii_gz(filename):
f = sitk.ReadImage(filename)
sitk.WriteImage(f, os.path.splitext(filename)[0] + ".nii.gz")
os.remove(filename)
def convert_for_submission(source_dir, target_dir):
files = subfiles(source_dir, suffix=".nii.gz", join=False)
maybe_mkdir_p(target_dir)
for f in files:
splitted = f.split("__")
case_id = int(splitted[1])
timestep = int(splitted[2][:-7])
t = join(target_dir, "test%02d_%02d_nnUNet.nii" % (case_id, timestep))
img = sitk.ReadImage(join(source_dir, f))
sitk.WriteImage(img, t)
if __name__ == "__main__":
# convert to nifti.gz
dirs = ['/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTr',
'/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs',
'/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/labelsTr']
p = multiprocessing.Pool(3)
for d in dirs:
nii_files = subfiles(d, suffix='.nii')
p.map(convert_to_nii_gz, nii_files)
p.close()
p.join()
def rename_files(folder):
all_files = subfiles(folder, join=False)
# there are max 14 patients per folder, starting with 1
for patientid in range(1, 15):
# there are certainly no more than 10 time steps per patient, starting with 1
for t in range(1, 10):
patient_files = [i for i in all_files if i.find("%02.0d_%02.0d_" % (patientid, t)) != -1]
if not len(patient_files) == 4:
continue
flair_file = [i for i in patient_files if i.endswith("_flair_pp.nii.gz")][0]
mprage_file = [i for i in patient_files if i.endswith("_mprage_pp.nii.gz")][0]
pd_file = [i for i in patient_files if i.endswith("_pd_pp.nii.gz")][0]
t2_file = [i for i in patient_files if i.endswith("_t2_pp.nii.gz")][0]
os.rename(join(folder, flair_file), join(folder, "case__%02.0d__%02.0d_0000.nii.gz" % (patientid, t)))
os.rename(join(folder, mprage_file), join(folder, "case__%02.0d__%02.0d_0001.nii.gz" % (patientid, t)))
os.rename(join(folder, pd_file), join(folder, "case__%02.0d__%02.0d_0002.nii.gz" % (patientid, t)))
os.rename(join(folder, t2_file), join(folder, "case__%02.0d__%02.0d_0003.nii.gz" % (patientid, t)))
for d in dirs[:-1]:
rename_files(d)
# now we have to deal with the training masks, we do it the quick and dirty way here by just creating copies of the
# training data
train_folder = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTr'
for patientid in range(1, 6):
for t in range(1, 6):
fnames_original = subfiles(train_folder, prefix="case__%02.0d__%02.0d" % (patientid, t), suffix=".nii.gz", sort=True)
for f in fnames_original:
for mask in [1, 2]:
fname_target = f[:-12] + "__mask%d" % mask + f[-12:]
shutil.copy(f, fname_target)
os.remove(f)
labels_folder = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/labelsTr'
for patientid in range(1, 6):
for t in range(1, 6):
for mask in [1, 2]:
f = join(labels_folder, "training%02d_%02d_mask%d.nii.gz" % (patientid, t, mask))
if isfile(f):
os.rename(f, join(labels_folder, "case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask)))
tr_files = []
for patientid in range(1, 6):
for t in range(1, 6):
for mask in [1, 2]:
if isfile(join(labels_folder, "case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask))):
tr_files.append("case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask))
ts_files = []
for patientid in range(1, 20):
for t in range(1, 20):
if isfile(join("/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs",
"case__%02.0d__%02.0d_0000.nii.gz" % (patientid, t))):
ts_files.append("case__%02.0d__%02.0d.nii.gz" % (patientid, t))
out_base = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/'
json_dict = OrderedDict()
json_dict['name'] = "ISBI_Lesion_Segmentation_Challenge_2015"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see challenge website"
json_dict['licence'] = "see challenge website"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "flair",
"1": "mprage",
"2": "pd",
"3": "t2"
}
json_dict['labels'] = {
"0": "background",
"1": "lesion"
}
json_dict['numTraining'] = len(subfiles(labels_folder))
json_dict['numTest'] = len(subfiles('/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs')) // 4
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i[:-7], "label": "./labelsTr/%s.nii.gz" % i[:-7]} for i in
tr_files]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i[:-7] for i in ts_files]
save_json(json_dict, join(out_base, "dataset.json"))
case_identifiers = np.unique([i[:-12] for i in subfiles("/media/fabian/My Book/MedicalDecathlon/MedicalDecathlon_raw_splitted/Task035_ISBILesionSegmentation/imagesTr", suffix='.nii.gz', join=False)])
splits = []
for f in range(5):
cases = [i for i in range(1, 6) if i != f+1]
splits.append(OrderedDict())
splits[-1]['val'] = np.array([i for i in case_identifiers if i.startswith("case__%02d__" % (f + 1))])
remaining = [i for i in case_identifiers if i not in splits[-1]['val']]
splits[-1]['train'] = np.array(remaining)
maybe_mkdir_p("/media/fabian/nnunet/Task035_ISBILesionSegmentation")
save_pickle(splits, join("/media/fabian/nnunet/Task035_ISBILesionSegmentation", "splits_final.pkl"))
|