File size: 1,673 Bytes
c642393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from torch import nn


class InitWeights_He(object):
    def __init__(self, neg_slope=1e-2):
        self.neg_slope = neg_slope

    def __call__(self, module):
        if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.ConvTranspose3d):
            module.weight = nn.init.kaiming_normal_(module.weight, a=self.neg_slope)
            if module.bias is not None:
                module.bias = nn.init.constant_(module.bias, 0)


class InitWeights_XavierUniform(object):
    def __init__(self, gain=1):
        self.gain = gain

    def __call__(self, module):
        if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.ConvTranspose3d):
            module.weight = nn.init.xavier_uniform_(module.weight, self.gain)
            if module.bias is not None:
                module.bias = nn.init.constant_(module.bias, 0)