File size: 9,159 Bytes
c642393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from batchgenerators.utilities.file_and_folder_operations import *
import shutil
import SimpleITK as sitk
from multiprocessing import Pool
from medpy.metric import dc
import numpy as np
from nnunet.paths import network_training_output_dir
from scipy.ndimage import label
def compute_dice_scores(ref: str, pred: str):
ref = sitk.GetArrayFromImage(sitk.ReadImage(ref))
pred = sitk.GetArrayFromImage(sitk.ReadImage(pred))
kidney_mask_ref = ref > 0
kidney_mask_pred = pred > 0
if np.sum(kidney_mask_pred) == 0 and kidney_mask_ref.sum() == 0:
kidney_dice = np.nan
else:
kidney_dice = dc(kidney_mask_pred, kidney_mask_ref)
tumor_mask_ref = ref == 2
tumor_mask_pred = pred == 2
if np.sum(tumor_mask_ref) == 0 and tumor_mask_pred.sum() == 0:
tumor_dice = np.nan
else:
tumor_dice = dc(tumor_mask_ref, tumor_mask_pred)
geometric_mean = np.mean((kidney_dice, tumor_dice))
return kidney_dice, tumor_dice, geometric_mean
def evaluate_folder(folder_gt: str, folder_pred: str):
p = Pool(8)
niftis = subfiles(folder_gt, suffix=".nii.gz", join=False)
images_gt = [join(folder_gt, i) for i in niftis]
images_pred = [join(folder_pred, i) for i in niftis]
results = p.starmap(compute_dice_scores, zip(images_gt, images_pred))
p.close()
p.join()
with open(join(folder_pred, "results.csv"), 'w') as f:
for i, ni in enumerate(niftis):
f.write("%s,%0.4f,%0.4f,%0.4f\n" % (ni, *results[i]))
def remove_all_but_the_two_largest_conn_comp(img_itk_file: str, file_out: str):
"""
This was not used. I was just curious because others used this. Turns out this is not necessary for my networks
"""
img_itk = sitk.ReadImage(img_itk_file)
img_npy = sitk.GetArrayFromImage(img_itk)
labelmap, num_labels = label((img_npy > 0).astype(int))
if num_labels > 2:
label_sizes = []
for i in range(1, num_labels + 1):
label_sizes.append(np.sum(labelmap == i))
argsrt = np.argsort(label_sizes)[::-1] # two largest are now argsrt[0] and argsrt[1]
keep_mask = (labelmap == argsrt[0] + 1) | (labelmap == argsrt[1] + 1)
img_npy[~keep_mask] = 0
new = sitk.GetImageFromArray(img_npy)
new.CopyInformation(img_itk)
sitk.WriteImage(new, file_out)
print(os.path.basename(img_itk_file), num_labels, label_sizes)
else:
shutil.copy(img_itk_file, file_out)
def manual_postprocess(folder_in,
folder_out):
"""
This was not used. I was just curious because others used this. Turns out this is not necessary for my networks
"""
maybe_mkdir_p(folder_out)
infiles = subfiles(folder_in, suffix=".nii.gz", join=False)
outfiles = [join(folder_out, i) for i in infiles]
infiles = [join(folder_in, i) for i in infiles]
p = Pool(8)
_ = p.starmap_async(remove_all_but_the_two_largest_conn_comp, zip(infiles, outfiles))
_ = _.get()
p.close()
p.join()
def copy_npz_fom_valsets():
'''
this is preparation for ensembling
:return:
'''
base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
folders = ['nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23__nnUNetPlans']
for f in folders:
out = join(base, f, 'crossval_npz')
maybe_mkdir_p(out)
shutil.copy(join(base, f, 'plans.pkl'), out)
for fold in range(5):
cur = join(base, f, 'fold_%d' % fold, 'validation_raw')
npz_files = subfiles(cur, suffix='.npz', join=False)
pkl_files = [i[:-3] + 'pkl' for i in npz_files]
assert all([isfile(join(cur, i)) for i in pkl_files])
for n in npz_files:
corresponding_pkl = n[:-3] + 'pkl'
shutil.copy(join(cur, n), out)
shutil.copy(join(cur, corresponding_pkl), out)
def ensemble(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans'), out_dir="/media/fabian/Results/nnUNet/3d_lowres/Task048_KiTS_clean/ensemble_preactres_and_res"):
from nnunet.inference.ensemble_predictions import merge
folders = [join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean", i, 'crossval_npz') for i in experiments]
merge(folders, out_dir, 8)
def prepare_submission(fld= "/home/fabian/drives/datasets/results/nnUNet/test_sets/Task048_KiTS_clean/predicted_ens_3d_fullres_3d_cascade_fullres_postprocessed", # '/home/fabian/datasets_fabian/predicted_KiTS_nnUNetTrainerNewCandidate23_FabiansResNet',
out='/home/fabian/drives/datasets/results/nnUNet/test_sets/Task048_KiTS_clean/submission'):
nii = subfiles(fld, join=False, suffix='.nii.gz')
maybe_mkdir_p(out)
for n in nii:
outfname = n.replace('case', 'prediction')
shutil.copy(join(fld, n), join(out, outfname))
def pretent_to_be_nnUNetTrainer(base, folds=(0, 1, 2, 3, 4)):
"""
changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
:param experiments:
:return:
"""
for fold in folds:
cur = join(base, "fold_%d" % fold)
pkl_file = join(cur, 'model_best.model.pkl')
a = load_pickle(pkl_file)
a['name_old'] = deepcopy(a['name'])
a['name'] = 'nnUNetTrainer'
save_pickle(a, pkl_file)
def reset_trainerName(base, folds=(0, 1, 2, 3, 4)):
for fold in folds:
cur = join(base, "fold_%d" % fold)
pkl_file = join(cur, 'model_best.model.pkl')
a = load_pickle(pkl_file)
a['name'] = a['name_old']
del a['name_old']
save_pickle(a, pkl_file)
def nnUNetTrainer_these(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23__nnUNetPlans')):
"""
changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
:param experiments:
:return:
"""
base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
for exp in experiments:
cur = join(base, exp)
pretent_to_be_nnUNetTrainer(cur)
def reset_trainerName_these(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
'nnUNetTrainerNewCandidate23__nnUNetPlans')):
"""
changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
:param experiments:
:return:
"""
base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
for exp in experiments:
cur = join(base, exp)
reset_trainerName(cur)
if __name__ == "__main__":
base = "/media/fabian/My Book/datasets/KiTS2019_Challenge/kits19/data"
out = "/media/fabian/My Book/MedicalDecathlon/nnUNet_raw_splitted/Task040_KiTS"
cases = subdirs(base, join=False)
maybe_mkdir_p(out)
maybe_mkdir_p(join(out, "imagesTr"))
maybe_mkdir_p(join(out, "imagesTs"))
maybe_mkdir_p(join(out, "labelsTr"))
for c in cases:
case_id = int(c.split("_")[-1])
if case_id < 210:
shutil.copy(join(base, c, "imaging.nii.gz"), join(out, "imagesTr", c + "_0000.nii.gz"))
shutil.copy(join(base, c, "segmentation.nii.gz"), join(out, "labelsTr", c + ".nii.gz"))
else:
shutil.copy(join(base, c, "imaging.nii.gz"), join(out, "imagesTs", c + "_0000.nii.gz"))
json_dict = {}
json_dict['name'] = "KiTS"
json_dict['description'] = "kidney and kidney tumor segmentation"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "KiTS data for nnunet"
json_dict['licence'] = ""
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "CT",
}
json_dict['labels'] = {
"0": "background",
"1": "Kidney",
"2": "Tumor"
}
json_dict['numTraining'] = len(cases)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
cases]
json_dict['test'] = []
save_json(json_dict, os.path.join(out, "dataset.json"))
|