Chris Xiao
upload files
c642393
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from copy import deepcopy
from batchgenerators.augmentations.utils import resize_segmentation
from nnunet.configuration import default_num_threads, RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD
from nnunet.preprocessing.cropping import get_case_identifier_from_npz, ImageCropper
from skimage.transform import resize
from scipy.ndimage.interpolation import map_coordinates
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing.pool import Pool
def get_do_separate_z(spacing, anisotropy_threshold=RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD):
do_separate_z = (np.max(spacing) / np.min(spacing)) > anisotropy_threshold
return do_separate_z
def get_lowres_axis(new_spacing):
axis = np.where(max(new_spacing) / np.array(new_spacing) == 1)[0] # find which axis is anisotropic
return axis
def resample_patient(data, seg, original_spacing, target_spacing, order_data=3, order_seg=0, force_separate_z=False,
order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD):
"""
:param data:
:param seg:
:param original_spacing:
:param target_spacing:
:param order_data:
:param order_seg:
:param force_separate_z: if None then we dynamically decide how to resample along z, if True/False then always
/never resample along z separately
:param order_z_seg: only applies if do_separate_z is True
:param order_z_data: only applies if do_separate_z is True
:param separate_z_anisotropy_threshold: if max_spacing > separate_z_anisotropy_threshold * min_spacing (per axis)
then resample along lowres axis with order_z_data/order_z_seg instead of order_data/order_seg
:return:
"""
assert not ((data is None) and (seg is None))
if data is not None:
assert len(data.shape) == 4, "data must be c x y z"
if seg is not None:
assert len(seg.shape) == 4, "seg must be c x y z"
if data is not None:
shape = np.array(data[0].shape)
else:
shape = np.array(seg[0].shape)
new_shape = np.round(((np.array(original_spacing) / np.array(target_spacing)).astype(float) * shape)).astype(int)
if force_separate_z is not None:
do_separate_z = force_separate_z
if force_separate_z:
axis = get_lowres_axis(original_spacing)
else:
axis = None
else:
if get_do_separate_z(original_spacing, separate_z_anisotropy_threshold):
do_separate_z = True
axis = get_lowres_axis(original_spacing)
elif get_do_separate_z(target_spacing, separate_z_anisotropy_threshold):
do_separate_z = True
axis = get_lowres_axis(target_spacing)
else:
do_separate_z = False
axis = None
if axis is not None:
if len(axis) == 3:
# every axis has the spacing, this should never happen, why is this code here?
do_separate_z = False
elif len(axis) == 2:
# this happens for spacings like (0.24, 1.25, 1.25) for example. In that case we do not want to resample
# separately in the out of plane axis
do_separate_z = False
else:
pass
if data is not None:
data_reshaped = resample_data_or_seg(data, new_shape, False, axis, order_data, do_separate_z,
order_z=order_z_data)
else:
data_reshaped = None
if seg is not None:
seg_reshaped = resample_data_or_seg(seg, new_shape, True, axis, order_seg, do_separate_z, order_z=order_z_seg)
else:
seg_reshaped = None
return data_reshaped, seg_reshaped
def resample_data_or_seg(data, new_shape, is_seg, axis=None, order=3, do_separate_z=False, order_z=0):
"""
separate_z=True will resample with order 0 along z
:param data:
:param new_shape:
:param is_seg:
:param axis:
:param order:
:param do_separate_z:
:param order_z: only applies if do_separate_z is True
:return:
"""
assert len(data.shape) == 4, "data must be (c, x, y, z)"
assert len(new_shape) == len(data.shape) - 1
if is_seg:
resize_fn = resize_segmentation
kwargs = OrderedDict()
else:
resize_fn = resize
kwargs = {'mode': 'edge', 'anti_aliasing': False}
dtype_data = data.dtype
shape = np.array(data[0].shape)
new_shape = np.array(new_shape)
if np.any(shape != new_shape):
data = data.astype(float)
if do_separate_z:
print("separate z, order in z is", order_z, "order inplane is", order)
assert len(axis) == 1, "only one anisotropic axis supported"
axis = axis[0]
if axis == 0:
new_shape_2d = new_shape[1:]
elif axis == 1:
new_shape_2d = new_shape[[0, 2]]
else:
new_shape_2d = new_shape[:-1]
reshaped_final_data = []
for c in range(data.shape[0]):
reshaped_data = []
for slice_id in range(shape[axis]):
if axis == 0:
reshaped_data.append(resize_fn(data[c, slice_id], new_shape_2d, order, **kwargs).astype(dtype_data))
elif axis == 1:
reshaped_data.append(resize_fn(data[c, :, slice_id], new_shape_2d, order, **kwargs).astype(dtype_data))
else:
reshaped_data.append(resize_fn(data[c, :, :, slice_id], new_shape_2d, order, **kwargs).astype(dtype_data))
reshaped_data = np.stack(reshaped_data, axis)
if shape[axis] != new_shape[axis]:
# The following few lines are blatantly copied and modified from sklearn's resize()
rows, cols, dim = new_shape[0], new_shape[1], new_shape[2]
orig_rows, orig_cols, orig_dim = reshaped_data.shape
row_scale = float(orig_rows) / rows
col_scale = float(orig_cols) / cols
dim_scale = float(orig_dim) / dim
map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
map_rows = row_scale * (map_rows + 0.5) - 0.5
map_cols = col_scale * (map_cols + 0.5) - 0.5
map_dims = dim_scale * (map_dims + 0.5) - 0.5
coord_map = np.array([map_rows, map_cols, map_dims])
if not is_seg or order_z == 0:
reshaped_final_data.append(map_coordinates(reshaped_data, coord_map, order=order_z,
mode='nearest')[None].astype(dtype_data))
else:
unique_labels = np.unique(reshaped_data)
reshaped = np.zeros(new_shape, dtype=dtype_data)
for i, cl in enumerate(unique_labels):
reshaped_multihot = np.round(
map_coordinates((reshaped_data == cl).astype(float), coord_map, order=order_z,
mode='nearest'))
reshaped[reshaped_multihot > 0.5] = cl
reshaped_final_data.append(reshaped[None].astype(dtype_data))
else:
reshaped_final_data.append(reshaped_data[None].astype(dtype_data))
reshaped_final_data = np.vstack(reshaped_final_data)
else:
print("no separate z, order", order)
reshaped = []
for c in range(data.shape[0]):
reshaped.append(resize_fn(data[c], new_shape, order, **kwargs)[None].astype(dtype_data))
reshaped_final_data = np.vstack(reshaped)
return reshaped_final_data.astype(dtype_data)
else:
print("no resampling necessary")
return data
class GenericPreprocessor(object):
def __init__(self, normalization_scheme_per_modality, use_nonzero_mask, transpose_forward: (tuple, list), intensityproperties=None):
"""
:param normalization_scheme_per_modality: dict {0:'nonCT'}
:param use_nonzero_mask: {0:False}
:param intensityproperties:
"""
self.transpose_forward = transpose_forward
self.intensityproperties = intensityproperties
self.normalization_scheme_per_modality = normalization_scheme_per_modality
self.use_nonzero_mask = use_nonzero_mask
self.resample_separate_z_anisotropy_threshold = RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD
self.resample_order_data = 3
self.resample_order_seg = 1
@staticmethod
def load_cropped(cropped_output_dir, case_identifier):
all_data = np.load(os.path.join(cropped_output_dir, "%s.npz" % case_identifier))['data']
data = all_data[:-1].astype(np.float32)
seg = all_data[-1:]
with open(os.path.join(cropped_output_dir, "%s.pkl" % case_identifier), 'rb') as f:
properties = pickle.load(f)
return data, seg, properties
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing,
self.resample_order_data, self.resample_order_seg,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
print('no intensity normalization')
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
else:
mn = data[c].mean()
std = data[c].std()
# print(data[c].shape, data[c].dtype, mn, std)
data[c] = (data[c] - mn) / (std + 1e-8)
return data, seg, properties
def preprocess_test_case(self, data_files, target_spacing, seg_file=None, force_separate_z=None):
data, seg, properties = ImageCropper.crop_from_list_of_files(data_files, seg_file)
data = data.transpose((0, *[i + 1 for i in self.transpose_forward]))
seg = seg.transpose((0, *[i + 1 for i in self.transpose_forward]))
data, seg, properties = self.resample_and_normalize(data, target_spacing, properties, seg,
force_separate_z=force_separate_z)
return data.astype(np.float32), seg, properties
def _run_internal(self, target_spacing, case_identifier, output_folder_stage, cropped_output_dir, force_separate_z,
all_classes):
data, seg, properties = self.load_cropped(cropped_output_dir, case_identifier)
data = data.transpose((0, *[i + 1 for i in self.transpose_forward]))
seg = seg.transpose((0, *[i + 1 for i in self.transpose_forward]))
data, seg, properties = self.resample_and_normalize(data, target_spacing,
properties, seg, force_separate_z)
all_data = np.vstack((data, seg)).astype(np.float32)
# we need to find out where the classes are and sample some random locations
# let's do 10.000 samples per class
# seed this for reproducibility!
num_samples = 10000
min_percent_coverage = 0.01 # at least 1% of the class voxels need to be selected, otherwise it may be too sparse
rndst = np.random.RandomState(1234)
class_locs = {}
for c in all_classes:
all_locs = np.argwhere(all_data[-1] == c)
if len(all_locs) == 0:
class_locs[c] = []
continue
target_num_samples = min(num_samples, len(all_locs))
target_num_samples = max(target_num_samples, int(np.ceil(len(all_locs) * min_percent_coverage)))
selected = all_locs[rndst.choice(len(all_locs), target_num_samples, replace=False)]
class_locs[c] = selected
print(c, target_num_samples)
properties['class_locations'] = class_locs
print("saving: ", os.path.join(output_folder_stage, "%s.npz" % case_identifier))
np.savez_compressed(os.path.join(output_folder_stage, "%s.npz" % case_identifier),
data=all_data.astype(np.float32))
with open(os.path.join(output_folder_stage, "%s.pkl" % case_identifier), 'wb') as f:
pickle.dump(properties, f)
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
"""
:param target_spacings: list of lists [[1.25, 1.25, 5]]
:param input_folder_with_cropped_npz: dim: c, x, y, z | npz_file['data'] np.savez_compressed(fname.npz, data=arr)
:param output_folder:
:param num_threads:
:param force_separate_z: None
:return:
"""
print("Initializing to run preprocessing")
print("npz folder:", input_folder_with_cropped_npz)
print("output_folder:", output_folder)
list_of_cropped_npz_files = subfiles(input_folder_with_cropped_npz, True, None, ".npz", True)
maybe_mkdir_p(output_folder)
num_stages = len(target_spacings)
if not isinstance(num_threads, (list, tuple, np.ndarray)):
num_threads = [num_threads] * num_stages
assert len(num_threads) == num_stages
# we need to know which classes are present in this dataset so that we can precompute where these classes are
# located. This is needed for oversampling foreground
all_classes = load_pickle(join(input_folder_with_cropped_npz, 'dataset_properties.pkl'))['all_classes']
for i in range(num_stages):
all_args = []
output_folder_stage = os.path.join(output_folder, data_identifier + "_stage%d" % i)
maybe_mkdir_p(output_folder_stage)
spacing = target_spacings[i]
for j, case in enumerate(list_of_cropped_npz_files):
case_identifier = get_case_identifier_from_npz(case)
args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
all_args.append(args)
p = Pool(num_threads[i])
p.starmap(self._run_internal, all_args)
p.close()
p.join()
class GenericPreprocessor_linearResampling(GenericPreprocessor):
def __init__(self, normalization_scheme_per_modality, use_nonzero_mask, transpose_forward: (tuple, list),
intensityproperties=None):
super().__init__(normalization_scheme_per_modality, use_nonzero_mask, transpose_forward, intensityproperties)
self.resample_order_data = 1
self.resample_order_seg = 1
class Preprocessor3DDifferentResampling(GenericPreprocessor):
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=3, order_z_seg=1,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
class Preprocessor3DBetterResampling(GenericPreprocessor):
"""
This preprocessor always uses force_separate_z=False. It does resampling to the target spacing with third
order spline for data (just like GenericPreprocessor) and seg (unlike GenericPreprocessor). It never does separate
resampling in z.
"""
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=False):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
if force_separate_z is not False:
print("WARNING: Preprocessor3DBetterResampling always uses force_separate_z=False. "
"You specified %s. Your choice is overwritten" % str(force_separate_z))
force_separate_z = False
# be safe
assert force_separate_z is False
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 3,
force_separate_z=force_separate_z, order_z_data=99999, order_z_seg=99999,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
class PreprocessorFor2D(GenericPreprocessor):
def __init__(self, normalization_scheme_per_modality, use_nonzero_mask, transpose_forward: (tuple, list), intensityproperties=None):
super(PreprocessorFor2D, self).__init__(normalization_scheme_per_modality, use_nonzero_mask,
transpose_forward, intensityproperties)
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
print("Initializing to run preprocessing")
print("npz folder:", input_folder_with_cropped_npz)
print("output_folder:", output_folder)
list_of_cropped_npz_files = subfiles(input_folder_with_cropped_npz, True, None, ".npz", True)
assert len(list_of_cropped_npz_files) != 0, "set list of files first"
maybe_mkdir_p(output_folder)
all_args = []
num_stages = len(target_spacings)
# we need to know which classes are present in this dataset so that we can precompute where these classes are
# located. This is needed for oversampling foreground
all_classes = load_pickle(join(input_folder_with_cropped_npz, 'dataset_properties.pkl'))['all_classes']
for i in range(num_stages):
output_folder_stage = os.path.join(output_folder, data_identifier + "_stage%d" % i)
maybe_mkdir_p(output_folder_stage)
spacing = target_spacings[i]
for j, case in enumerate(list_of_cropped_npz_files):
case_identifier = get_case_identifier_from_npz(case)
args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
all_args.append(args)
p = Pool(num_threads)
p.starmap(self._run_internal, all_args)
p.close()
p.join()
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
target_spacing[0] = original_spacing_transposed[0]
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
print("normalization...")
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
print("normalization done")
return data, seg, properties
class PreprocessorFor2D_edgeLength512(PreprocessorFor2D):
target_edge_size = 512
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
data_shape = data.shape[-2:]
smaller_edge = min(data_shape)
target_edge_size = self.target_edge_size
scale_factor = target_edge_size / smaller_edge
new_shape = [1] + [int(np.round(i * scale_factor)) for i in data_shape]
print(new_shape)
data = resample_data_or_seg(data, new_shape, False, None, 3, False, 0)
seg = resample_data_or_seg(seg, new_shape, True, None, 1, False, 0)
after = {
'spacing': 'None',
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
print("normalization...")
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
print("normalization done")
return data, seg, properties
class PreprocessorFor2D_edgeLength768(PreprocessorFor2D_edgeLength512):
target_edge_size = 768
class PreprocessorFor3D_LeaveOriginalZSpacing(GenericPreprocessor):
"""
3d_lowres and 3d_fullres are not resampled along z!
"""
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
if target_spacing[0] is None or nan we use original_spacing_transposed[0] (no resampling along z)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
target_spacing = deepcopy(target_spacing)
if target_spacing[0] is None or np.isnan(target_spacing[0]):
target_spacing[0] = original_spacing_transposed[0]
#print(target_spacing, original_spacing_transposed)
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
st = "before:" + str(before) + '\nafter' + str(after) + "\n"
print(st)
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
for i in range(len(target_spacings)):
target_spacings[i][0] = None
super().run(target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
default_num_threads, force_separate_z)
class PreprocessorFor3D_NoResampling(GenericPreprocessor):
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
if target_spacing[0] is None or nan we use original_spacing_transposed[0] (no resampling along z)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
target_spacing = deepcopy(original_spacing_transposed)
#print(target_spacing, original_spacing_transposed)
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
st = "before:" + str(before) + '\nafter' + str(after) + "\n"
print(st)
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties