File size: 6,832 Bytes
7e4b3a9 8be6163 7e4b3a9 6413be5 8be6163 7e4b3a9 2e85c25 16ff62a 6413be5 3f49757 16ff62a 5af3aaa 6413be5 16ff62a 4e3ad24 16ff62a 6413be5 4e3ad24 4447986 4e3ad24 8be6163 4447986 8be6163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
language:
- en
- ru
license: llama2
tags:
- merge
- mergekit
- nsfw
- not-for-all-audiences
model-index:
- name: Gembo-v1.1-70b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.63
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.45
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1.1-70b
name: Open LLM Leaderboard
---
![logo-gembo-1.1.png](logo-gembo-1.1.png)
This is like [Gembo v1](https://huggingface.co/ChuckMcSneed/Gembo-v1-70b), but with 6-7% more human data. Does perform a bit worse on the benches(who cares? I do.), but should be able to write in more diverse styles(See [waxwing-styles.txt](waxwing-styles.txt), tested it with v1, v1 does it better.). Mainly made for RP, but should be okay as an assistant. Turned out quite good, considering the amount of LORAs I merged into it.
# Observations
- GPTisms and repetition: put temperature and rep. pen. higher, make GPTisms stop sequences
- A bit different than the ususal stuff; I'd say that it has so much slop in it that it unslops itself
- Lightly censored
- Fairly neutral, can be violent if you ask it really good, Goliath is a bit better at it
- Has a bit of optimism baked in, but it's not very severe, maybe a tiny bit more than in v1?
- Don't put too many style tags, here less is better
- Unlike v1, 1.1 knows a bit better when to stop
- Needs more wrangling than v1, but once you get it going it's good
- Sometimes can't handle '
- Moderately intelligent
- Quite creative
# Worth over v1?
Nah. I prefer hyperslop over this "humanized" one. Maybe I've been poisoned by slop.
# Naming
Internal name of this model was euryale-guano-saiga-med-janboros-kim-wing-lima-wiz-tony-d30-s40, but I decided to keep it short, and since it was iteration G in my files, I called it "Gembo".
# Prompt format
Alpaca. You can also try some other formats, I'm pretty sure it has a lot of them from all those merges.
```
### Instruction:
{instruction}
### Response:
```
# Settings
As I already mentioned, high temperature and rep.pen. works great.
For RP try something like this:
- temperature=5
- MinP=0.10
- rep.pen.=1.15
Adjust to match your needs.
# How it was created
I took Sao10K/Euryale-1.3-L2-70B (Good base model) and added
- Mikael110/llama-2-70b-guanaco-qlora (Creativity+assistant)
- IlyaGusev/saiga2_70b_lora (Creativity+assistant)
- s1ghhh/medllama-2-70b-qlora-1.1 (More data)
- v2ray/Airoboros-2.1-Jannie-70B-QLoRA (Creativity+assistant)
- Chat-Error/fiction.live-Kimiko-V2-70B (Creativity)
- alac/Waxwing-Storytelling-70B-LoRA (New, creativity)
- Doctor-Shotgun/limarpv3-llama2-70b-qlora (Creativity)
- v2ray/LLaMA-2-Wizard-70B-QLoRA (Creativity+assistant)
- v2ray/TonyGPT-70B-QLoRA (Special spice)
Then I SLERP-merged it with cognitivecomputations/dolphin-2.2-70b (Needed to bridge the gap between this wonderful mess and Smaxxxer, otherwise it's quality is low) with 0.3t and then SLERP-merged it again with ChuckMcSneed/SMaxxxer-v1-70b (Creativity) with 0.4t. For SLERP-merges I used https://github.com/arcee-ai/mergekit.
# Benchmarks (Do they even mean anything anymore?)
### NeoEvalPlusN_benchmark
[My meme benchmark.](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark)
| Test name | Gembo | Gembo 1.1 |
| ---------- | ---------- | ---------- |
| B | 2.5 | 2.5 |
| C | 1.5 | 1.5 |
| D | 3 | 3 |
| S | 7.5 | 6.75 |
| P | 5.25 | 5.25 |
| Total | 19.75 | 19 |
### [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
[Leaderboard on Huggingface](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|
|--------------|-------|-----|---------|-----|----------|----------|-----|
|Gembo-v1-70b |70.51 |71.25|86.98 |70.85|63.25 |80.51 |50.19|
|Gembo-v1.1-70b|70.35 |70.99|86.9 |70.63|62.45 |80.51 |50.64|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChuckMcSneed__Gembo-v1.1-70b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.35|
|AI2 Reasoning Challenge (25-Shot)|70.99|
|HellaSwag (10-Shot) |86.90|
|MMLU (5-Shot) |70.63|
|TruthfulQA (0-shot) |62.45|
|Winogrande (5-shot) |80.51|
|GSM8k (5-shot) |50.64|
|