File size: 9,159 Bytes
c642393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from copy import deepcopy

from batchgenerators.utilities.file_and_folder_operations import *
import shutil
import SimpleITK as sitk
from multiprocessing import Pool
from medpy.metric import dc
import numpy as np
from nnunet.paths import network_training_output_dir
from scipy.ndimage import label


def compute_dice_scores(ref: str, pred: str):
    ref = sitk.GetArrayFromImage(sitk.ReadImage(ref))
    pred = sitk.GetArrayFromImage(sitk.ReadImage(pred))
    kidney_mask_ref = ref > 0
    kidney_mask_pred = pred > 0
    if np.sum(kidney_mask_pred) == 0 and kidney_mask_ref.sum() == 0:
        kidney_dice = np.nan
    else:
        kidney_dice = dc(kidney_mask_pred, kidney_mask_ref)

    tumor_mask_ref = ref == 2
    tumor_mask_pred = pred == 2
    if np.sum(tumor_mask_ref) == 0 and tumor_mask_pred.sum() == 0:
        tumor_dice = np.nan
    else:
        tumor_dice = dc(tumor_mask_ref, tumor_mask_pred)

    geometric_mean = np.mean((kidney_dice, tumor_dice))
    return kidney_dice, tumor_dice, geometric_mean


def evaluate_folder(folder_gt: str, folder_pred: str):
    p = Pool(8)
    niftis = subfiles(folder_gt, suffix=".nii.gz", join=False)
    images_gt = [join(folder_gt, i) for i in niftis]
    images_pred = [join(folder_pred, i) for i in niftis]
    results = p.starmap(compute_dice_scores, zip(images_gt, images_pred))
    p.close()
    p.join()

    with open(join(folder_pred, "results.csv"), 'w') as f:
        for i, ni in enumerate(niftis):
            f.write("%s,%0.4f,%0.4f,%0.4f\n" % (ni, *results[i]))


def remove_all_but_the_two_largest_conn_comp(img_itk_file: str, file_out: str):
    """
    This was not used. I was just curious because others used this. Turns out this is not necessary for my networks
    """
    img_itk = sitk.ReadImage(img_itk_file)
    img_npy = sitk.GetArrayFromImage(img_itk)

    labelmap, num_labels = label((img_npy > 0).astype(int))

    if num_labels > 2:
        label_sizes = []
        for i in range(1, num_labels + 1):
            label_sizes.append(np.sum(labelmap == i))
        argsrt = np.argsort(label_sizes)[::-1] # two largest are now argsrt[0] and argsrt[1]
        keep_mask = (labelmap == argsrt[0] + 1) | (labelmap == argsrt[1] + 1)
        img_npy[~keep_mask] = 0
        new = sitk.GetImageFromArray(img_npy)
        new.CopyInformation(img_itk)
        sitk.WriteImage(new, file_out)
        print(os.path.basename(img_itk_file), num_labels, label_sizes)
    else:
        shutil.copy(img_itk_file, file_out)


def manual_postprocess(folder_in,
                       folder_out):
    """
    This was not used. I was just curious because others used this. Turns out this is not necessary for my networks
    """
    maybe_mkdir_p(folder_out)
    infiles = subfiles(folder_in, suffix=".nii.gz", join=False)

    outfiles = [join(folder_out, i) for i in infiles]
    infiles = [join(folder_in, i) for i in infiles]

    p = Pool(8)
    _ = p.starmap_async(remove_all_but_the_two_largest_conn_comp, zip(infiles, outfiles))
    _ = _.get()
    p.close()
    p.join()




def copy_npz_fom_valsets():
    '''
    this is preparation for ensembling
    :return:
    '''
    base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
    folders = ['nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23__nnUNetPlans']
    for f in folders:
        out = join(base, f, 'crossval_npz')
        maybe_mkdir_p(out)
        shutil.copy(join(base, f, 'plans.pkl'), out)
        for fold in range(5):
            cur = join(base, f, 'fold_%d' % fold, 'validation_raw')
            npz_files = subfiles(cur, suffix='.npz', join=False)
            pkl_files = [i[:-3] + 'pkl' for i in npz_files]
            assert all([isfile(join(cur, i)) for i in pkl_files])
            for n in npz_files:
                corresponding_pkl = n[:-3] + 'pkl'
                shutil.copy(join(cur, n), out)
                shutil.copy(join(cur, corresponding_pkl), out)


def ensemble(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans'), out_dir="/media/fabian/Results/nnUNet/3d_lowres/Task048_KiTS_clean/ensemble_preactres_and_res"):
    from nnunet.inference.ensemble_predictions import merge
    folders = [join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean", i, 'crossval_npz') for i in experiments]
    merge(folders, out_dir, 8)


def prepare_submission(fld= "/home/fabian/drives/datasets/results/nnUNet/test_sets/Task048_KiTS_clean/predicted_ens_3d_fullres_3d_cascade_fullres_postprocessed", # '/home/fabian/datasets_fabian/predicted_KiTS_nnUNetTrainerNewCandidate23_FabiansResNet',
                       out='/home/fabian/drives/datasets/results/nnUNet/test_sets/Task048_KiTS_clean/submission'):
    nii = subfiles(fld, join=False, suffix='.nii.gz')
    maybe_mkdir_p(out)
    for n in nii:
        outfname = n.replace('case', 'prediction')
        shutil.copy(join(fld, n), join(out, outfname))


def pretent_to_be_nnUNetTrainer(base, folds=(0, 1, 2, 3, 4)):
    """
    changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
    :param experiments:
    :return:
    """
    for fold in folds:
        cur = join(base, "fold_%d" % fold)
        pkl_file = join(cur, 'model_best.model.pkl')
        a = load_pickle(pkl_file)
        a['name_old'] = deepcopy(a['name'])
        a['name'] = 'nnUNetTrainer'
        save_pickle(a, pkl_file)


def reset_trainerName(base, folds=(0, 1, 2, 3, 4)):
    for fold in folds:
        cur = join(base, "fold_%d" % fold)
        pkl_file = join(cur, 'model_best.model.pkl')
        a = load_pickle(pkl_file)
        a['name'] = a['name_old']
        del a['name_old']
        save_pickle(a, pkl_file)


def nnUNetTrainer_these(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23__nnUNetPlans')):
    """
    changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
    :param experiments:
    :return:
    """
    base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
    for exp in experiments:
        cur = join(base, exp)
        pretent_to_be_nnUNetTrainer(cur)


def reset_trainerName_these(experiments=('nnUNetTrainerNewCandidate23_FabiansPreActResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23_FabiansResNet__nnUNetPlans',
               'nnUNetTrainerNewCandidate23__nnUNetPlans')):
    """
    changes best checkpoint pickle nnunettrainer class name to nnUNetTrainer
    :param experiments:
    :return:
    """
    base = join(network_training_output_dir, "3d_lowres/Task048_KiTS_clean")
    for exp in experiments:
        cur = join(base, exp)
        reset_trainerName(cur)


if __name__ == "__main__":
    base = "/media/fabian/My Book/datasets/KiTS2019_Challenge/kits19/data"
    out = "/media/fabian/My Book/MedicalDecathlon/nnUNet_raw_splitted/Task040_KiTS"
    cases = subdirs(base, join=False)

    maybe_mkdir_p(out)
    maybe_mkdir_p(join(out, "imagesTr"))
    maybe_mkdir_p(join(out, "imagesTs"))
    maybe_mkdir_p(join(out, "labelsTr"))

    for c in cases:
        case_id = int(c.split("_")[-1])
        if case_id < 210:
            shutil.copy(join(base, c, "imaging.nii.gz"), join(out, "imagesTr", c + "_0000.nii.gz"))
            shutil.copy(join(base, c, "segmentation.nii.gz"), join(out, "labelsTr", c + ".nii.gz"))
        else:
            shutil.copy(join(base, c, "imaging.nii.gz"), join(out, "imagesTs", c + "_0000.nii.gz"))

    json_dict = {}
    json_dict['name'] = "KiTS"
    json_dict['description'] = "kidney and kidney tumor segmentation"
    json_dict['tensorImageSize'] = "4D"
    json_dict['reference'] = "KiTS data for nnunet"
    json_dict['licence'] = ""
    json_dict['release'] = "0.0"
    json_dict['modality'] = {
        "0": "CT",
    }
    json_dict['labels'] = {
        "0": "background",
        "1": "Kidney",
        "2": "Tumor"
    }
    json_dict['numTraining'] = len(cases)
    json_dict['numTest'] = 0
    json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
                             cases]
    json_dict['test'] = []

    save_json(json_dict, os.path.join(out, "dataset.json"))